Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-06T18:36:18.277Z Has data issue: false hasContentIssue false

10 - Surface Engineering for Bio-Medical Implants

Published online by Cambridge University Press:  20 January 2017

P. A. Dearnley
Affiliation:
Boride Services Ltd.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, J. R., Dowson, D., Isaac, J. H. and Wroblewski, B. M. (1985), ‘Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups …’, Wear 104, 225244.CrossRefGoogle Scholar
Baldwin, C. M. and Mackenzie, J. D. (1976), ‘Flame-sprayed alumina on stainless steel for possible prosthetic application’, J. Biomed. Mater. Res. 10 (3), 445453.CrossRefGoogle ScholarPubMed
Bell, T., Dong, H. and Li., C. X. (2008). ‘Plasma surface treatment of Co-Cr biomaterials’, European Patent EP 1 499 755B1 (21 May).Google Scholar
Brandt, J-M. (2013). ‘Performance assessment of femoral knee components made from cobalt-chromium and oxidized zirconium’, The Knee 20 (6), 388396.CrossRefGoogle ScholarPubMed
Burnell, C. D. C., Brandt, J.-M., Petrak., M. J. and Bourne, R. B. (2011), ‘Posterior condyle surface damage on retrieved femoral knee components’, Journal of Arthroplasty 26 (8), 14601467.CrossRefGoogle ScholarPubMed
Campbell, P. and De Smet, K. (2013), ‘The Birmingham hip resurfacing (BHR) prosthesis’, in The hip resurfacing handbook, Woodhead Publishing, Oxford, 2530, edited by De Smet, K., Campbell, P. and Van der Straeten, C..CrossRefGoogle Scholar
Chang, J.-D. (2014), ‘Future bearing surfaces in total hip arthroplasty’, Clinics in Orthopedic Surgery 6 (1), 110116.CrossRefGoogle ScholarPubMed
Cook, R. B., Bollard, B. J. R. F., Wharton, J. A., Tiley, S., Latham, J. M. and Wood, R. J. K. (2013), ‘Pseudotumour formation due to tribocorrosion at the taper interface of large diameter metal on polymer modular total hip replacements’, Journal of Arthroplasty 28 (8), 14301436.CrossRefGoogle ScholarPubMed
Cooper, J. R., Dowson, D. and Fisher, J. (1993), ‘Macroscopic and microscopic wear mechanisms of ultra-high-molecular-weight polyethylene’, Wear 162 –164, 378384.CrossRefGoogle Scholar
Dahm, K. L. (1998), PhD thesis, ‘Coatings for corrosion-wear applications’, University of Auckland, New Zealand.Google Scholar
Dahm, K. L., Anderson, I. and Dearnley, P. A. (1995), ‘Hard coatings for orthopaedic implants’, Surf. Eng. 11 (2), 138144.CrossRefGoogle Scholar
Dahm, K. L. and Dearnley, P. A. (2005), ‘Abrasion response and abrasion-corrosion interactions for a coated biomedical stainless steel’, Wear 259, 933942.CrossRefGoogle Scholar
Davidson, J. A. (1991a), ‘Ziconium oxide coated prostheses for wear and corrosion resistance’, US Patent 5,037,438.Google Scholar
Davidson, J. A. (1991b), ‘Ceramic coatings for orthopaedic surfaces’, in Ceramics in substitutive and reconstructive surgery, Elsevier Science Publishers B.V., 157166, edited by Vincenzini, P..Google Scholar
Davidson, J. A. (1994), ‘Ziconium oxide and nitride coated endoprostheses for tissue protection’, US Patent 5,370,694, 6 December.Google Scholar
Davidson, J. A., Asgian, C. M., Mishra, A. K. and Kovacs, P. (1992), ‘Zirconia (ZrO2) coated zirconium-2.5Nb alloy for prosthetic knee bearing applications’, in Proceedings of the 5th International Symposium on Ceramics in Medicine, Kyoto, Japan, ‘Bioceramics Vol. 5’, 389401, edited by Yamamura, T..Google Scholar
de Groot, K., Wolke, J. G. C. and Jansen, J. A. (1998), ‘Calcium phosphate coatings for medical implants’, Proc. Inst. Mech. Eng. 212 (H), 137147.CrossRefGoogle ScholarPubMed
De Smet, K. (2013), ‘The DePuy articular surface replacement (ASR) hip resurfacing prosthesis’, in The hip resurfacing handbook, Woodhead Publishing, Oxford, 2024, edited by De Smet, K., Campbell, P. and Van der Straeten, C..CrossRefGoogle Scholar
De Smet, K., Campbell, P. and Van der Straeten, C., Eds (2013), The hip resurfacing handbook, Woodhead Publishing, Oxford.CrossRefGoogle Scholar
Dearnley, P. A. (1999), ‘A review of metallic, ceramic and surface-treated metals used for bearing surfaces in human joint replacements’, Proc. Inst. Mech. Eng. 213 (H), 107135.CrossRefGoogle ScholarPubMed
Dearnley, P. A. (2005), ‘A brief review of test methodologies for surface engineered biomedical implant alloys’, Surface and Coatings Technology 198, 483490.CrossRefGoogle Scholar
Dearnley, P. A. and Aldrich-Smith, G. (2004), ‘Corrosion-wear mechanisms of hard coated 316L stainless steels’, Wear 256, 491499.CrossRefGoogle Scholar
Dearnley, P. A., Dahm, K. L. and Cimenoglu, H. (2004), ‘The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V’, Wear 256, 469479.CrossRefGoogle Scholar
Dearnley, P. A., Figueiredo Pina., C. G. and Fisher, J. (2008), ‘Assessment of S-phase coated medical grade stainless steel (Ortron 90) for use in the human joint replacement corrosion–wear environment’, Journal of Physics D: Applied Physics 41, 105305.CrossRefGoogle Scholar
Dearnley, P. A. and Latham, J. M. (2012), collaborative research at the University of Southampton, undertaken whilst the author was visiting Professor in Surface Engineering.Google Scholar
Dearnley, P. A. and Latham, J. M. (2013), collaborative research between Boride Services Ltd, UK, and the University of Southampton.Google Scholar
Delport, H. P. (2013), ‘The BIOMET ReCap Resurfacing prosthesis’, in The hip resurfacing handbook, Woodhead Publishing, Oxford, 6977, edited by De Smet, K., Campbell, P. and Van der Straeten, C..CrossRefGoogle Scholar
Derbyshire, B., Fisher, J., Dowson, D., Hardaker, C. and Brummitt, K. (1994), ‘Comparative study of the wear of UHMWPE with zirconia ceramic and stainless steel femoral heads in artificial hip joints’, Med. Eng. Phys. 16, 229236.CrossRefGoogle ScholarPubMed
Dowson, D. and Jin, Z. M. (1986), ‘Micro-elastohydrodynamic lubrication of synovial jointsProc. Inst. Mech. Eng., Part H: Engineering in Med. 15 (2), 6365.Google ScholarPubMed
Driver, M. (2011), ‘Coatings for cardiovascular devices: Coronary stents’, in Coatings for biomedical applications, Woodhead Publishing, Cambridge, 223250.Google Scholar
Drummond, L., Simon, M. R., Brown, S. D. and Blattner, R. J. (1981), ‘Degradation of plasma sprayed alumina on metal substrates in physiological media’, C109–C110; communications of American Ceramic Society, Westerville, Ohio 43081.CrossRefGoogle Scholar
Fisher, J. et al (with 13 others), (2004), ‘Wear of surface engineered metal on metal hip prostheses’, Journal of Materials Science: Materials in Medicine 15, 225235.Google ScholarPubMed
Galetz, M. C., Fleischmann, E. W., Konrad, C. H., Schuetz, A. and Glatzel, U. (2010), ‘Abrasion resistance of oxidized zirconium in comparison with titanium nitride coatings for artificial knee joints’, J. Biomedical Materials Research B 93, 244251.CrossRefGoogle ScholarPubMed
Gilbert, J. L., Zarka, L., Chang, E. B and Thomas, C. H. (1998), ‘The reduction half cell in biomaterials corrosion: Oxygen diffusion profiles near and cell response to polarized titanium surfaces’, Journal of Biomedical Materials Research 42 (2), 321330.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Goldberg, J. R. and Gilbert, J. L. (2004), ‘The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys’, Biomaterials 25 (5), 851864.CrossRefGoogle ScholarPubMed
Good, V., Ries, M., Barrack, R. L., Widding, K., Hunter, G. and Heuer, D. (2003), ‘Reduced wear with oxidized zirconium femoral heads’, Journal of Bone and Joint Surgery 85a, Supp. 4, 105110.CrossRefGoogle Scholar
Haeri, M. and Gilbert, J. L. (2013), ‘Study of cellular dynamics on polarized CoCrMo alloy using time-lapse live-cell imaging’, Acta Biomaterialia 9, 92209228.CrossRefGoogle ScholarPubMed
Haeri, M., Wöllert, T., Langford, G. M. and Gilbert, J. L. (2012), ‘Electrochemical control of cell death by reduction induced intrinsic apoptosis and oxidation induced necrosis on CoCrMo alloy in-vitro’, Biomaterials 33 (27), 62956304.CrossRefGoogle ScholarPubMed
Hamelynck, K. J. and Woering, R. G. (2013), ‘The advanced ceramic coated implant systems (ACCIS) hip resurfacing prosthesis’, in The hip resurfacing handbook, Woodhead Publishing, Oxford, 39, edited by De Smet, K., Campbell, P. and Van der Straeten, C..CrossRefGoogle Scholar
Harman, M. K., Banks, S. A. and Hodge, W. A. (1997), ‘Wear analysis of a retrieved hip implant with titanium nitride coating’, Journal of Arthroplasty 12 (8), 938945.CrossRefGoogle ScholarPubMed
Hauert, R. (and 7 others), (2012), ‘Retrospective lifetime estimation of failed and explanted diamond-like-carbon coated hip joint balls’, Acta Biomaterialia 8, 31703176.CrossRefGoogle ScholarPubMed
Heyes, T. J., Chen, D. X. and Kelly, N. (2011), ‘Matched pair total knee arthroplasty retrieval analysis: Oxidized zirconium vs CoCrMo’, The Knee 18 (6), 448452.CrossRefGoogle Scholar
Hunter, G., Asgian, C. M. and Hines, G. L. (2008), ‘Method of surface oxidizing zirconium alloys and resulting product’, World Patent Application WO1998042390 A1, 1 October.Google Scholar
Isaac, G. H., Atkinson, J. R., Dowson, D, Wroblewski, B. M. (1986), ‘The role of cement in the long term performance and premature failure of Charnley low friction arthroplasties’, Proceedings of the Inst. Mech Eng., Part H: Engineering in Medicine 15(1), 1922.Google Scholar
Jacobs, J. J., Gilbert, J. L. and Urban, R. M. (1998), ‘Corrosion of metal orthopaedic implants’, Journal of Bone and Joint Surgery 80A, 268282.CrossRefGoogle Scholar
Lapaj, L., Markuszewski, J., Wendland, J., Mróz, A. and Wierusz-Kozlowska, M. (2016), ‘Massive failure of TiNbN coating in surface engineered metal-on-metal hip arthroplasty: Retrieval analysis’, Journal of Biomedical Materials Research B 104 (5), 10431049.CrossRefGoogle ScholarPubMed
Lapaj, L., Wendland, J., Markuszewski, J., Mróz, A. and Wiśniewski, T. (2015), ‘Retrieval analysis of titanium nitride (TiN) coated prosthetic femoral heads articulating with polyethylene’, Journal of Mechanical Behaviour of Biomedical Materials 55, 127139.CrossRefGoogle ScholarPubMed
Laurindo, C. A. H., Torres, R. D., Mali, S. A., Gilbert, J. L and Soares, P. (2014), ‘Incorporation of Ca and P on anodized titanium surface: Effect of high current density’, Materials Science and Engineering C37, 223231.CrossRefGoogle Scholar
Leslie, I. J., Williams, S., Brown, ., Anderson, J., Isaac, G., Hatto, P., Ingham, E. and Fisher, J. (2009), ‘Surface engineering: A low wearing solution for metal on metal surface replacements’, Journal of Biomedical Materials Research B 90, 558565.CrossRefGoogle ScholarPubMed
Leslie, I. J., Williams, S., Brown, ., Anderson, J., Isaac, G., Hatto, P., Ingham, E. and Fisher, J. (2012), ‘Wear of surface engineered metal on metal bearings for hip prostheses’, Proceedings of the Inst. Mech Eng., Part H 227, 345349.CrossRefGoogle ScholarPubMed
Mallia, B. and Dearnley, P. A. (2013),’Exploring new W-B coating materials for aqueous corrosion-wear protection of austenitic stainless steels’, Thin Solid Films 549, 204215.CrossRefGoogle Scholar
McKellop, H. (2002), US Patent 6,494,917 B1.Google Scholar
McKellop, H., Campbell, P. and Ebramzadeh, E. (2012), ‘Choosing a bearing material in hip arthroplasty’, Journal of Bone and Joint Surgery 94A, e149(1)e149(2).Google Scholar
McKellop, H., Clarke, I., Markolf, K. and Amstutz, H. (1981), ‘Friction and wear properties of polymer, metal and ceramic prosthetic joint materials evaluated in a multi-channel screening device’, Biomed. Mater. Res. 15 (5), 619653.CrossRefGoogle Scholar
McKellop, H., Hart, A., Park, S.-H., Hothi, H., Campbell, P. and Skinner, J. A. (2014), ‘A lexicon for wear of metal on metal hip prostheses’, Journal of Othopaedic Research 32 (9), 12211233.CrossRefGoogle ScholarPubMed
Mohammed, A., Metcalfe, A. and Woodnutt, D. (2007), ‘Medium term outcome of titanium nitride mobile total knee replacement’, Acta. Orthop. Belg., 2014 80, 269275.Google Scholar
Morrison, Z. (with 5 others), (2014), ‘A randomized controlled trial comparing oxinium and cobalt-chrome on standard and cross-linked polyethylene’, Journal of Arthroplasty 29, Supp. 2, 164168.CrossRefGoogle Scholar
Nogiwa-Valdez, A. A., Rainforth, W. M. and Stewart, T. D. (2014), ‘Wear and degradation on retrieved zirconia femoral heads’, Journal of the Mechanical Behaviour of Biomedical Materials 31, 145151.CrossRefGoogle ScholarPubMed
Oonishi, H., Kawai, H., Igaki, H. and Takayama, Y. (1990), ‘Comparisons of wear of U.H.M.W. polyethylene sliding against metal and alumina in total hip prostheses – Wear test and clinical results’, Journal of Biomechanics 23 (4), 382388.Google Scholar
Pappas, M. J. and Buechel, F. F. (1992), ‘Prosthesis with biologically inert wear resistant surface’, European Patent Application EP 0573694 A2.Google Scholar
Pappas, M. J., Makris, G. and Buechel, F. F. (1995), ‘Titanium nitride ceramic film against polyethylene’, Clinical Orthopaedics and Related Research 317 (August), 6470.Google Scholar
Raimondi, M. T. and Pietrabissa, R. (2000), ‘The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating’, Biomaterials 21, 907913.CrossRefGoogle ScholarPubMed
Saint, S., Elmore, J. G., Sullivan, S. D., Emerson, S. S., Thomas, T. D. (1998), ‘The efficacy of silver alloy coated urinary catheters in preventing urinary tract infection: A meta-analysis’, American Journal of Medicine 105 (September), 236241.CrossRefGoogle ScholarPubMed
Semlitsch, M., Weber, H. and Steger, R. (1995), ‘15 JahreErfahrungmit Ti-6AI-7Nb-Legierung fürGelenkprothesen – Fifteen years of experience with a Ti-6AI-7Nb alloy for joint replacements’, BiomedizinischeTechnik/Biomedical Engineering 40 (12), 347355.CrossRefGoogle Scholar
Serro, A. P (with eight others), (2009), ‘A comparative study of titanium nitrides, TiN, TiNbN and TiCN as coatings for biomedical applications’, Surface and Coatings Technology 203, 37013707.CrossRefGoogle Scholar
Streicher, R. M., Weber, H., Schön, R. and Semlitsch, M. (1991), ‘New surface modification for Ti-6Al-7Nb alloy: Oxygen diffusion hardening (ODH)’, Biomaterials 12 (2), 125129.CrossRefGoogle ScholarPubMed
Swaminathan, V. and Gilbert, J. L. (2012), ‘Fretting corrosion of CoCrMo and Ti6Al4V interfaces’, Biomaterials 33, 54875503.CrossRefGoogle ScholarPubMed
Swaminathan, V., Zeng, H., Lawrynowicz, D., Zhang, Z. and Gilbert, J. L. (2011), ‘Electrochemical investigation of chromium oxide coated Ti-6Al-4V and Co-Cr-Mo alloy substrates’, Journal of Biomedical Materials Research B, 111.CrossRefGoogle Scholar
Taeger, G. (2003), ‘Comparison of diamond like carbon and aluminium oxide articulating with polyethylene in total hip arthroplasty’, Materialwissenschaft und Werkstofftechnik 34 (12), 10941100.CrossRefGoogle Scholar
Turner, I. G. (2011), ‘Orthopaedic coatings’, in Coatings for biomedical applications, Woodhead Publishing, Cambridge, 284303, edited by Driver, M..Google Scholar
Tyrkiel, E. and Dearnley, P. A. (1995), ‘A guide to surface engineering terminology’, in Book 575, A guide to surface engineering terminology, The Institute of Materials, London.Google Scholar
Upadhyay, D., Panchal, M. A., Dubey, R. S. and Srivastava, V. K. (2006), ‘Corrosion of alloys used in dentistry: A review’, Materials Science and Engineering A, 432, 111.CrossRefGoogle Scholar
Wang, J., Chao, Y., Wan, Q., Zhu, Z. and Yu, H. (2009), ‘Fluoridated hydroxyapatite coatings on titanium obtained by electrodeposition’, Acta Biomaterialia 5 (5), 17981807.CrossRefGoogle Scholar
Waugh, W. (1990), John Charnley – The man and the hip, Springer-Verlag, London, 169184.CrossRefGoogle Scholar
Williams, S., Tipper, J. L., Ingham., E., Stone, M. H. and Fisher, J. (2003), ‘In vitro analysis of the wear, wear debris and biological activity of surface engineered coatings for use in metal-on-metal total hip replacements’, Proc. Inst. Mech. Eng., Part H: Engineering in Med. 217, 155163.CrossRefGoogle ScholarPubMed
Zeng, P., Rainforth, M., W., Inkson, B. J. and Stewart, T. D. (2012), ‘Transmission electron microscopy analysis of worn alumina hip replacement prostheses’, Acta Materialia 60, 20612072.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×