Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: August 2012

Complement 5C: Polarization-entangled photons and violation of Bell's inequalities


Entanglement is one of the most surprising features of quantum mechanics. However, it was not until the last decades of the twentieth century that its full importance was understood and it was realized that it could lead to revolutionary applications in the area of quantum information. It was A. Einstein who discovered the extraordinary properties of non-factorizable two-particle states, when seeking to demonstrate that the formalism of quantum mechanics is incomplete. He presented his findings in 1935 in his famous article published jointly with B. Podolsky and N. Rosen, now referred to as the ‘EPR’ paper. Soon afterwards, Schrödinger coined the term ‘entangled states’ to emphasize the fact that the properties of the two particles are inextricably bound together.

In the EPR article, Einstein and his colleagues used quantum predictions to conclude that the formalism of quantum mechanics was incomplete, in the sense that it did not account for the whole of physical reality, and that the task of physics was therefore to find a more complete theory. They did not contest the validity of the quantum formalism, but suggested that a further, more detailed level of description would have to be introduced, in which each particle of the EPR pair would have well-defined properties that were not taken into account in the quantum formalism.