Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2014
  • Online publication date: May 2014

12 - Intraplate seismic hazard: Evidence for distributed strain and implications for seismic hazard

References

Adams, J., and Halchuk, S. (2003). Fourth Generation Seismic Hazard Maps of Canada: Values for Over 650 Canadian Localities Intended for the 2005 National Building Code of Canada. Geological Survey of Canada.
Al-Shukri, H. J., Lemmer, R. E., Mahdi, H. H., and Connelly, J. B. (2005). Spatial and temporal characteristics of paleoseismic features in the southern terminus of the New Madrid seismic zone in eastern Arkansas. Seismological Research Letters, 76, 502–511, doi:10.1785/gssrl.76.4.502.
Anderson, J. G. (1986). Seismic strain rates in the central and eastern United States. Bulletin of the Seismological Society of America, 76, 273–290.
Bakun, W. H., and Hopper, M. (2004). Magnitudes and locations of the 1811–1812 New Madrid, Missouri and the 1886 Charleston, South Carolina earthquakes. Bulletin of the Seismological Society of America, 94, 64–75.
Baldwin, J. N., Witter, R. C., Vaughn, J. D., et al. (2006). Geological characterization of the Idalia Hill fault zone and its structural association with the Commerce Geophysical Lineament, Idalia, Missouri. Bulletin of the Seismological Society of America, 96, 2281–230, doi: 10.1785/0120050136.
Bent, A. (1996). Source parameters of the damaging Cornwall-Massena earthquake of 1944 from regional waveforms. Bulletin of the Seismological Society of America, 86, 489–497.
Bollinger, G. A. (1977). Reinterpretation of the intensity data for the 1886 Charleston, South Carolina, earthquake. In Studies Related to the Charleston, South Carolina Earthquake of 1886: A Preliminary Report, ed. D. W. Rankin, U.S. Geological Survey Professional Paper 1028, pp. 17–32.
Bollinger, G. A., and Hopper, M. (1971). Virginia's two largest earthquakes – December 22, 1875 and May 31, 1897. Bulletin of the Seismological Society of America, 61, 1033–1039.
Calais, E., Han, J. Y., DeMets, C., and Nocquet, J. M. (2005). Deformation of the North American plate interior from a decade of continuous GPS measurements. Journal of Geophysical Research, 111, B06402, doi: 10.1029/2005JB004253.
Calais, E., Freed, A. M., Van Ardsale, R., and Stein, S. (2011). Triggering of New Madrid seismicity by late-Pleistocene erosion. Nature, 566, 608-U2, doi: 10.1038/nature09258.
Champion, J., Mueller, K., Tate, A., and Guccione, M. (2001). Geometry, numerical models and revised slip rate for the Reelfoot fault and trishear fault-propagation fold, New Madrid seismic zone. Engineering Geology, 62, 31–49, doi: 10.1016/S0013-7952(01)00048-5.
Clark, D., McPherson, A., and Van Dissen, R. (2012). The long-term behavior of the Australian stable continental region (SCR) faults. Tectonophysics, 566, 1–30, doi: 10.1016/j.tecto.2012.07.004.
Conrad, C. P., and Lithgow-Bertelloni, C. (2002). How mantle slabs drive plate tectonics. Science, 298, 207–209, doi: 10.1126/science.1074161.
Coppersmith, K. (1988). Temporal and spatial clustering of earthquake activity in the Central and Eastern United States. Seismological Research Letters, 59, 299–304, doi:10.1785/gssrl.59.4.299.
Coppersmith, K. J., Salomone, L. A., Fuller, C. W., et al. (2012). Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project (No. DOE/NE-0140). Electric Power Research Institute.
Cox, R. T., Van Arsdale, R. B., Harris, J. B., and Larsen, D. (2001). Reelfoot rift zone margin, central United States, and implications for regional strain accumulation. Geology, 29, 419–422, doi: 10.1130/0091-7613(2001)029<0419:NOTSTRR>2.0.CO;2.
Crone, A. J., and Luza, K. V. (1990). Style and timing of Holocene surface faulting on the Meers fault, southwestern Oklahoma. Geological Society of America Bulletin, 102, 1–17, doi:10.1130/0016–7606(1990).
Crone, A. J., De Martini, P. M., Machette, M. N., Okumura, K., and Prescott, J. R. (2003). Quiescent faults in Australia: implications for fault behavior in stable continental regions. Bulletin of the Seismological Society of America, 93, 1913–1934, doi: 10.1785/010000094.
Doser, D. I. (1987). The 16 August 1931 Valentine, Texas, earthquake: evidence for normal faulting in west Texas. Bulletin of the Seismological Society of America, 77, 2005–2017.
Drake, D. (1815). Natural and Statistical View, or Picture of Cincinnati and the Miami County, Illustrated by Maps. Cincinnati: Looker and Wallace.
Dura-Gomez, I., and Talwani, P. (2009). Finding faults in the Charleston Area, South Carolina: 1. Seismological data. Seismological Research Letters, 80, 883–900, doi:10.1785/gssrl.80.5.883.
Dutton, C. (1889). The Charleston earthquake of August 31, 1886. U.S. Geological Survey Ninth Annual Report, 1887–88, pp. 203–528.
Ebel, J. E., Bonjer, K.-P., and Oncescu, M. C. (2000). Paleoseismicity: seismicity evidence for past large earthquakes. Seismological Research Letters, 71, 283–294, doi: 10.1785/gssrl.71.2.283.
Felzer, K. R. (2006). Calculating the Gutenberg–Richter b-value (abstract), American Geophysical Union Fall meeting, abstract S42C-08.
Forsyth, D., and Uyeda, S. (1975). On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 43, 163–200.
Forte, A. M., Mitrovica, J. X., Moucha, R., Simmons, N. A., and Grand, S. P. (2007). Descent of ancient Farallon slab drives localized flow below the New Madrid seismic zone. Geophysical Research Letters, 34, L04308, doi: 10.1029/2006GL027895.
Frankel, A., Petersen, M.D., Mueller, C. S., et al. (2002). Documentation for the 2002 Update of the National Seismic Hazard Maps. U.S. Geological Survey Open File Report 02-420.
Frankel, A., Smalley, R., and Paul, J. (2012). Significant motions between GPS sites in the New Madrid region: implications for seismic hazard. Bulletin of the Seismological Society of America, 102, 479–489. doi: 10.1785/0120100219.
Fuller, M. L. (1912). The New Madrid earthquakes. U.S. Geological Survey Bulletin, 494.
Galgana, G. A., and Hamburger, H. M. (2011). Geodetic observations of active intraplate crustal deformation in the Wabash Valley seismic zone and the southern Illinois basin. Seismological Research Letters, 81, 699–714, doi:10.1785/gssrl.81.5.699.
Gomberg, J. S. (1993). Tectonic deformation in the New Madrid seismic zone: inferences from map view and cross-sectional boundary element models. Journal of Geophysical Research, 98, 6639–6664.
Grana, J. P., and Richarson, R. M. (1996). Tectonic stress within the New Madrid seismic zone. Journal of Geophysical Research, 101, 5445–5458.
Green, R. A., Obermeier, S. F., and Olson, S. M. (2004). The role of paleoliquefaction studies in performance-based earthquake engineering in the central-eastern United States. 13th World Conference on Earthquake Engineering, Vancouver, Canada, August 1–6, Paper 1643.
Grollimund, B., and Zoback, M. D. (2001). Did glaciation trigger intraplate seismicity in the New Madrid Seismic Zone?Geology, 29, 175–178, doi:10.1130/0091–7613.
Gutenberg, B., and Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.
Hamilton, R. M., and Zoback, M. D. (1981). Tectonic features of the New Madrid seismic zone from seismic reflection profiles. In Investigations of the New Madrid Earthquake Region, ed. F. A. McKeown and L. C. Pakiser, U.S. Geological Survey Professional Paper 1236, pp. 55–82.
Hanks, T. C., and Johnston, A. C. (1992). Common features of the excitation and propagation of strong ground motion for North American earthquakes. Bulletin of the Seismological Society of America, 82, 1–23.
Hardebeck, J. L., Felzer, K. R., and Michael, A. J. (2008). Improved tests reveal that the accelerating moment release hypothesis is statistically insignificant. Journal of Geophysical Research, 113, B08310, doi:10.1029/2007JB005410.
Harrison, R. W., Hoffman, D., Vaughn, J. D., et al. (1999). An example of neotectonism in a continental interior: Thebes Gap, midcontinent, United States. Tectonophysics, 305, 399–417.
Holzer, T. L., Noce, T. E., and Burnett, M. J. (2011). Implications of liquefaction caused by the 1811–1812 New Madrid earthquakes for estimates of ground shaking and earthquake magnitudes (abstract). Seismological Research Letters, 82, 274.
Hough, S. E. (1996). The case against huge earthquakes. Seismological Research Letters, 67, 3–4.
Hough, S. E. (2001). Triggered earthquakes and the 1811–1812 New Madrid, central United States, earthquake sequence. Bulletin of the Seismological Society of America, 91, 1574–1581.
Hough, S. E. (2004). Scientific overview and historical context of the 1811–1812 New Madrid earthquake sequence. Annals of Geophysics, 47, 523–537.
Hough, S. E. (2009). Cataloging the 1811–1812 New Madrid, Central U.S. earthquake sequence. Seismological Research Letters, 80, 1045–1053.
Hough, S. E., and Martin, S. (2002). Magnitude estimates of two large aftershocks of the 16 December, 1811 New Madrid earthquake. Bulletin of the Seismological Society of America, 92, 3259–3268.
Hough, S. E., and Page, M. (2011). Towards a consistent model for strain accrual and release for the New Madrid Seismic Zone. Journal of Geophysical Research, 116, doi: 10.1029/2010JB007783.
Hough, S. E. (2013). Spatial variability of “Did You Feel It?” intensity data: insights into sampling biases in historical earthquake intensity distributions. Bulletin of the Seismological Society of America, 103, 2767– 2781.
Hough, S. E., Armbruster, J. G., Seeber, L., and Hough, J. F. (2000). On the modified Mercalli intensities and magnitudes of the 1811–1812 New Madrid, Central United States earthquakes. Journal of Geophysical Research, 105, 23, 839–823, 864.
Hough, S. E., Seeber, L., and Armbruster, J. G. (2003). Intraplate triggered earthquakes: observations and interpretation. Bulletin of the Seismological Society of America, 93, 2212–2221.
Hough, S. E., Bilham, R., Mueller, K., et al. (2005). Wagon loads of sand blows in White County, Illinois. Seismological Research Letters, 76, 373–386.
James, T. S., and Bent, A. L. (1994). A comparison of North American seismic strain rates to glacial rebound strain-rates. Geophysical Research Letters, 21, 2127–2130.
Johnston, A. C. (1996). Seismic moment assessment of earthquakes in stable continental regions III, New Madrid 1811–1812, Charleston 1886, and Lisbon 1755. Geophysical Journal International, 126, 314–344.
Johnston, A. C., and Schweig, E. S. (1996). The enigma of the New Madrid earthquakes of 1811–1812. Annual Review of Earth and Planetary Science, 24, 339–384, doi:10.1146/annurev.earth.24.1.339.
Kagan, Y. Y., and Knopoff, L. (1981). Stochastic synthesis of earthquake catalogs. Journal of Geophysical Research, 86, 2853–2862.
Keller, G. R., Lidiak, E. G., Hinze, W. J., and Braile, L. W. (1983). The role of rifting in the tectonic development of the midcontinent, U.S.A. Tectonophysics, 94, 391–412, doi:10.1016/0040-1951(83)90026-4.
Kelson, K. I., Simpson, G. D., VanArsdale, R. B., Haraden, C. C., and Lettis, W. R. (1996). Multiple late Holocene earthquakes along the Reelfoot fault, central New Madrid seismic zone. Journal of Geophysical Research, 101, 6151, doi: 10.1029/95JB01815.
Kenner, S. J., and Segall, P. (2000). A mechanical model for interplate earthquakes: application to the New Madrid Seismic Zone. Science, 289, 2329–2332.
King, G. (1983). The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-value. Pure and Applied Geophysics, 121, 761–815.
Leon, E., Gassman, S. L., and Talwani, P. (2005). Effect of soil aging on assessing magnitudes and accelerations of prehistoric earthquakes. Earthquake Spectra, 21, 737–759.
Liu, L., Zoback, M.D., and Segall, P. (1992). Rapid intraplate strain accumulation in the New Madrid Seismic Zone. Science, 257, 1666–1669.
Liu, M., Stein, S., and Wang, H. (2011). 2000 years of migrating earthquakes in north China: how earthquakes in midcontinents differ from those at plate boundaries. Lithosphere, 3, 128–132, doi:10.1130/L129.1.
Magnani, M., McIntosh, K. D., and Guo, L. (2011). Paleotectonic control on distribution of long-term deformation in the central United States from high-resolution seismic data. Abstract S22A-03, American Geophysical Union Fall Meeting, San Francisco, CA.
Mazzotti, S., James, T. S., Henton, J., and Adams, J. (2005). GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: the Saint Lawrence valley example. Journal of Geophysical Research, 110, B11301, doi:10.1029/2004JB003590.
McMurtrie, H. (1819). Sketches of Louisville and Its Environs; Including, Among a Great Miscellaneous Matter, a Florula Louisvillensis; or, a Catalogue of Nearly 400 Genera and 600 Species of Plants, That Grow in the Vicinity of the Town, Exhibiting Their Generic, Specific, and Vulgar English Names. S. Penn, Jun. Main-street, Louisville.
Mitchill, S. L. (1815). A detailed narrative of the earthquakes which occurred on the 16th day of December, 1811. Transactions of the Literary and Philosophical Society of New York, 1, 281–307.
Mueller, K., Hough, S. E., and Bilham, R. (2004). Analysing the 1811–1812 New Madrid earthquakes with recent instrumentally recorded aftershocks. Nature, 429, 284–288.
Munson, P. J., Obermeier, S. F., Munson, C. A., and Hajic, M. R. (1997). Liquefaction evidence for Holocene and latest Pleistocene seismicity in the southern halves of Indiana and Illinois: a preliminary overview. Seismological Research Letters, 68, 521–536.
Newman, A., Stein, S., Weber, J., et al. (1999). Slow deformation and lower seismic hazard at the New Madrid seismic zone. Science, 284, 619–621.
Nuttli, O. W. (1973a). Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research, 78, 876, doi:10.1029/JB078i005p00876.
Nuttli, O. W. (1973b). The Mississippi Valley earthquakes of 1811 and 1812: intensities, ground motion, and magnitudes. Bulletin of the Seismological Society of America, 63, 227–248.
Nuttli, O. W. (1979). Seismicity of the central United States. Geological Society of America, Reviews in Engineering Geology, IV, 67–93.
Obermeier, S. F., Jacobson, R. B., Smoot, J. P., et al. (1990). Earthquake induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid Seismic Zone. U.S. Geological Survey Professional Paper 1504.
Odum, J. K., Stephenson, W. J., and Shedlock, K. M. (1998). Near-surface structural model for deformation associated with the February 7, 1812 New Madrid, Missouri, earthquake. Geological Society of America Bulletin, 110, 149–162.
Ogata, Y. (1988). Statistical models for earthquake occurrence and residual analysis for point processes. Journal of the American Statistical Association, 83, 9–27.
Omori, F. (1895). On the after-shocks of earthquakes. Journal of the College of Science, Imperial University of Tokyo, 7, 111–200.
Page, M. T., Custodio, S., Archuleta, R. J., and Carlson, J. M. (2009). Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts. Journal of Geophysical Research, 114, B01314, doi:10.1029/2007JB005449.
Page, M., Felzer, K. R., Weldon, R. J., et al. (2010). The case for Gutenberg-Richter scaling on faults (abstract). Seismological Research Letters, 81, 330.
Page, M., Hough, S. E., and Felzer, K. (2012). Can current New Madrid seismicity be explained as a decaying aftershock sequence? Abstract S54D-07, American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December.
Petersen, M. D., Frankel, A. D., Harmsen, S.C., et al. (2008). Documentation for the 2008 Update of the United States National Seismic Hazard Maps. U.S. Geological Survey Open-File Report 2008–1128.
Pond, E. C., and Martin, J. R. (1997). Estimated magnitudes and accelerations associated with prehistoric earthquakes in the Wabash Valley region in the central U.S. Seismological Research Letters, 68, 611–623.
Pratt, T. L. (2012). Kinematics of the New Madrid seismic zone, central United States, based on stepover models. Geology, 40, 371–374, doi:10.1130/G32624.1.
Ramirez-Guzman, L., Graves, R. W., Olsen, K. B., et al. (2011a). Central United States earthquake ground motion simulation working group: the 1811–1812 New Madrid earthquake sequence (abstract). Seismological Research Letters, 82, 275.
Ramirez-Guzman, L., Graves, R. W., Olsen, K. B., et al. (2011b). Magnitude uncertainty and ground motion simulations of the 1811–1812 New Madrid earthquake sequence (abstract). American Geophysical Union Fall Meeting, abstract S22A-07.
Russ, D. P. (1982). Style and significance of surface deformation in the vicinity of New Madrid, Missouri. In Investigations of the New Madrid Earthquake Region, ed. F. A. McKeown and L. C. Pakiser, U.S.Geological Survey Professional Paper 1236, pp. 95–114.
Saucier, R. T. (1991). Geoarcheological evidence of strong prehistoric earthquakes in the New Madrid (Missouri) seismic zone. Geology, 19, 296–298, doi:10.1130/0091–7613(1991).
Schwartz, D. P., Hecker, S., Haproff, P., Beukelman, G., and Erickson, B. (2012). The Bear River fault zone, Wyoming and Utah: complex ruptures on a young normal fault (abstract). T31E-08, American Geophysical Union Fall Meeting.
Schweig, E. S., and Ellis, M. A. (1994). Reconciling short recurrence intervals with minor deformation in the New Madrid seismic zone. Science, 264, 1308–1311.
Seeber, L., and Armbruster, J. G. (1987). The 1886–1889 aftershocks of the Charleston, South Carolina, earthquake: a widespread burst of seismicity. Journal of Geophysical Research, 92, 2663–2696.
Stein, S., and Liu, M. (2009). Long aftershock sequences within continents and implications for earthquake hazard assessment. Nature, 462, doi: 10.1038/nature08502.
Stein, S., and Newman, A. (2004). Characteristic and uncharacteristic earthquakes as possible artifacts: application to the New Madrid and Wabash Valley seismic zones. Seismological Research Letters, 75, 173–198.
Street, R. (1982). A contribution to the documentation of the 1811–1812 Mississippi Valley earthquake sequence. Earthquake Notes, 53, 39–52.
Street, R. (1984). The Historical Seismicity of the central United States: 1811–1928, Final Report. Contract 14–08–0001–21251, Appendix A, Washington, D.C.: U.S. Geological Survey.
Stuart, W. D., Hildenbrand, T. G., and Simpson, R. W. (1997). Stressing of the New Madrid seismic zone by a lower crust detachment fault. Journal of Geophysical Research, 102, 27, 623–627, 633.
Sykes, L. R. (1978). Intra-plate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonics post-dating continental separation. Reviews of Geophysics and Space Physics, 16, 621–688.
Talwani, P., and Cox, J. (1985). Paleoseismic evidence of recurrence of earthquakes near Charleston, South Carolina. Science, 229, 379–381, doi:10.1126/science.229/4711.379.
Talwani, P., and Dura-Gomez, I. (2009). Finding faults in the Charleston Area, South Carolina 2. Complementary data. Seismological Research Letters, 80, 901–919, doi:10.1785/gssrl.80.5.901.
Talwani, P., and Schaeffer, W. T. (2001). Reccurence rates of large earthquakes in the South Carolina Coastal Plain based on paleoliquefaction data. Journal of Geophysical Research, 106, 6621–6642.
Talwani, P., and Sharma, N. (1999). Reevaluation of the magnitude of three destructive aftershocks of the 1886 Charleston earthquake. Seismological Research Letters, 70, 360–367, doi:10.1785/gssrl.70.3.360.
Tuttle, M. P., and Schweig, E. S. (1996). Archaeological and pedological evidence for large prehistoric earthquakes in the New Madrid seismic zone, central United States. Geology, 23, 253–256.
Tuttle, M. P., Schweig, E. S., Sims, J. D., et al. (2002). The earthquake potential of the New Madrid seismic zone. Bulletin of the Seismological Society of America, 92, 2080–2089.
Tuttle, M. P., Al-Shukri, H., and Mahdi, H. (2006). Very large earthquakes centered southwest of the New Madrid seismic zone 5000–7000 years ago. Seismological Research Letters, 77, 755–770, doi:10.1785/gssrl.77.6.755.
Van Arsdale, R. (2000). Displacement history and slip rate on the Reelfoot fault of the New Madrid seismic zone. Engineering Geology, 55, 219–226.
Van Arsdale, R., Bresnahan, R., McCallister, N., and Waldron, B. (2007). Upland complex of the central Mississippi River valley: its origin, denudation, and possible role in reactivation of the New Madrid Seismic Zone. In Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues, ed. S. Stein, and S. Mazzotti. Geological Society of America Special Paper 425, 177.
Working Group on California Earthquake Probabilities (WGCEP) (2013). Proposed Time-Independent Uniform California Earthquake Rupture-Forecast, Version 3.1 (UCERF3.1). Report delivered to California Earthquake Authority.
Wu, P., and Johnston, P. (2000). Can deglaciation trigger earthquakes in North America? Geophysical Research Letters, 27, 1323–1326.