Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-30T16:26:07.107Z Has data issue: false hasContentIssue false

7 - Combined Oceanic Influences on Continental Climates

Published online by Cambridge University Press:  13 January 2021

Carlos R. Mechoso
Affiliation:
University of California, Los Angeles
Get access

Summary

This chapter reviews evidence for impacts of ocean anomalies on continental climates, with an emphasis on combined effects from different ocean basins. Particular attention is given to the continental monsoons, which are the most important climatic mode in the tropics. The climatology and interannual-to-interdecadal variations of monsoons have various influences from adjacent and remote ocean conditions. The following sections, 7.2–7.6, deal with the oceanic influences on the West African, South Asian, East Asian, South American, and North American monsoons, respectively. Section 7.7 highlights key points in the chapter.

Type
Chapter
Information
Interacting Climates of Ocean Basins
Observations, Mechanisms, Predictability, and Impacts
, pp. 216 - 257
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. F., Huffman, G. J., Chang, A., et al. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 11471167.Google Scholar
AmadorJ. (2008). The Intra-Americas sea low level jet: Overview and future research. Annals of the New York Academy of Sciences, 1146, 153188.Google Scholar
Ambrizzi, T., Ferraz, S. E. T. (2015). An objective criterion for determining the South Atlantic Convergence Zone. Frontiers in Environmental Science, 3, doi:10.3389/fenvs.2015.00023.Google Scholar
Ambrizzi, T., Souza, E. B., Pulwarty, R. S. (2004). The Hadley and Walker regional circulation and associated ENSO impacts on South American seasonal rainfall. In Diaz, H. F., Bradley, R. S. (eds.), The Hadley Circulation: Present, Past and Future. Dordrecht: Kluwer Academic Publishers, 203235.Google Scholar
Andreoli, R. V., Kayano, M. T. (2005). ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. International Journal of Climatology, 25, 20172030.CrossRefGoogle Scholar
Bader, J., Latif, M. (2003). The impact of decadal‐scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophysical Research Letters, 30, 2169, doi:10.1029/2003GL018426.CrossRefGoogle Scholar
Bader, J., Latif, M. (2011). The 1983 drought in the West Sahel: A case study. Climate Dynamics, 36, 463472.Google Scholar
Barros, V., Gonzales, M., Liebmann, B., Cavalcanti, I. F. A. (2000). Influence of the South Atlantic convergence zone and South Atlantic sea surface temperature in interannual summer rainfall variability in Southeastern South America. Theoretical and Appllied Climatology, 67, 123133.CrossRefGoogle Scholar
Biasutti, M. (2013). Forced Sahel rainfall trends in the CMIP5 archive. Journal of Geophysical Research: Atmospheres, 118, 16131623.Google Scholar
Biasuti, M., Giannini, A. (2006). Robust Sahel drying in response to late 20th century forcings. Geophysical Research Letters, 33, L11706, doi:10.1029/2006GL026067.Google Scholar
Blanford, H. F. (1884). On the connection of Himalayan snowfall with dry winds and seasons of droughts in India. Proceedings of the Royal Society of London, 37, 322.Google Scholar
Caminade, C., Terray, L. (2010). Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dynamics, 35, 7594.CrossRefGoogle Scholar
Carvalho, L. M. V., Cavalcanti, I. F. A. (2016). The South American Monsoon System (SAMS) — Chapter 6. Vol. 1, The Monsoons and Climate Change: Observations and Modeling, Dordrecht: Springer, 121148.Google Scholar
Carvalho, L. M. V., Jones, C. (eds.) (2016). The Monsoons and Climate Change: Observations and Modeling, Dordrecht: Springer.Google Scholar
Carvalho, L. M. V., Jones, C., Liebmann, B. (2004). The South Atlantic Convergence Zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate, 17, 88108.Google Scholar
Cavalcanti, I. A. F. (2015). The influence of extratropical Atlantic Ocean region on wet and dry years in North-Northeastern Brazil. Frontiers in Environmental Science, 3, 110.Google Scholar
Cazes-Boezio, G, Talento, S. (2016). La Niña events before and after 1979 and their impact in southeastern South America during austral summer: Role of the Indian Ocean. Climate Research, 68, 257276.Google Scholar
Chan, S., Behera, S. K. Yamagata, T. (2008). Indian Ocean Dipole influence on South American rainfall. Geophysical Research Letters, 35, L14S12, doi:10.1029/2008GL034204.Google Scholar
Charney, J. G. (1969). The intertropical convergence zone and the Hadley circulation of the Atmosphere. Proc. WMO/IUGG Intern. Symp. on Numer. Weather Predict. Japan. Meteorological Agency, III, 7379.Google Scholar
Chen, A. A., Taylor, M. (2002). Investigating the link between early season Caribbean rainfall and the El Niño + 1 year, International Journal of Climatology, 22, 87106.Google Scholar
Chen, H., Ding, Y. H., He, J. H. (2007). The structure and variation of tropical easterly jet and its relationship with the monsoon rainfall in Asia and Africa. Chinese Journal of Atmospheric Sciences, 31, 926936 (in Chinese).Google Scholar
Cunningham, C., Cavalcanti, I. (2006). Intraseasonal modes of variability affecting the South Atlantic convergence zone. International Journal of Climatology, 26, 11651180.CrossRefGoogle Scholar
Dai, A. (2013). The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010, Climate Dynamics, 41, 633646.CrossRefGoogle Scholar
Delavelle, F. (2013). Climate induced migration and displacement in Mesoamerica – Discussion paper. Nansen Initiative, Geneva. Available from https://disasterdisplacement.org/wp-content/uploads/2015/07/270715_FINAL_DISCUSSION_PAPER_MESOAMERICA_screen.pdf.Google Scholar
Dettinger, M. D., Battisti, D. S., Garreaud, R. D., McCabe, G. J., Bitz, C. M. (2001). Inter-hemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. In Markgraf, V. (ed.), Interhemispheric Climate Linkages: Present and Past Climates in the Americas and their Societal Effects. Cambridge, MA: Academic Press, 116.Google Scholar
Diakhaté, M., Rodríguez-Fonseca, B., Gómara, I., et al. (2019). Oceanic forcing on interannual variability of Sahel heavy and moderate daily rainfall. Journal of Hydrometeorology, 20, 397410.Google Scholar
Diaz, A. F., Studzinski, C. D., Mechoso, C. R. (1997). Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic oceans. Journal of Climate, 11, 251271.Google Scholar
Ding, Y. H. (1992). Summer monsoon rainfalls in China. Journal of the Meteorological Society of Japan, 20, 373396.Google Scholar
Ding, Y. H. (1994). Monsoons over China. Atmospheric Science Library, Holland: Kluwer Academic Publishers, 419.Google Scholar
Ding, Y. H. (2007). The variability of the Asian summer variability. Journal of the Meteorological Society of Japan, 85B, 2154.Google Scholar
Ding, Y. H., Wang, Z. Y. Sun, Y. (2008). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28, 11391161.CrossRefGoogle Scholar
Ding, Y. H., Sun, Y., Wang, Z. Y., Zhu, Y. X. Song, Y. F. (2009). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part II: Possible causes. International Journal of Climatology, 29, 19261944.Google Scholar
Ding, Y. H., Si, D., Liu, Y., Wang, Z., Li, Y., Zhao, L., Song, Y. (2018a). On the characteristic, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese Journal of Atmospheric Sciences (In Chinese with English Abstract). 42, 533558.Google Scholar
Ding, Y. H., Liu, Y. J., Li, Y. (2018b). The driving forces of the interdecadal variability of the Asian summer monsoon. International Workshop on Tropical Convection, Tropical Cyclone and Associated Multi-scale Interaction, 27–29 June, 2018, Nanjing, China.Google Scholar
Dominguez, C., Magaña, V. (2018). The role of tropical cyclones in precipitation cover the tropical and subtropical North America. Frontiers in Earth Science, 6, doi:10.3389/feart.2018.00019.Google Scholar
Dong, B., Sutton, R. (2015). Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nature Climate Change, 5, 757760.Google Scholar
Drumond, A. R. M., Ambrizzi, T. (2008). The role of SST on the South America atmospheric circulation during January, February and March 2001, Climate Dynamics, 24, 781791.Google Scholar
Ebisuzaki, W. (1997). A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate, 10, 21472153.Google Scholar
Folland, C. K., Palmer, T. N., Parker, D. E. (1986). Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607.Google Scholar
Fontaine, B., Garcia-Serrano, J., Roucou, P., et al. (2010). Impacts of warm and cold situations in the Mediterranean basins on the West African monsoon: Observed connection patterns (1979–2006) and climate simulations. Climate Dynamics, 35, 95114.CrossRefGoogle Scholar
Fontaine, B., Gaetani, M., Ullmann, A., Roucou, P. (2011). Time evolution of observed July–September Sea Surface Temperature‐Sahel climate teleconnection with removed quasi‐global effect (1900–2008). Journal of Geophysical Research: Atmospheres, 116, D04105, doi:10.1029/2010JD014843.CrossRefGoogle Scholar
Gadgil, S. (2003). The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences, 31, 429467.Google Scholar
Gadgil, S., Vinaychandran, P. N., Francis, P. A., Gadgil, S. (2004). Extremes of Indian summer monsoon rainfall, ENSO, equatorial Indian Ocean oscillation. Geophysical Research Letters, 31, L12213, doi:10.1029/2004GL019733.CrossRefGoogle Scholar
Gadgil, S., Rajeevan, M., Francis, P. A. (2007). Monsoon variability: Links to major oscillations over the equatorial Pacific and Indian oceans. Current Science, 93, 182194.Google Scholar
Gaetani, M., Fontaine, B., Roucou, P., Baldi, M. (2010). Influence of the Mediterranean Sea on the West African monsoon: Intraseasonal variability in numerical simulations. Journal of Geophysical Research: Atmospheres, 115, D24115, doi:10.1029/2010JD014436.Google Scholar
Gaetani, M., Flamant, C., Bastin, S., et al. (2017). West African monsoon dynamics and precipitation: The competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Climate Dynamics, 48, 13531373.Google Scholar
Giannini, A., Saravanan, R., Chang, P. (2003). Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030.CrossRefGoogle ScholarPubMed
Giannini, A., Salack, S., Lodoun, T., et al. (2013). A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environmental Research Letters, 8, 024010, doi:10.1088/1748-9326/8/2/024010.Google Scholar
Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479.Google Scholar
Grimm, A. M., Ambrizzi, T. (2009). Teleconnections into South America from the tropics and extratropics on interannual and intraseasonal timescales. In Vimeux, F., Sylvestre, F., Khodri, M. (eds.), Past Climate Variability in South America and Surrounding Regions: From the Last Glacial Maximum to the Holocene, Developments in Paleoenvironmental Research, Netherlands: Springer, pp. 159191.Google Scholar
Grimm, A. M., Barros, V. R., Doyle, M. E. (2000). Climate variability in southern South America associated with El Niño and La Niña events. Journal of Climate, 13, 3558.Google Scholar
Haarsma, R. J., Selten, F. M., Weber, S. L., Kliphuis, M. (2005). Sahel rainfall variability and response to greenhouse warming. Geophysical Research Letters, 32, L17702, doi:10.1029/2005GL023232.Google Scholar
Hagos, S. M., Cook, K. H. (2008). Ocean warming and late-twentieth-century Sahel drought and recovery. Journal of Climate, 21, 37973814.CrossRefGoogle Scholar
Halley, E. (1686). An historical account of the trade winds, and monsoons, observable in the seas between the tropics, with an attempt to assign the physical cause of the said winds. Philosophical Transactions of the Royal Society of London, 16, 153168.Google Scholar
Han, W., Vialard, J., McPhaden, M. J., et al. (2014). Indian Ocean decadal variability: A review. Bulletin of the Ameican Meteorological Society, 95, 16791703.CrossRefGoogle Scholar
Harris, I. P. D. J., Jones, P. D., Osborn, T. J., Lister, D. H. (2014). Updated high‐resolution grids of monthly climatic observations: The CRU TS3. 10 Dataset. International Journal of Climatology, 34, 623642.CrossRefGoogle Scholar
Hastenrath, S., Greischar, L. (1993). Circulation mechanisms related to northeast Brazil rainfall anomalies. Journal of Geophysical Research: Atmospheres, 98, 50935102.Google Scholar
Herrera, E., Magaña, V., Caetano, E. (2015). Air–sea interactions and dynamical processes associated with the midsummer drought. International Journal of Climatology, 35, 15691578.CrossRefGoogle Scholar
Hoell, A., Barlow, M., Wheeler, M. C., Funk, C. (2014). Disruptions of El Niño-Southern Oscillation teleconnections by the Madden-Julian Oscillation. Geophysical Research Letters, 41, 9981004.CrossRefGoogle Scholar
Huffman, G. J., Bolvin, D. T. (2009). GPCP one-degree daily precipitation data set documentation. ftp://precip.gsfc.nasa.gov/pub/1dd-v1.1/1DD_v1.1_doc.pdf.Google Scholar
Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., Zhang, H.-M. (2015). Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. Journal of Climate, 28, 911930.Google Scholar
Ihara, C., Kushnir, Y., Cane, M. A., De La Peña, V. H. (2007). Indian summer monsoon rainfall and its link with ENSO and Indian Ocean climate indices. International Journal of Climatology, 27, 179187.Google Scholar
Inoue, M., Handoh, I. C., Bigg, G. R. (2002). Bimodal distribution of tropical cyclogenesis in the Caribbean: Characteristics and environmental factors. Journal of Climate, 15, 28972905.2.0.CO;2>CrossRefGoogle Scholar
Ishii, M., Shouji, A., Sugimoto, S., Matsumoto, T. (2005). Objective analyses of sea-surface temperatura and marine meteorological variables for the 20th century using ICODAS and the Kobe Collection. International Journal of Climatology, 25, 865879.CrossRefGoogle Scholar
Janicot, S., Trzaska, S., Poccard, I. (2001). Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Climate Dynamics, 18, 303320.Google Scholar
Janicot, S., Gaetani, M., Hourdin, F., et al. (2015). The recent partial recovery in Sahel rainfall: A fingerprint of greenhouse gases forcing? GEWEX News, 27(4), 1115.Google Scholar
Joly, M., Voldoire, A. (2009). Influence of ENSO on the West African monsoon: Temporal aspects and atmospheric processes. Journal of Climate, 22, 31933210.Google Scholar
Jones, C., Carvalho, L. M. V. (2018). The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. Climate and Atmospheric Science, 1 :40, doi:10.1038/s41612-018-0050-8.Google Scholar
Jones, C., Carvalho, L. M. V. (2002). Active and break phases in the South American monsoon system. Journal of Climate, 15, 905914.Google Scholar
Kang, S. M., Held, I. M., Frierson, D. M., Zhao, M. (2008). The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. Journal of Climate, 21, 35213532.Google Scholar
Kayano, M. T., Capistrano, V. B. (2014). How the Atlantic multidecadal oscillation (AMO) modifies the ENSO influence on the South American rainfall. International Journal of Climatology, 34, 162178, doi:10.1002/joc.3674.Google Scholar
Kayano, M. T., Capistrano, V. B., Andreoli, R. V., de Souza, R. A. F. (2016). A further analysis of the tropical Atlantic SST modes and their relations to north-eastern Brazil rainfall during different phases of Atlantic Multidecadal Oscillation. International Journal of Climatology, 36, 40064018.CrossRefGoogle Scholar
Kayano, M. T., Andreoli, R. V., de Souza, R. A. F. (2019). El Niño-Southern Oscillation related teleconnections over South America under distinct Atlantic Multidecadal Oscillation and Pacific Interdecadal Oscillation backgrounds: La Niña. International Journal of Climatology, 39, 13591372.CrossRefGoogle Scholar
Kerr, R. A. (2000). A north Atlantic climate pacemaker for the centuries. Science, 288, 19841985.CrossRefGoogle ScholarPubMed
Kiladis, G.N., Weickmann, K. M. (1992). Circulation anomalies associated with tropical convection during northern winter. Monthly Weather Review, 120, 19001923.2.0.CO;2>CrossRefGoogle Scholar
Kitoh, A. (2017). The Asian monsoon and its future change in climate models: A review. Journal of the Meteorologcal Society of Japan, 95, 733.Google Scholar
Knaff, J. A., DeMaria, M., Sampson, C. R., Peak, J. E., Cummings, J., Schubert, W. H. (2013). Upper oceanic energy response to tropical cyclone passage. Journal of Climate, 26, 36312650.CrossRefGoogle Scholar
Knight, J. R. (2005). A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters, 32, L20708, doi:10.1029/2005GL024233.CrossRefGoogle Scholar
Knight, J. R., Folland, C. K., Scaife, A. A. (2006). Climate impacts of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 33, L17706, doi:10.1029/2006GL026242.Google Scholar
Kosaka, Y. (2018). Slow warming and the ocean see-saw. Nature Geoscience, 11, 1213.Google Scholar
Kothawale, D. R., Rupa Kumar, K. (2002). Tropospheric temperature variation over India and links with the Indian summer monsoon: 1971–2000. Mausam, 53, 289308.Google Scholar
Krishnamurti, T. N. (1985). Summer monsoon experiment: A review. Monthly Weather Review, 113, 15901626.Google Scholar
Kucharski, F., Molten, F., Yoo, J. H. (2006). SST forcing of decadal Indian monsoon rainfall variability. Geophysical Research Letters, 33, L03709, doi:10.1029/2005GL025371.Google Scholar
Lau, K. M., Li, M. T. (1984). The monsoon of East Asia and its global associations—A Survey. Bulletin of the American Meteorological Society, 65, 114125.Google Scholar
Lebel, T., Ali, A. (2009). Recent trends in the Central and Western Sahel rainfall regime (1990–2007). Journal of Hydrology, 375, 5264.Google Scholar
Li, Y., Ding, Y. H., Li, W. J. (2017). Interdecadal variability of the Afro-Asian summer monsoon system. Advances in Atmospheric Sciences, 34, 833846.Google Scholar
Liebmann, B., Kiladis, G. N., Vera, C. S., Saulo, A. C., Carvalho, L. M. V. (2004a). Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. Journal of Climate, 17, 38293842.Google Scholar
Liebmann, B., et al. (2004b). An observed trend in central South American precipitation. Journal of Climate, 17, 43574367.Google Scholar
Liu, Y., Chiang, J. C. H. (2012). Coordinated abrupt weakening of the Eurasian and North-African monsoon in the 1960s and links to extratropical North Atlantic cooling. Journal of Climate, 25, 35323548.Google Scholar
Liu, Y. W., Chiang, J. C. H., Chou, C., Patricola, C. M. (2014a). Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall. Climate Dynamics, 43, 27972811.Google Scholar
Liu, Z. Y., Wen, X., Brady, E. C., et al. (2014b). Chinese cave records and the East Asian summer monsoon. Quarternary Science Reviews, 83, 115128.CrossRefGoogle Scholar
Losada, T., Rodríguez-Fonseca, B., Janicot, S., et al. (2010). A multi-model approach to the Atlantic Equatorial mode: Impact on the West African monsoon. Climate Dynamics, 35, 2943.Google Scholar
Losada, T., Rodriguez‐Fonseca, B., Mohino, E., et al. (2012). Tropical SST and Sahel rainfall: A non‐stationary relationship. Geophysical Research Letters, 39, L12705, doi:10.1029/2012GL052423.Google Scholar
Lu, J. (2009). The dynamics of the Indian Ocean sea surface temperature forcing of Sahel drought. Climate Dynamics, 33, 445460.Google Scholar
Lu, J., Delworth, T. L. (2005). Oceanic forcing of the late 20th century Sahel drought. Geophysical Research Letters, 32, L22706, doi:10.1029/2005GL023316.Google Scholar
Lu, R. Y., Dong, B. W., Ding, H. (2006). Impact of the Atlantic multi-decadal oscillation on the Asian summer monsoon. Geophysical Research Letters, 33, L24701, doi:10.1029/2006GL027655.CrossRefGoogle Scholar
Lu, R. Y., Dong, B. W. (2008). Response of the Asian summer monsoon to weakening of Atlantic thermohaline circulation. Advances in Atmospehric Sciences, 25, 723736.Google Scholar
Magaña, V. (ed.) (1999). Los impactos del Niño en México. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Secretaría de Gobernación, México, 229.Google Scholar
Magaña, V., Caetano, E. (2005). Temporal evolution of summer convective activity over the America warm pools. Geophysical Research Letters, 32, L02803, doi:10.1029/2004GL021033.Google Scholar
Magaña, V., Amador, J., Medina, S. (1999). The midsummer drought over Mexico and Central America. Journal of Climate, 12, 15771588.Google Scholar
Maldonado, T., Rutgersson, A., Caballero, R., et al. (2017). The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet. Journal of Geophysical Research: Atmosphere, 122, doi:10.1002/2016JD026025.Google Scholar
Marengo, J. A. (2004). Interdecadal variability and trends of rainfall across the Amazon basin. Theoretical and Applied Climatology, 78, 7996.Google Scholar
Marengo, J. A., et al. (2012). Recent developments on the South American monsoon system. International Journal of Climatology, 32, 121.Google Scholar
Marengo, J. A., Soares, W. R., Saulo., C., Nicolini, M. (2004). Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyzes: Characteristics and temporal variability. Journal of Climate, 17, 22612280.Google Scholar
Martin, E. R., Thorncroft, C. D. (2014). The impact of the AMO on the West African monsoon annual cycle. Quarterly Journal of the Royal Meteorological Society, 140, 3146.Google Scholar
Maul, G. A., (1993). Climate Change in the Intra-Americas Sea. London: Edward Arnold.Google Scholar
Mechoso, C. R., Lyons, S., Spahr, J. (1990). The impact of sea surface temperature anomalies on the rainfall in northeast Brazil. Journal of Climate, 3, 812826.Google Scholar
Mechoso, C. R., Robertson, A. W., Ropelewski, C. F., Grimm, A. M. (2005). The American monsoon systems: An introduction. The Global Monsoon System: Research and Forecast, Chap. 13. WMO /TD No. 1266 (TMRP Report No. 70), (Eds.) C.-P. Chang et al., 197–206.Google Scholar
Meehl, G. A., Goddard, L., Murphy, J., et al. (2009). Decadal Prediction. Bulletin of the American Meteorological Society, 90, 14671485.Google Scholar
Méndez, M., Magaña, V. (2010). Regional aspects of prolonged meteorological droughts over Mexico and Central America. Journal of Climate, 23, 11751188.Google Scholar
Meyers, G., McIntosh, P., Pigt, L., Pook, M. (2007). The years of El Niño, La Niña, and interaction with the tropical Indian Ocean. Journal of Climate, 20, 28722880.CrossRefGoogle Scholar
Mohino, E., Rodríguez-Fonseca, B., Mechoso, C. R., Gervois, S., Ruti, P., Chauvin, F. (2011a). Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. Journal of Climate, 24, 38783891.Google Scholar
Mohino, E., Janicot, S., Bader, J. (2011b). Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dynamics, 37, 419440.CrossRefGoogle Scholar
Mohino, E., Keenlyside, N., Pohlmann, H. (2016). Decadal prediction of Sahel rainfall: Where does the skill (or lack thereof) come from? Climate Dynamics, 47, 35933612.Google Scholar
Molinari, J., Knight, D., Dickinson, M., Vollaro, D., Skubis, S. (1997). Potential vorticity, easterly waves, and eastern Pacific tropical cyclo-genesis. Monthly Weather Review, 125, 26992708.Google Scholar
Moon, J.-Y., Wang, B., Ha, K.-J. (2011). ENSO regulation of MJO teleconnection. Climate Dynamics, 37, 11331149.Google Scholar
Moura, A., Shukla, J. (1981). On the dynamics of droughts in Northeast Brazil: Observatons, theory, and numerical experiments with a general circulation model. Journal of the Atmospheric Sciences, 38, 26532675,Google Scholar
Muza, M. N., Carvalho, L. M. V., Jones, C., Liebmann, B. (2009). Intraseasonal and interannual variability of extreme dry and wet events over Southeastern South America and Subtropical Atlantic during the Austral Summer. Journal of Climate, 22, 16821699.Google Scholar
Neri, C., Magaña, V. (2016). Estimation of vulnerability and risk to meteorological drought in Mexico. Weather, Climate, and Society, 8, 95110.Google Scholar
Nitta, T. (1987). Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. Journal of the Meteorological Society of Japan, 65, 373390.Google Scholar
Nogués-Paegle, J. N., Byerle, L. A., Mo, K. C. (2000). Intraseasonal modulation of South American summer precipitation. Monthly Weather Review, 128, 837850.Google Scholar
Nogués-Paegle, J. N., Mo, K. C. (2002). Linkages between summer rainfall variability over South America and sea surface temperature anomalies. Journal of Climate, 15, 13891407.Google Scholar
Nogués-Paegle, J. N., Mechoso, C. R., Fu, R., Berbery, E. H., Chao, W. C. Chen, T. -C., Cook, K., Diaz, A. F., Enfield, D., Ferreira, R., Grimm, A. M., Kousky, V., Liebmann, B., Marengo, J., Mo, K., Neelin, J. D., Paegle, J., Robertson, A. W., Seth, A., Vera, C. S., Zhou, J. (2002). Progress in Pan American CLIVAR Research: Understanding the South American Monsoon. Meteorológica, 27, 333.Google Scholar
Pai, D. S., Sridhar, L., Rajeevan, M., et al. (2014). Development of a new high spatial resolution (0.25°×0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 118.Google Scholar
Palmer, T. N. (1986). Influence of the Atlantic, Pacific and Indian oceans on Sahel rainfall. Nature, 322, 251253.Google Scholar
Parhi, P., Giannini, A., Gentine, P., Lall, U. (2016). Resolving contrasting regional rainfall responses to El Niño over tropical Africa. Journal of Climate, 29, 14611476.Google Scholar
Park, J. Y., Bader, J., Matei, D. (2015). Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nature Communications, 6, 5985.Google Scholar
Park, J. Y., Bader, J., Matei, D. (2016). Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nature Climate Change, 6, 941945.Google Scholar
Parthasarathy, B., Munot, A. A., Kothawale, D. R. (1995). Monthly and seasonal rainfall series for all-India, homogenous regions and meteorological subdivisions: 1871–1994. Research Report No. RR-065, ISSN 0252-1075, 113 pp.Google Scholar
Pisciottano, G., Díaz, A., Cazes, G., Mechoso, C. R. (1994). El Niño-Southern oscillation impact on rainfall in Uruguay. Journal of Climate, 7, 12861302.Google Scholar
Polo, I., Rodríguez-Fonseca, B., Losada, T., García-Serrano, J. (2008). Tropical Atlantic variability modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall. Journal of Climate, 21, 64576475.Google Scholar
Power, S., Casey, T., Folland, C., Colman, A., Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15, 319324.Google Scholar
Rajeevan, M. (2012). Teleconnections of monsoon. India Meteorological Department Monsoon Monograph, 2, 78128.Google Scholar
Rayner, N., Parker, D. E., Horton, E. B., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, 4407, doi:10.1029/2002JD002670.Google Scholar
Rickenbach, T. M., Nieto-Ferreira, R., Barnhill, R. P., Nesbitt, S. W. (2011). Regional contrast of mesoscale convective system structure prior to and during monsoon onset across South America. Journal of Climate, 24, 37533763.Google Scholar
Riehl, H. (1979). Climate and Weather in the Tropics. San Diego, CA: Academic Press, 611.Google Scholar
Robertson, A. W., Mechoso, C. R. (1998). Interannual and Decadal Cycles in River Flows of Southeastern South America. Journal of Climate, 11, 25702581.Google Scholar
Robertson, A. W., Mechoso, C. R. (2000). Interannual and inter-decadal variability of the South Atlantic Convergence Zone, Monthly Weather Review, 11, 29472957.Google Scholar
Robertson, A. W., Farrara, J. D., Mechoso, C. R. (2003). Simulations of the atmospheric response to South Atlantic sea surface temperature anomalies. Journal of Climate., 16, 25402551.Google Scholar
Robertson, A., Moron, V., Qian, J.-H., et al. (2011). The Maritime Continent Monsoon. In Chang, C.-P., Ding, Y., Lau, N.-C., et al. (eds.). The Global Monsoon System: Research and Forecast, 2nd Edition, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 5, World Scientific Publication Co., 8598.Google Scholar
Rodríguez-Fonseca, B., Mohino, E., Mechoso, C. R., et al. (2015). Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. Journal of Climate, 2, 40344060.Google Scholar
Ropelewski, C. F., Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115, 16061626.Google Scholar
Roundy, P. E., MacRitchie, K., Asuma, J., Melino, T. (2010). Modulation of the global atmospheric circulation by combined activity in the Madden-Julian Oscillation and the El Niño–Southern Oscillation during Boreal winter. Journal of Climate, 23, 40454059.Google Scholar
Rowell, D. P. (2001). Teleconnections between the tropical Pacific and the Sahel. Quarterly Journal of the Royal Meteorological Society, 127, 16831706.Google Scholar
Rowell, D. P. (2003). The impact of Mediterranean SSTs on the Sahelian rainfall season. Journal of Climate, 16, 849862.Google Scholar
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.Google Scholar
Schneider, T., Bischoff, T., Haug, G. H. (2014). Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553.Google Scholar
Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., et al. (2009). Atlantic forcing of persistent drought in West Africa. Science, 324, 377380.Google Scholar
Shimizu, M. H., Cavalcanti, I. F. A. (2011). Variability patterns of Rossby wave source. Climate Dynamics, 37, 441454.Google Scholar
Shimizu, M. H., Ambrizzi, T. (2016). MJO influence on ENSO effects in precipitation and temperature over South America. Theoretical and Applied Climatology, 124, 291301.Google Scholar
Shimizu, M. H., Ambrizzi, T., Liebmann, B. (2016). Extreme precipitation events and their relationship with ENSO and MJO phases over northern South America. International Journal of Climatology, 36, 543557.Google Scholar
Si, D., Ding, Y. H. (2013). Decadal change in the correlation pattern between the Tibetan winter snow and the East Asian summer precipitation during 1979–2011. Journal of Climate, 26, 76227634.CrossRefGoogle Scholar
Si, D., Ding, Y. H. (2016). Oceanic forcing of the interdecadal variability in East Asian summer rainfall. Journal of Climate, 29, 76337649.Google Scholar
Sikka, D. R., Gadgil, S. (1978). Large-scale rainfall over India during the summer monsoon and its relation to the lower and upper tropospheric vorticity. Indian Journal of Meteorology Hydrology and Geophysics, 29, 219231.Google Scholar
Sikka, D. R., Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over India longitude during the southwest monsoon. Monthly Weather Review, 108, 11221135.Google Scholar
Silva, G. A. M., Ambrizzi, T., Marengo, J. A. (2009). Observational evidences on the modulation of the South American Low Level Jet east of the Andes according the ENSO variability. Annales Geophysicae, 27, 645657.Google Scholar
Simpson, G. (1921). The south-west monsoon. Quarterly Journal of the Royal Meteorological Society, 199, 150173.Google Scholar
Small, R. J. O., de Szoeke, S. P., Xie, S.-P. (2007). The Central American midsummer drought: Regional aspects and large-scale forcing. Journal of Climate, 20, 48534873.Google Scholar
Souza, E. B., Ambrizzi, T. (2006). Modulation of the intraseasonal rainfall over tropical Brazil by the Madden-Julian Oscillation. International Journal of Climatology, 26, 17591776.Google Scholar
Sperber, K. R., Cusiner, E., Kitoh, A., et al. (2017). Modelling Monsoons. In Chang, C.-P., Kuo, H.-C., Lau, N.-C., et al. (eds.). The Global Monsoon System, Research and Forecast, 3rd Edition. World Scientific Series on Asia-Pacific Weather and Climate, Vol. 9, World Scientific Publication Co., 79101.Google Scholar
Spiegel, M. R. (1988). Schaum’s Outline of Theory and Problems of Statistics. New York, NY: McGraw-Hill, 2nd edn., 324339.Google Scholar
Steenburgh, W. J., Schultz, D. M., Colle, B. A. (1998). The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Monthly Weather Review, 126, 26732691.Google Scholar
Suárez-Moreno, R., Rodríguez-Fonseca, B., Barroso, J. A., Fink, A. H. (2018). Interdecadal changes in the leading ocean forcing of Sahelian rainfall interannual variability: Atmospheric dynamics and role of multidecadal SST background. Journal of Climate, 31, 66876710.Google Scholar
Sultan, B., Janicot, S. (2003). The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. Journal of Climate, 16, 34073427.Google Scholar
Surendran, S., Gadgil, S., Francis, P A., Rajeevan, M. (2015). Prediction of Indian rainfall during the summer monsoon season on the basis of links with equatorial Pacific and Indian Ocean climate indices. Environmental Research Letters, 10, 094004, doi:10.1088/1748- 9326/10/9/094004.Google Scholar
Surendran, S., Gadgi, S., Rajendran, K., Varghese, S. J., Kitoh, A. (2019). Monsoon rainfall over India in June and link with northwest tropical Pacific. Theoretical and Applied Climatology, 135, 11951213.Google Scholar
Taschetto, A. S., Ambrizzi, T. (2012). Can Indian Ocean SST anomalies influence South American rainfall? Climate Dynamics, 38, 16151628.Google Scholar
Taylor, K. E., Stouffer, R. J., Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485498.Google Scholar
Trenberth, K. E., Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9, 303319.Google Scholar
Vera, C. S., Higgins, W., Amador, J., Ambrizzi, J. T., Garreaud, R., Gochisf, D. Gutzlerg, D. Lettenmaier, D., Marengo, J., Mechoso, C. R., Nogues-Paegle, J., Silva Dias, P. L., Zhang, C. (2006). Toward a unified view of the American monsoon systems. Journal of Climate, 19, 49775000.Google Scholar
Villamayor, J., Mohino, E. (2015). Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations. Geophysical Research Letters, 42, 12141222.Google Scholar
Villamayor, J., Ambrizzi, T., Mohino, E. (2018a). Influence of decadal sea surface temperature variability on northern Brazil rainfall in CMIP5 simulations. Climate Dynamics, 51, 563579.Google Scholar
Villamayor, J., Mohino, E., Khodri, M., Mignot, J., Janicot, S. (2018b). Atlantic Control of the late nineteenth-century Sahel humid period. Journal of Climate, 31, 82258240.Google Scholar
Vizy, E. K., Cook, K. H. (2002). Development and application of a mesoscale climate model for the tropics: Influence of sea surface temperature anomalies on the West African monsoon. Journal of Geophysical Research: Atmospheres, 107, 4023, doi:10.1029/2001JD000686.Google Scholar
Wainer, I., Soares, J. (1997). North northeast Brazil rainfall and its decadal scale relationship to wind stress and sea surface temperature. Geophysical Research Letters, 24, 277280.Google Scholar
Walker, G. T., Bliss, E. W. (1932). World weather V. Memoirs of the Royal Meteorological Society, 4, 5384.Google Scholar
Wang, P. X. (2009). Global monsoon in a geological perspective. Chinese Science Bulletin, 54, 11131136.Google Scholar
Wang, H. J. (2001). The weakening of the Asian Monsoon circulation after the end of 1970s. Advances in Atmospheric Science, 18, 376386.Google Scholar
Wang, H. J., Fan, K. (2013). Recent responses in the East Asian monsoon. Chinese Journal of Atmospheric Science, 37, 313318 (in Chinese).Google Scholar
Webster, P. J., Palmer, T., Yanai, M., et al. (1998). Monsoons: Processes and predictability and prospect for prediction. Journal of Geophysical Research: Oceans, 103, 1445114510.Google Scholar
Webster, P. J., Moore, A. M., Loschnigg, J. P., Leben, R. R. (1999). Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98, Nature, 401, 356360.Google Scholar
Xie, S.-P., Kosaka, Y., Du, Y., et al. (2016). Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Advances in Atmospheric Science, 34, 411432.Google Scholar
Zhang, H., Moise, A. (2016). The Australian summer monsoon in current and future climate. In Carvalho, L. M. V., Jones, C. (eds.), The Monsoons and Climate Change: Observations and Modeling, Dordrecht: Springer Climate, 67120.Google Scholar
Zhang, R., Delworth, T. L. (2006). Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophysical Research Letters, 33, L17712, doi:10.1029/2006GL026267.Google Scholar
Zhang, Z. Q., Sun, X. G., Yang, X. Q. (2018). Understanding the inter-decadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signal. Journal of Climate, 31, 54855506.Google Scholar
Zhou, J., Lau, K. M. (2001). Principal modes of interannual and decadal variability of summer rainfall over South America. International Journal of Climatology, 21(13), 16231644.Google Scholar
Zhou, J. Y., Lau, K. M. (1998). Does a monsoon climate exist over South America? Journal of Climate, 11, 10201040.Google Scholar
Zhou, T., Hsu, H.-H., Matsumoto, J. (2011). Summer Monsoons in East Asia, Indochina and the Western North Pacific. In Chang, C.-P., Ding, Y., Lau, N.-C., et al. (eds.) The Global Monsoon System: Research and Forecast, 2nd Edition, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 5, World Scientific Publication Co., 4372.Google Scholar
Zhou, T., Turner, A. G., Kinter, J. L., et al. (2016). GMMIP (v1.0) contribution to CMIP6: Global monsoons model inter-comparison project. Geoscientific Model Development, 9, 35893604, doi:10.5194/gmd-9-3589-2016.Google Scholar
Zhu, Y. L., Wang, T., Ma, J. (2016). Influence of internal decadal variability on the summer rainfall in eastern China as simulated by CCSM 4. Advances in Atmospheric Science, 33, 706714.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×