Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T18:40:42.920Z Has data issue: false hasContentIssue false

2 - Impacts of Climate Change on Aeroallergen Production and Atmospheric Concentration

Published online by Cambridge University Press:  05 August 2016

Paul J. Beggs
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel Hameed, A. A. (2005). Vegetation: a source of air fungal bio-contaminant. Aerobiologia, 21(1), 5361.Google Scholar
Aguilera, F., Ruiz Valenzuela, L. (2012). Altitudinal fluctuations in the olive pollen emission: an approximation from the olive groves of the south-east Iberian Peninsula. Aerobiologia, 28(3), 403411.CrossRefGoogle Scholar
Albertine, J. M., Manning, W. J., DaCosta, M., et al. (2014). Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS One, 9(11), e111712.CrossRefGoogle ScholarPubMed
Anderson, H. R., Ponce de Leon, A., Bland, J. M., et al. (1998). Air pollution, pollens, and daily admissions for asthma in London 1987–92. Thorax, 53(10), 842848.CrossRefGoogle ScholarPubMed
Beggs, P. J. (2004). Impacts of climate change on aeroallergens: past and future. Clinical & Experimental Allergy, 34(10), 15071513.CrossRefGoogle ScholarPubMed
Beniston, M. (2006). Mountain weather and climate: a general overview and a focus on climatic change in the Alps. Hydrobiologia, 562(1), 316.CrossRefGoogle Scholar
Bibi, H., Shoseyov, D., Feigenbaum, D., et al. (2002). Comparison of positive allergy skin tests among asthmatic children from rural and urban areas living within small geographic area. Annals of Allergy, Asthma & Immunology, 88(4), 416420.CrossRefGoogle Scholar
Bortenschlager, S., Bortenschlager, I. (2005). Altering airborne pollen concentrations due to the Global Warming. A comparative analysis of airborne pollen records from Innsbruck and Obergurgl (Austria) for the period 1980–2001. Grana, 44(3), 172180.CrossRefGoogle Scholar
Braun-Fahrländer, Ch., Gassner, M., Grize, L., et al. (1999). Prevalence of hay fever and allergic sensitization in farmer’s children and their peers living in the same rural community. Clinical & Experimental Allergy, 29(1), 2834.CrossRefGoogle ScholarPubMed
Cadman, A., Dames, J., Terblanche, A. P. S. (1994). Airspora concentrations in the Vaal Triangle: monitoring and potential health effects. 1, Pollen. South African Journal of Science, 90(11–12), 607610.Google Scholar
Caretta, G. (1992). Epidemiology of allergic disease: the fungi. Aerobiologia, 8(3), 439445.CrossRefGoogle Scholar
Cariñanos, P., Sánchez-Mesa, J. A., Prieto-Baena, J. C., et al. (2002). Pollen allergy related to the area of residence in the city of Córdoba, south-west Spain. Journal of Environmental Monitoring, 4(5), 734738.CrossRefGoogle Scholar
Chappelka, A. H. (2002). Reproductive development of blackberry (Rubus cuneifolius), as influenced by ozone. New Phytologist, 155(2), 249255.CrossRefGoogle Scholar
Clot, B. (2003). Trends in airborne pollen: an overview of 21 years of data in Neuchâtel (Switzerland). Aerobiologia, 19(3–4), 227234.CrossRefGoogle Scholar
Clot, B., Peeters, A. G., Fankhauser, A., Frei, Th. (1995). Airborne Pollen in Switzerland 1994. Zürich: Schweizerische Meteorologische Anstalt [Swiss Meteorological Institute].Google Scholar
Corden, J., Millington, W. (1999). A study of Quercus pollen in the Derby area, UK. Aerobiologia, 15(1), 2937.CrossRefGoogle Scholar
Corden, J. M., Millington, W. M. (2001). The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK. Aerobiologia, 17(2), 127136.CrossRefGoogle Scholar
Corden, J. M., Millington, W. M., Mullins, J. (2003). Long-term trends and regional variation in the aeroallergen Alternaria in Cardiff and Derby UK – are differences in climate and cereal production having an effect? Aerobiologia, 19(3–4), 191199.CrossRefGoogle Scholar
Dahl, Å., Galán, C., Hajkova, L., et al. (2013). The onset, course and intensity of the pollen season. In: Sofiev, M., Bergmann, K.-C., eds. Allergenic Pollen. A Review of the Production, Release, Distribution and Health Impacts. Dordrecht: Springer, pp. 2970.CrossRefGoogle Scholar
Dahl, Å., Strandhede, S.-O. (1996). Predicting the intensity of the birch pollen season. Aerobiologia, 12(2), 97106.CrossRefGoogle Scholar
D’Amato, G. (2000). Urban air pollution and plant-derived respiratory allergy. Clinical & Experimental Allergy, 30(5), 628636.CrossRefGoogle ScholarPubMed
Damialis, A., Halley, J. M., Gioulekas, D., Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41(33), 70117021.CrossRefGoogle Scholar
Darbah, J. N. T., Kubiske, M. E., Nelson, N., et al. (2008). Effects of decadal exposure to interacting elevated CO2 and/or O3 on paper birch (Betula papyrifera) reproduction. Environmental Pollution, 155(3), 446452.CrossRefGoogle ScholarPubMed
Docampo, S., Recio, M., Trigo, M. M., Melgar, M., Cabezudo, B. (2007). Risk of pollen allergy in Nerja (southern Spain): a pollen calendar. Aerobiologia, 23(3), 189199.CrossRefGoogle Scholar
Durham, O. C. (1946). The volumetric incidence of atmospheric allergens: IV. A proposed standard method of gravity sampling, counting, and volumetric interpolation of results. The Journal of Allergy, 17(2), 7986.CrossRefGoogle Scholar
Emberlin, J. (1994). The effects of patterns in climate and pollen abundance on allergy. Allergy, 49(s18), 1520.CrossRefGoogle ScholarPubMed
Emberlin, J., Mullins, J., Corden, J., et al. (1999). Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clinical and Experimental Allergy, 29(3), 347356.CrossRefGoogle ScholarPubMed
Emberlin, J. C., Norris-Hill, J., Bryant, R. H. (1990). A calendar for tree pollen in London. Grana, 29(4), 301309.CrossRefGoogle Scholar
Emberlin, J., Savage, M., Jones, S. (1993a). Annual variations in grass pollen seasons in London 1961–1990: trends and forecast models. Clinical and Experimental Allergy, 23(11), 911918.CrossRefGoogle ScholarPubMed
Emberlin, J., Savage, M., Woodman, R. (1993b). Annual variations in the concentrations of Betula pollen in the London area, 1961–1990. Grana, 32(6), 359363.CrossRefGoogle Scholar
Frei, T. (1997). Pollen distribution at high elevation in Switzerland: evidence for medium range transport. Grana, 36(1), 3438.CrossRefGoogle Scholar
Frei, T. (1998). The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass. Grana, 37(3), 172179.CrossRefGoogle Scholar
Frei, T., Gassner, E. (2008a). Climate change and its impacts on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. International Journal of Biometeorology, 52(7), 667674.CrossRefGoogle ScholarPubMed
Frei, T., Gassner, E. (2008b). Trends in prevalence of allergic rhinitis and correlation with pollen counts in Switzerland. International Journal of Biometeorology, 52(8), 841847.CrossRefGoogle ScholarPubMed
Frei, T., Leuschner, R. M. (2000). A change from grass pollen induced allergy to tree pollen induced allergy: 30 years of pollen observation in Switzerland. Aerobiologia, 16(3–4), 407416.CrossRefGoogle Scholar
Frenz, D. A. (2001). Interpreting atmospheric pollen counts for use in clinical allergy: allergic symptomology. Annals of Allergy, Asthma & Immunology, 86(2), 150158.CrossRefGoogle ScholarPubMed
Galán, C., García-Mozo, H., Vázquez, L., et al. (2008). Modeling olive crop yield in Andalusia, Spain. Agronomy Journal, 100(1), 98104.CrossRefGoogle Scholar
García-Mozo, H., Galán, C., Cariñanos, P., et al. (1999). Variations in the Quercus sp. pollen season at selected sites in Spain. Polen, 10, 5969.Google Scholar
García-Mozo, H., Yaezel, L., Oteros, J., Galán, C. (2014). Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Science of the Total Environment, 473–474, 103109.CrossRefGoogle Scholar
Gehrig, R. (2006). The influence of the hot and dry summer 2003 on the pollen season in Switzerland. Aerobiologia, 22(1), 2734.CrossRefGoogle Scholar
Gehrig, R., Jud, S., Schuepbach, E., Clot, B. (2011). Pollen measurements in an alpine environment – altitudinal gradients and transport. In: Clot, B., Comtois, P., Escamilla-Garcia, B., eds. Aerobiological Monographs, Towards a Comprehensive Vision. Volume 1. MeteoSwiss (CH) and University of Montreal (CA), Montreal, Canada, pp. 1935.Google Scholar
Gehrig, R., Peeters, A. G. (2000). Pollen distribution at elevations above 1000 m in Switzerland. Aerobiologia, 16(1), 6974.CrossRefGoogle Scholar
González Minero, F. J., Candau, P., Tomás, C., Morales, J. (1998). Airborne grass (Poaceae) pollen in southern Spain. Results of a 10-year study (1987–96). Allergy, 53(3), 266274.CrossRefGoogle ScholarPubMed
Gravesen, S. (1979). Fungi as a cause of allergic disease. Allergy, 34(3), 135154.CrossRefGoogle ScholarPubMed
Gregory, P. H. (1973). The Microbiology of the Atmosphere, 2nd edn. Aylesbury: Leonard Hill Books.Google Scholar
Guedes, A., Ribeiro, N., Ribeiro, H., et al. (2009). Comparison between urban and rural pollen of Chenopodium alba and characterization of adhered pollutant aerosol particles. Journal of Aerosol Science, 40(1), 8186.CrossRefGoogle Scholar
Hicks, S., Helander, M., Heino, S. (1994). Birch pollen production, transport and deposition for the period 1984–1993 at Kevo, northernmost Finland. Aerobiologia, 10(2–3), 183191.CrossRefGoogle Scholar
Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39(2), 257265.CrossRefGoogle Scholar
Hjelmroos, M. (1993). Relationship between airborne fungal spore presence and weather variables: Cladosporium and Alternaria. Grana, 32(1), 4047.CrossRefGoogle Scholar
Huynen, M., Menne, B., Behrendt, H., et al. (2003). Phenology and Human Health: Allergic Disorders. Report on a WHO meeting, Rome, Italy, 16–17 January 2003. Copenhagen: WHO Regional Office for Europe.Google Scholar
IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K., Reisinger, A., eds.]. Geneva, Switzerland: IPCC.Google Scholar
Isagi, Y., Sugimura, K., Sumida, A., Ito, H. (1997). How does masting happen and synchronize? Journal of Theoretical Biology, 187(2), 231239.CrossRefGoogle Scholar
Jäger, S., Nilsson, S., Berggren, B., et al. (1996). Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993: a comparison between Stockholm, Trondheim, Turku and Vienna. Grana, 35(3), 171178.CrossRefGoogle Scholar
Jochner, S. C., Beck, I., Behrendt, H., Traidl-Hoffmann, C., Menzel, A. (2011). Effects of extreme spring temperatures on urban phenology and pollen production: a case study in Munich and Ingolstadt. Climate Research, 49(2), 101112.CrossRefGoogle Scholar
Jochner, S., Caffarra, A., Menzel, A. (2013a). Can spatial data substitute temporal data in phenological modelling? A survey using birch flowering. Tree Physiology, 33(12), 12561268.CrossRefGoogle ScholarPubMed
Jochner, S., Höfler, J., Beck, I., et al. (2013b). Nutrient status: a missing factor in phonological and pollen research? Journal of Experimental Botany, 64(7), 20812092.CrossRefGoogle Scholar
Jochner, S., Ziello, C., Böck, A., et al. (2012). Spatio-temporal investigation of flowering dates and pollen counts in the topographically complex Zugspitze area on the German-Austrian border. Aerobiologia, 28(4), 541556.CrossRefGoogle Scholar
Kelly, D. (1994). The evolutionary ecology of mast seeding. Trends in Ecology and Evolution, 9(12), 465470.CrossRefGoogle ScholarPubMed
Klironomos, J. N., Rillig, M. C., Allen, M. F., et al. (1997). Increased levels of airborne fungal spores in response to Populus tremuloides grown under elevated atmospheric CO2. Canadian Journal of Botany, 75(10), 16701673.CrossRefGoogle Scholar
Laaidi, M. (2001). Forecasting the start of the pollen season of Poaceæ: evaluation of some methods based on meteorological factors. International Journal of Biometeorology, 45(1), 17.CrossRefGoogle ScholarPubMed
LaDeau, S. L., Clark, J. S. (2006). Pollen production by Pinus taeda growing in elevated atmospheric CO2. Functional Ecology, 20(3), 541547.CrossRefGoogle Scholar
Latorre, F. (1999). Differences between airborne pollen and flowering phenology of urban trees with reference to production, dispersal and interannual climate variability. Aerobiologia, 15(2), 131141.CrossRefGoogle Scholar
Levetin, E. (1998). A long-term study of winter and early spring tree pollen in the Tulsa, Oklahoma atmosphere. Aerobiologia, 14(1), 2128.CrossRefGoogle Scholar
Levetin, E., Shaughnessy, R., Fisher, E., et al. (1995). Indoor air quality in schools: exposure to fungal allergens. Aerobiologia, 11(1), 2734.CrossRefGoogle Scholar
Levetin, E., Van de Water, P. (2008). Changing pollen types/concentrations/distribution in the United States: fact or fiction? Current Allergy and Asthma Reports, 8(5), 418424.CrossRefGoogle ScholarPubMed
McLauchlan, K. K., Barnes, C. S., Craine, J. M. (2011). Interannual variability of pollen productivity and transport in mid-North America from 1997 to 2009. Aerobiologia, 27(3), 181189.CrossRefGoogle Scholar
Menzel, A. (2013). Europe. In: Schwartz, M. D., ed. Phenology: An Integrative Environmental Science, 2nd edn. Dordrecht: Springer, pp. 5365.CrossRefGoogle Scholar
Millington, W. M., Corden, J. M. (2005). Long term trends in outdoor Aspergillus/Penicillium spore concentrations in Derby, UK from 1970 to 2003 and a comparative study in 1994 and 1996 with the indoor air of two local houses. Aerobiologia, 21(2), 105113.CrossRefGoogle Scholar
Mitakakis, T., Ong, E. K., Stevens, A., Guest, D., Knox, R. B. (1997). Incidence of Cladosporium, Alternaria and total fungal spores in the atmosphere of Melbourne (Australia) over three years. Aerobiologia, 13(2), 8390.CrossRefGoogle Scholar
Monn, C., Alean-Kirkpatrick, P., Künzli, N., et al. (1999). Air pollution, climate and pollen comparisons in urban, rural and alpine regions in Switzerland (SAPALDIA study). Atmospheric Environment, 33(15), 24112416.CrossRefGoogle Scholar
Nilsson, S. (1988). Preliminary inventory of aerobiological monitoring stations in Europe. Aerobiologia, 4(1–2), 47.CrossRefGoogle Scholar
Ogden, E. C., Raynor, G. S. (1967). A new sampler for airborne pollen: the rotoslide. The Journal of Allergy, 40(1), 111.CrossRefGoogle ScholarPubMed
Ong, E. K., Singh, M. B., Knox, R. B. (1995). Seasonal distribution of pollen in the atmosphere of Melbourne: an airborne pollen calendar. Aerobiologia, 11(1), 5155.CrossRefGoogle Scholar
Ranta, H., Hokkanen, T., Linkosalo, T., et al. (2008). Male flowering of birch: spatial synchronization, year-to-year variation and relation of catkin numbers and airborne pollen counts. Forest Ecology and Management, 255(3–4), 643650.CrossRefGoogle Scholar
Ranta, H., Oksanen, A., Hokkanen, T., Bondestam, K., Heino, S. (2005). Masting by Betula-species; applying the resource budget model to north European data sets. International Journal of Biometeorology, 49(3), 146151.CrossRefGoogle ScholarPubMed
Rantio-Lehtimäki, A. (1994). Short, medium and long range transported airborne particles in viability and antigenicity analyses. Aerobiologia, 10(2–3), 175181.CrossRefGoogle Scholar
Rantio-Lehtimäki, A., Koivikko, A., Kupias, R., Mäkinen, Y., Pohjola, A. (1991). Significance of sampling height of airborne particles for aerobiological information. Allergy, 46(1), 6876.CrossRefGoogle ScholarPubMed
Rapiejko, P. (1995). Monitoring Aeroalergenów w Polsce [Pollen monitoring in Poland]. In: Spiewak, R., ed. Pollens and Pollinosis: Current Problems. Lublin: Institute of Agricultural Medicine, pp. 1319.Google Scholar
Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18(3–4), 253265.CrossRefGoogle Scholar
Riedler, J., Eder, W., Oberfeld, G., Schreuer, M. (2000). Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clinical & Experimental Allergy, 30(2), 194200.CrossRefGoogle ScholarPubMed
Ring, J., Krämer, U., Schäfer, T., Behrendt, H. (2001). Why are allergies increasing? Current Opinion in Immunology, 13(6), 701708.CrossRefGoogle ScholarPubMed
Rodríguez-Rajo, F. J., Fdez-Sevilla, D., Stach, A., Jato, V. (2010). Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure. Aerobiologia, 26(1), 114.CrossRefGoogle Scholar
Rogers, C. A., Wayne, P. M., Macklin, E. A., et al. (2006). Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environmental Health Perspectives, 114(6), 865869.CrossRefGoogle ScholarPubMed
Saikkonen, K., Koivunen, S., Vuorisalo, T., Mutikainen, P. (1998). Interactive effects of pollination and heavy metals on resource allocation in Potentilla anserina L. Ecology, 79(5), 16201629.CrossRefGoogle Scholar
Schäppi, G. F., Taylor, P. E., Kenrick, J., Staff, I. A., Suphioglu, C. (1998). Predicting the grass pollen count from meteorological data with regard to estimating the severity of hayfever symptoms in Melbourne (Australia). Aerobiologia, 14(1), 2937.CrossRefGoogle Scholar
Schauber, E. M., Kelly, D., Turchin, P., et al. (2002). Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology, 83(5), 12141225.CrossRefGoogle Scholar
Scheifinger, H., Belmonte, J., Buters, J., et al. (2013). Monitoring, modelling and forecasting of the pollen season. In: Sofiev, M., Bergmann, K.-C., eds. Allergenic Pollen. A Review of the Production, Release, Distribution and Health Impacts. Dordrecht: Springer, pp. 71126.CrossRefGoogle Scholar
Singer, B. D., Ziska, L. H., Frenz, D. A., Gebhard, D. E., Straka, J. G. (2005). Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Functional Plant Biology, 32(7), 667670.CrossRefGoogle Scholar
Smith, M., Emberlin, J. (2005). Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clinical and Experimental Allergy, 35(10), 14001406.CrossRefGoogle ScholarPubMed
Spieksma, F. T. M., Corden, J. M., Detandt, M., et al. (2003). Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia, 19(3–4), 171184.CrossRefGoogle Scholar
Spieksma, F. T. M., Emberlin, J. C., Hjelmroos, M., Jäger, S., Leuschner, R. M. (1995). Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons. Grana, 34(1), 5157.CrossRefGoogle Scholar
Stevens, D. A., Kan, V. L., Judson, M. A., et al. (2000). Practice guidelines for diseases caused by Aspergillus. Clinical Infectious Diseases, 30(4), 696709.CrossRefGoogle ScholarPubMed
Teranishi, H., Kenda, Y., Katoh, T., et al. (2000). Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research, 14(1), 6570.CrossRefGoogle Scholar
Vázquez, L. M., Galán, C., Domínguez-Vilches, E. (2003). Influence of meteorological parameters on olea pollen concentrations in Córdoba (South-western Spain). International Journal of Biometeorology, 48(2), 8390.CrossRefGoogle ScholarPubMed
Wan, S., Yuan, T., Bowdish, S., et al. (2002). Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health. American Journal of Botany, 89(11), 18431846.CrossRefGoogle ScholarPubMed
Wayne, P., Foster, S., Connolly, J., Bazzaz, F., Epstein, P. (2002). Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Annals of Allergy, Asthma & Immunology, 88(3), 279282.CrossRefGoogle Scholar
Wolkovich, E. M., Cook, B. I., Allen, J. M., et al. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485(7399), 494497.CrossRefGoogle ScholarPubMed
Zauli, D., Tiberio, D., Grassi, A., Ballardini, G. (2006). Ragweed pollen travels long distance. Annals of Allergy, Asthma & Immunology, 97(1), 122123.CrossRefGoogle ScholarPubMed
Zhang, Y., Bielory, L., Mi, Z., et al. (2015). Allergenic pollen season variations in the past two decades under changing climate in the United States. Global Change Biology, 21(4), 15811589.CrossRefGoogle ScholarPubMed
Zhang, Y., Isukapalli, S. S., Bielory, L., Georgopoulos, P. G. (2013). Bayesian analysis of climate change effects on observed and projected airborne levels of birch pollen. Atmospheric Environment, 68, 6473.CrossRefGoogle ScholarPubMed
Ziello, C., Sparks, T. H., Estrella, N., et al. (2012). Changes to airborne pollen counts across Europe. PLoS One, 7(4), e34076.CrossRefGoogle ScholarPubMed
Ziska, L. H., Beggs, P. J. (2012). Anthropogenic climate change and allergen exposure: the role of plant biology. The Journal of Allergy and Clinical Immunology, 129(1), 2732.CrossRefGoogle ScholarPubMed
Ziska, L. H., Caulfield, F. A. (2000). Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Australian Journal of Plant Physiology, 27(10), 893898.Google Scholar
Ziska, L. H., Epstein, P. R., Rogers, C. A. (2008). Climate change, aerobiology, and public health in the Northeast United States. Mitigation and Adaptation Strategies for Global Change, 13(5–6), 607613.CrossRefGoogle Scholar
Ziska, L. H., Gebhard, D. E., Frenz, D. A., et al. (2003). Cities as harbingers of climate change: common ragweed, urbanization, and public health. The Journal of Allergy and Clinical Immunology, 111(2), 290295.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×