Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Print publication year: 2007
  • Online publication date: December 2010

28 - What is the economic value of information about climate thresholds?

from Part IV - Policy design and decisionmaking under uncertainty

Summary

Introduction

The field of integrated assessment of climate change is undergoing a paradigm shift towards the analysis of potentially abrupt and irreversible climate changes (Alley et al., 2003; Keller et al., 2007). Early integrated studies broke important new ground in exploring the relationship between the costs and benefits of reducing carbon dioxide (CO2) emissions (e.g., Nordhaus, 1991; Manne and Richels, 1991; or Tol, 1997). These studies project the climate response to anthropogenic CO2 emissions to be relatively smooth and typically conclude that the projected benefits of reducing CO2 emissions would justify only small reductions in CO2 emissions in a cost–benefit framework. The validity of the often- assumed smooth climate response is, however, questionable, given how the climate system has responded to forcing in the geological past. Before the Anthropocene, the geological time period where humans have started to influence the global biogeochemical cycles considerably (Crutzen, 2002), the predominant responses of the climate system were forced by small changes in solar insolation occurring on timescales of thousands of years (Berger and Loutre, 1991). Yet this slow and smooth forcing apparently triggered abrupt climate changes – a threshold response where the climate system moved between different basins of attraction (Berger, 1990; Clement et al., 2001). Anthropogenic forcing may trigger climate threshold responses in the future (Alley et al., 2003; Keller et al., 2007).

References
Alley, R. B. (2000). Ice-core evidence of abrupt climate changes. Proceedings of the National Academy of Sciences of the United States of America 97 (4), 1331–1334.
Alley, R. B., Marotzke, J., Nordhaus, W.et al. (2002). Abrupt Climate Change: Inevitable Surprises. National Research Council.
Alley, R. B., Marotzke, J., Nordhaus, W. D.et al. (2003). Abrupt climate change. Science 299, 2005–2010.
Andronova, N. G. and Schlesinger, M. E. (2001). Objective estimation of the probability density function for climate sensitivity. Journal of Geophysical Research-Atmospheres 106 (D19), 22 605–22 611.
Baehr, J., Hirschi, J., Beismann, J. O. and Marotzke, J. (2004). Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. Journal of Marine Research 62 (3), 283–312.
Baehr, J., Keller, K. and Marotzke, J. (2007). Detecting potential changes in the meridional overturning circulation at 26° N in the Atlantic, Climatic Change, published online 10 January 2007, doi: 2010.1007/S10584-10006-19153-Z.
Baumgartner, A. and Reichel, E. (1975). The World Water Balance. Amstedam and New York: Elsevier.
Bell, T. L. (1982). Optimal weighting of data to detect climatic change: application to the carbon dioxide problem. Journal of Geophysical Research 87 (C13), 11 161–11 170.
Berger, A. and Loutre, M. F. (1991). Insolation values for the climate of the last 10 000 000 years. Quaternary Science Reviews 10 (4), 297–317.
Berger, W. H. (1990). The Younger Dryas cold spell – a quest for causes. Global and Planetary Change 89 (3), 219–237.
Bindschadler, R. (1997). West Antarctic ice sheet collapse?, Science 276, 662–663.
Broecker, W. (1991). The great ocean conveyor. Oceanography 4 (2), 79–89.
Caldeira, K., Jain, A. K. and Hoffert, M. I. (2003). Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299, 2052–2054.
Carew, J. L. (1997). Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology: comments and reply. Geology 25 (6), 572–573.
Claussen, M., Kubatzki, C., Brovkin, V.et al. (1999). Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophysical Research Letters 26 (14), 2037–2040.
Clement, A. C., Cane, M. A. and Seager, R. (2001). An orbitally driven tropical source for abrupt climate change. Journal of Climate 14 (11), 2369–2375.
Crutzen, P. J. (2002). Geology of mankind. Nature 415, 23–23.
Cubasch, U. and Meehl, G. A. (2001). Projections of future climate change, In Climate Change 2001: The Scientific Basis. Contribution of Working Group I of the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. Cambridge: Cambridge University Press, pp. 526–582.
Cuffey, K. M., Clow, G. D.Alley, R. B.et al. (1995). Large Arctic temperature change at the Wisconsin–Holocene glacial transition. Science 270, 455–458.
Denton, G. H. and Hendy, C. H. (1994). Younger Dryas age advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science 264, 1434–1437.
Dickson, R. R. and Brown, J. (1994). The production of North Atlantic deep water: Sources, rates, and pathways. Journal of Geophysical Research 99 (C6), 12 319–12 341.
Fedorov, A. V. and Philander, S. G. (2000). Is El Niño changing?. Science 288, 1997–2002.
Folland, C. K., Rayner, N. A.Brown, S. J.et al. (2001). Global temperature change and its uncertainties since 1861. Geophysical Research Letters 28 (13), 2621–2624.
Ganachaud, A. and Wunsch, C. (2000). Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457.
Gregory, J. M., Dixon, K. W.Stouffer, R. J.et al. (2005). A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophysical Research Letters 32 L12703; doi: 10.1029/2005GL023209.
Hall, M. M. and Bryden, H. L. (1982). Direct estimates and mechanisms of ocean heat transport. Deep-Sea Research 29, 339–359.
Hirschi, J., Baehr, J., Marotzke, J.et al. (2003). A monitoring design for the Atlantic meridional overturning circulation. Geophysical Research Letters 38 (7) 1413; doi: 1410.1029/2002 GL016776.
Holland, D. M., Jacobs, S. S. and Jenkins, A. (2003). Modelling the ocean circulation beneath the Ross Ice Shelf. Antarctic Science 15 (1), 13–23.
Huybrechts, P. and Wolde, J. (1999). The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journal of Climate 12 (8), 2169–2188.
IPCC (2000). Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, ed. Nakicenovic, N. and Swart, R.. Cambridge: Cambridge University Press.
Joos, F., Plattner, G.-K., Stocker, T. F, Körtzinger, A. and Wallace, D. W. R. (2003). Trends in marine dissolved oxygen: implications for ocean circulation changes and the carbon budget. EOS 84, 197–204.
Keller, K., Tan, K., Morel, F. M. M., and Bradford, D. F. (2000). Preserving the ocean circulation: implications for climate policy. Climatic Change 47, 17–43.
Keller, K., Slater, R., Bender, M. and Key, R. M. (2002). Possible biological or physical explanations for decadal scale trends in North Pacific nutrient concentrations and oxygen utilization. Deep-Sea-Research II 49, 345–362.
Keller, K., Bolker, B. M. and Bradford, D. F, (2004). Uncertain climate thresholds and optimal economic growth. Journal of Environmental Economics and Management 48, 723–741.
Keller, K., Hall, M., Kim, S.-R., Bradford, D. F. and Oppenheimer, M. (2005). Avoiding dangerous anthropogenic interference with the climate system. Climatic Change 73, 227–238.
Keller, K., Deutsch, C., Hall, M. G. and Bradford, D. F. (2007). Early detection of changes in the North Atlantic meridional overturning circulation: implications for the design of ocean observation systems. Journal of Climate 20, 145–157.
Keller, K., Schlesinger, M. and Yohe, G. (2007). Managing the risks of climate thresholds: uncertainties and information needs. (An editorial essay). Climatic Change, in press. Published online: 23 January 2007, http://dx.doi.org/2010.1007/S10584-10006-19114-10586.
Kindler, P. and Strasser, A. (1997). Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology: Comment. Geology 25 (12), 1147.
Kleinen, T., Held, H. and Petschel-Held, G. (2003). The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dynamics 53, 53–63.
Latif, M., Roeckner, E., Mikolajewski, U. and Voss, R. (2000). Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. Journal of Climate 13, 1809–1813.
Lempert, R. J. (2002). A new decision sciences for complex systems. Proceedings of the National Academy of Sciences of the United States of America 99, 7309–7313.
Macayeal, D. R. (1992). Irregular oscillations of the West Antarctic Ice-Sheet. Nature 359, 29–32.
Macayeal, D. R. (1993). Binge/purge oscillations of the Laurentide ice-sheet as a cause of the North-Atlantics Heinrich events. Paleoceanography 8 (6), 775–784.
Manabe, S. and Stouffer, R. J. (1994). Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. Journal of Climate 7 (1), 5–23.
Manabe, S. and Stouffer, R. J. (1995). Simulation of abrupt climate change induced by freshwater input to the North Atlantic ocean. Nature 378, 165–167.
Manne, A. S. and Richels, R. (1991). Buying greenhouse insurance. Energy Policy 19, 543–552.
Marotzke, J., Cunningham, S. A. and Bryden, H. L. (2002). Monitoring the Atlantic Meridional Overturning Circulation at 26.5° N. Proposal accepted by the Natural Environment Research Council (UK). Available at www.noc.soton.ac.uk/rapidmoc.
Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. and Roske, F. (2003). The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 5 (2), 91–127.
Mastrandrea, M. D. and Schneider, S. H. (2004). Probabilistic integrated assessment of “dangerous” climate change. Science 304, 571–575.
Matear, R. J. and Hirst, A. C. (2003). Long-term changes in dissolved oxygen concentrations in the oceans caused by protracted global warming. Global Biogeochemical Cycles 17 (4), doi: 10.1029/2002GB001997.
Matear, R. J., Hirst, A. C. and McNeil, B. I. (2000). Changes in dissolved oxygen in the Southern ocean with climate change. Geochemistry, Geophysics, Geosystems 1, Paper number 2000GC000086.
McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). Comparison of 3 methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 (2), 239–245.
McManus, J. F., Francois, R., Gherardi, J. M.Keigwin, L. D., and Brown-Leger, S. (2004). Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837.
Meese, D. A., Alley, R. B., Fiacco, R. J. et al. (1994a). Preliminary depth-age scale of the GISP2 ice core. Special CRREL Report, 94–1.
Meese, D. A., Gow, A. J.Grootes, P.et al. (1994b). The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene. Nature 266, 1680–1682.
Mercer, J. H. (1978). West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325.
Neumann, A. C. and Hearty, P. J. (1996). Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology. Geology 24 (9), 775–778.
Nordhaus, W. D. (1991). To slow or not to slow – the economics of the greenhouse-effect. Economic Journal 101 (407), 920–937.
Nordhaus, W. D. (1992). An optimal transition path for controlling greenhouse gases. Science 258, 1315–1319.
Nordhaus, W. D. (1993). Optimal greenhouse-gas reductions and tax policy in the DICE model. American Economic Review 83 (2), 313–317.
Nordhaus, W. D. (1994). Managing the Global Commons: The Economics of Climate Change. Cambridge, MA: MIT Press.
Nordhaus, W. D. and Boyer, J. (2000). Warming the World: Economic Models of Global Warming. Cambridge, MA: MIT Press.
Nordhaus, W. D. and Popp, D. (1997). What is the value of scientific knowledge? An application to global warming using the PRICE model. Energy Journal 18 (1), 1–45.
O'Neill, B. C. and Oppenheimer, M. (2002). Climate change – dangerous climate impacts and the Kyoto protocol. Science 296, 1971–1972.
Oppenheimer, M. (1998). Global warming and the stability of the West Antarctic ice sheet. Nature 393, 322–325.
Oppenheimer, M. and Alley, R. B. (2004). The West Antarctic ice sheet and long term climate policy: an editorial comment. Climatic Change 64 (1–2), 1–10.
Oppenheimer, M. and Alley, R. B. (2005). Ice sheets, global warming, and Article 2 of the UNFCCC. Climatic Change 68 (3), 257–267.
Peacock, S., Visbeck, M. and Broecker, W. (2000). Deep water formation rates inferred from global tracer distributions: an inverse approach. In Inverse Methods in Global Biogeochemical Cycles, ed. Kasibhatla, P., Heiman, M., Rayner, P.et al. American Geophysical Union, pp. 185–195.
Petit, J. R., Basile, I., Leruyuet, A.et al. (1997). Four climate cycles in Vostok ice core. Nature 387, 359.
Rahmstorf, S. (2000). The thermohaline ocean circulation: a system with a dangerous threshold?Climatic Change 46, 247–256.
Ramsey, F. (1928). A mathematical theory of saving. Economic Journal 37, 543–559.
Santer, B. D., Mikolajewicz, U., Bruggemann, W.et al. (1995). Ocean variability and its influence on the detectability of greenhouse warming signals. Journal of Geophysical Research: Oceans 100 (C6), 10 693–10 725.
Scheffer, M., Carpenter, S., Foley, J. A.Folke, C. and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature 413, 591–596.
Schiermeier, Q. (2004). Gulf Stream probed for early warnings of system failure. Nature 427, 769.
Schlosser, P., Bönisch, G.Rhein, M. and Bayer, R. (1991). Reduction of deepwater formation in the Greenland Sea during the 1980's: evidence from tracer data. Science 251, 1054–1056.
Schmittner, A. and Stocker, T. F. (1999). The stability of the thermohaline circulation in global warming experiments. Journal of Climate 12, 1117–1133.
Schmittner, A., Latif, M., and Schneider, B. (2005). Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophysical Research Letters 32 L23710, doi: 23710.21029/22005GL024368.
Schulz, P. A. and Kasting, J. F. (1997). Optimal reduction in CO2 emissions. Energy Policy 25 (5), 491–500.
Stocker, T. F. and Schmittner, A. (1997). Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388, 862–865.
Stocker, T. F., Clarke, G. K. C., Treut, H. L. et al. (2001). Physical climate processes and feedbacks. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. Cambridge: Cambridge University Press, pp. 417–470.
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus 13 (2), 224–230.
Stouffer, R. J. and Manabe, S. (1999). Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: sensitivity to the rate of increase. Journal of Climate 12, 2224–2237.
Stuiver, M., Grootes, P. M. and Braziunas, T. F. (1995). The GISP2 18O climate record of the past 16 500 years and the role of the sun, ocean and volcanoes. Quaternary Research 44, 341–354.
Teller, J. T.Leverington, D. W. and Mann, J. D. (2002). Freshwater outbursts to the oceans from glacial lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21 (8–9), 879–887.
Thomas, R., Rignot, E., Casassa, G.et al. (2004). Accelerated sea-level rise from West Antarctica. Science 306, 255–258.
Timmermann, A. (2001). Changes of ENSO stability due to greenhouse warming. Geophysical Research Letters 28 (10), 2061–2064.
Tol, R. S. J. (1994). The damage costs of climate-change: a note on tangibles and intangibles, applied to DICE. Energy Policy 22 (5), 436–438.
Tol, R. S. J. (1997). On the optimal control of carbon dioxide emissions: an application of FUND. Environmental Modeling and Assessment 2, 151–163.
UNFCCC (1992). UN Framework Convention on Climate Change, Geneva: Palais des Nations. www.unfccc.de/index.html.
Vellinga, M. and Wood, R. A. (2002). Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change 54 (3), 251–267.
Vellinga, M. and Wood, R. A. (2004). Timely detection of anthropogenic change in the Atlantic meridional overturning circulation. Geophysical Research Letters 31, L14203, doi: 14210.11029/12004GL02036.
Yu, Z. C. and Wright, H. E. (2001). Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth-Science Reviews 52 (4), 333–369.
Zwally, H. J., Abdalati, W., Herring, T.et al (2002). Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222.