Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T19:27:55.327Z Has data issue: false hasContentIssue false

39 - VZV: immunobiology and host response

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: VZU

Published online by Cambridge University Press:  24 December 2009

Ann Arvin
Affiliation:
Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
Allison Abendroth
Affiliation:
Centre for Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, NSW, Australia
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Immunobiology

Introduction

Varicella zoster virus (VZV) like the other herpesvirus family members is a highly successful and ubiquitous human pathogen. In order for VZV to persist in the human population, the virus has evolved strategies to avoid immune detection and potentially promote viral pathogenesis. We have demonstrated that VZV encodes two separate immune evasion strategies by specifically down-regulating cell-surface MHC class I (Abendroth et al., 2001a) and inhibiting the up-regulation of interferon-γ-induced MHC class II expression (Abendroth et al., 2000) during productive infection of primary human foreskin fibroblasts (HFFs). Given that VZV appears to evade host recognition by T-cells during the prolonged, 10–21 day incubation period, viral genes encoding immunomodulatory proteins are likely to delay the initial clonal amplification of VZV specific CD4+ and CD8+ T-lymphocytes and at least transiently enhance the ability of VZV to replicate at cutaneous sites. Recently we have studied the interaction of VZV with human dendritic cells (DCs) and T-lymphocytes. VZV has the ability to infect immature DCs and transfer virus to T-lymphocytes (Abendroth et al., 2001b). VZV also readily infects tonsil T-cells (Ku et al., 2002). The analysis of VZV interactions with T-cells during viral pathogenesis is described in Chapter 37. These capacities of VZV to infect DC and T-cells provide new models of viral dissemination during primary and recurrent VZV infections. Further studies assessing mature DCs have revealed a third immune evasion mechanism for VZV whereby the virus is able to productively infect a specialized immune cell (representing the most potent antigen presenting cell type), and in doing so impairs its ability to function properly.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 700 - 712
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abendroth, A., Slobedman, B., Eunice, L., Mellins, E., Wallace, M., and Arvin, A. M. (2000). Modulation of MHC class II protein expression by varicella zoster virus. J. Virol., 74, 1900–1907.CrossRefGoogle ScholarPubMed
Abendroth, A., Lin, I., Slobedman, B., Ploegh, H., and Arvin, A. M. (2001a). Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J. Virol., 75, 4878–4888.CrossRefGoogle Scholar
Abendroth, A., Morrow, G., Cunningham, A. L. and Slobedman, B. (2001b). Varicella-zoster virus infection of human dendritic cells and transmission to T cells: Implications for virus dissemination in the host. J. Virol., 75, 6183–6192.CrossRefGoogle Scholar
Ahn, K., Meyer, T. H., Uebel, S.et al. (1996). Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO. J., 15, 3247–3255.Google ScholarPubMed
Arvin, A. M. (1999). Varicella-zoster virus. In Persistent Viral Infections of Humans. eds. Ahmed, R. and Chen, I. S. Y., pp. 183–208. Chicheaces, UK: John Wiley.Google Scholar
Arvin, A. M. (2001). Varicella-zoster virus. In Fields' Virology, ed. Howley, P. and Knipe, D. M., 4th edn, pp. 2731–2768. Philadelphia: Lippincott-Williams & Wilkins.Google Scholar
Arvin, A. M., Koropchak, C. M., Williams, B. R., Grumet, F. C., and Foung, S. K. (1986a). Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J. Infect. Dis., 154, 422–429.CrossRefGoogle Scholar
Arvin, A. M., Kinney-Thomas, E., Shriver, K.et al. (1986b). Immunity to varicella-zoster viral glycoproteins, gp I (90/58) and gp III (gp 118) and to a nonglycosylated protein, p170. J. Immunol., 137, 1346.Google Scholar
Arvin, A. M., Sharp, M., Smith, S.et al. (1991). Equivalent recognition of a varicella-zoster virus immediate early protein (IE62) and glycoprotein I by cytotoxic T lymphocytes of either CD4+ or CD8+ phenotype. J. Immunol., 146, 257–264.Google ScholarPubMed
Arvin, A. M., Moffat, J. F., and Redman, R. (1996). Varicella-zoster virus: aspects of pathogenesis and host response to natural infection and varicella vaccine. Adv. Virus Res., 46, 263–309.CrossRefGoogle ScholarPubMed
Asada, H., Klaus-Kovtun, V., Golding, H., Katz, S. I. and Blauvelt., A. (1999). Human herpesvirus-6 infects dendritic cells and suppresses human immunodeficiency virus type-1 replication in coinfected cultures. J. Virol., 73, 4019–4028.Google ScholarPubMed
Auwaerter, P. G., Kaneshima, H., McCune, J. M., Wiegand, G. and Griffin, D. E. (1996). Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis. J. Virol., 70, 3734–3740.Google ScholarPubMed
Banchereau, J. and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature, 392, 245–252.CrossRefGoogle ScholarPubMed
Banchereau, J., Briere, F., Caux, C.et al. (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol., 18, 767–811.CrossRefGoogle ScholarPubMed
Bender, A., Albert, M., Reddy, A.et al. (1998). The distinctive features of influenza virus infection of dendritic cells. Immunobiology, 198, 552–567.CrossRefGoogle ScholarPubMed
Bergen, R. E., Sharp, M., Sanchez, A., Judd, A. K., and Arvin, A. M. (1991). Human T cells recognize multiple epitopes of an immediate early/tegument protein (IE62) and glycoprotein I of varicella zoster virus. Viral Immunol., 4, 151–166.CrossRefGoogle Scholar
Bhardwaj, N. (1997). Interactions of Viruses with dendritic cells: a double-edged sword. J. Exp. Med., 186, 795–799.CrossRefGoogle ScholarPubMed
Bhardwaj, N., Bender, A., Gonzalez, N.et al. (1994). Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. J. Clin. Invest., 94, 797–807.CrossRefGoogle ScholarPubMed
Blauvelt, A., Asada, H., Saville, W. M.et al. (1997). Productive infection of dendritic cells by HIV-1 and their ability to capture virus are mediated through separate pathways. J. Clin. Invest., 100, 2043–2053.CrossRefGoogle ScholarPubMed
Cella, M., Engering, A., Pinet, V., Pieters, J. and Lanzavecchia, A. (1997). Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature, 388, 782–787.CrossRefGoogle ScholarPubMed
Cohen, J. I. (1998). Infection of cells with varicella-zoster virus down-regulates surface expression of class I major histocompatibility complex antigens. J. Infect. Dis., 177, 1390–1393.CrossRefGoogle ScholarPubMed
Cohen, O. J. and Fauci, A. S. (2001). Pathogenesis and medical aspects of HIV-1 infection In Fields' Virology 4th edn, Knipe, D. M. and Howley, P. M. eds, pp. 2043–2094. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Cooper, E. C., Vujcic, L. K., and Quinnan, G. V. Jr. 1988. Varicella-zoster virus-specific HLA-restricted cytotoxicity of normal immune adult lymphocytes after in vitro stimulation. J. Infect. Dis., 158, 780–788.CrossRefGoogle ScholarPubMed
Devlin, M. E., Gilden, D. H., Mahalingam, R.et al. (1992). Peripheral blood mononuclear cells of the elderly contain varicella-zoster virus DNA. J. Infect. Dis., 165, 619.CrossRefGoogle ScholarPubMed
Diaz, P. S., Smith, S., Hunter, E., and Arvin, A. M. (1989). T lymphocyte cytotoxicity with natural varicella-zoster virus infection and after immunization with live attenuated varicella vaccine. J. Immun., 142, 636–641.Google ScholarPubMed
Esolen, L. M., Park, S. W., Hardwick, J. M., and Griffin. D. E. (1995). Apoptosis as a cause of death in measles virus-infected cells. J. Virol., 69, 3955–3958.Google ScholarPubMed
Frey, C. R., Sharp, M. A., Min, A. S., Schmid, D. S., Loparev, V., and Arvin, A. M. (2003). Identification of CD8+ T cell epitopes in the immediate early protein 62 of varicella-zoster virus and evaluation of CD8+ T cell responder frequencies to the immediate early protein 62 using IE62 peptides after varicella vaccination. J. Infect. Dis., 188, 40–52.CrossRefGoogle Scholar
Fruh, K., Ahn, K., Djaballah, H.et al. (1995). A viral inhibitor of peptide transporters for antigen presentation. Nature, 375, 415–418.CrossRefGoogle ScholarPubMed
Fruh, K., Gruhler, A., Krishna, R., and Schoenhals, G. (1999). A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol. Revs., 168, 157–166.CrossRefGoogle ScholarPubMed
Fugier-Vivier, I., Servat-Delprat, C., Rivailler, P., Rissoan, M. C., Liu, Y. J. and Rabourdin-Combr, C. (1997). Measles virus suppresses cell mediated immunity by interfering with the survival and function of dendritic and T-cells. J. Exp. Med., 186, 813–823.CrossRefGoogle ScholarPubMed
Galocha, B., Hill, A., Barnett, B.et al. (1997). The active site of ICP47, a herpes simplex virus-encoded inhibitor of major histocomatibility complex (MHC)-encoded peptide transport associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J. Exp. Med., 185, 1565–1572.CrossRefGoogle Scholar
Gershon, A. A., Steinberg, S. P., and Gelb, L. (1984). Clinical reinfection with varicella-zoster virus. J. Infect. Dis., 149, 137.CrossRefGoogle ScholarPubMed
Grose, C. (1981). Variation on a theme by Fenner: the pathogenesis of chicken pox. Pediatrics, 68, 735–737.Google Scholar
Grosjean, I., Caux, C., Bella, C.et al. (1997). Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T-cells. J. Exp. Med., 186, 801–812.CrossRefGoogle ScholarPubMed
Hata, A., Asanuma, H., Rinki, M.et al. (2002). Protection of hematopoietic cell transplant reciplents from herpes zoster by an inactivated varicella vaccine. N. Engl. J. Med., 347, 26–34.CrossRefGoogle ScholarPubMed
Hayward, A. R., Pontesilli, O., Herberger, M., Laszlo, M., and Levin. M. (1986). Specific lysis of varicella zoster virus-infected B lymphoblasts by human T cells. J. Virol., 58, 179–184.Google ScholarPubMed
Hayward, A., Giller, R., and Levin, M. (1989). Phenotype, cytotoxic, and helper functions of T cells from varicella zoster virus stimulated cultures of human lymphocytes. Viral Immun., 2, 175–184.CrossRefGoogle ScholarPubMed
Heise, M. T., Connick, M., and Virgin, H. W. T. (1998). Murine cytomegalovirus inhibits interferon gamma-induced antigen presentation to CD4 T cells by macrophages via regulation of expression of major histocompatibility complex class II-associated genes. J. Exp. Med., 187, 1037–1046.CrossRefGoogle ScholarPubMed
Hertel, L., Lacaille, V. G., Strobl, H., Mellins, E. D., and Mocarski, E. S. (2003). Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J. Virol., 77(13), 7563–7574.CrossRefGoogle ScholarPubMed
Hickling, J. K., Borysiewicz, L. K., and Sissons, J. G. (1987). Varicella-zoster virus-specific cytotoxic T lymphocytes (Tc): detection and frequency analysis of HLA class I-restricted Tc in human peripheral blood. J. Virol., 61, 3463–3469.Google ScholarPubMed
Hill, A., Jugovic, P., York, I.et al. (1995). Herpes simplex virus turns off the TAP to evade host immunity. Nature., 375, 411–415.CrossRefGoogle ScholarPubMed
Ihara, T., Kato, T., Torigoe, S.et al. (1991). Antibody response determined with antibody-dependent cell-mediated cytotoxicity (ADCC), neutralizing antibody, and varicella skin test in children with natural varicella and after varicella immunization. Acta Paediatr. Jap., 33, 43.CrossRefGoogle Scholar
Jenkins, D. E., Redman, R. L., Lam, E. M., Liu, C., Lin, I., and Arvin, A. M. (1998). Interleukin (IL)-10, IL-12, and interferon-gamma production in primary and memory immune responses to varicella-zoster virus. J. Infect. Dis., 178, 940–948.CrossRefGoogle ScholarPubMed
Jenkins, D. E., Yasukawa, L. L., Bergen, R., Benike, C., Engleman, E. G., and Arvin. A. M. (1999). Comparison of primary sensitization of naive human T cells to varicella zoster virus peptides by dendritic cells in vitro with responses elicited in vivo by varicella vaccination. J. Immunol., 162, 550–567.Google Scholar
Jones, J. O. and Arvin A. M. (2006). Inhibition of the NF-kB pathway by varicella-zoster virus in vitro and in human epidermal cells in vivo. J. Virol., 80, 5113–5124.CrossRefGoogle ScholarPubMed
Jones, T. and Sun, L. (1997). Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. J. Virol., 71, 2970–2979.Google ScholarPubMed
Jones, T. R., Wiertz, E. J., Sun, L., Fish, K. N., Nelson, J. A., and Ploegh, H. L. (1996). Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl Acad. Sci. USA, 93, 11327–11330.CrossRefGoogle ScholarPubMed
Jones, C. A., Fernandez, M., Herc, K.et al. (2003). Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro. J. Virol., 77(20), 11139–11149.CrossRefGoogle ScholarPubMed
Kakimoto, M., Hasegawa, A., Fujita, S., and Yasukawa, M. (2002). Phenotypic and functional alterations of dendritic cells induced by human herpesvirus 6 infection. J. Virol., 76, 10338–10345.CrossRefGoogle ScholarPubMed
Kinchington, P. R. and Cohen, J. I. (2000). Varicella zoster virus proteins In Varicella Zoster Virus. Virology and Clinical Management. Arvin, A. M. and Gershon, A. A., eds., pp. 74–104. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Klagge, I. M. and Schneider-Schaulies, S. (1999). Virus interactions with dendritic cells. J. Gen. Virol., 80, 823–833.CrossRefGoogle ScholarPubMed
Kleijnen, M., Huppa, J., Lucin, P.et al. (1997). A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J., 16, 685–694.CrossRefGoogle Scholar
Ku,C. C., Padilla, J., Grose, C., Butcher, E. C., and Arvin, A. M. (2002). Tropism of varicella-zoster virus for human tonsillar CD4+ T lymphocytes that express activation, memory and skin homing markers. J. Virol., 76, 11425–11433.Google Scholar
Kruse, M., Rosorius, O., Kratzer, F.et al. (2000). Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J. Virol., 74, 7127–7136.CrossRefGoogle ScholarPubMed
Ku, C.-C., Zerboni, L., Besser, J., Ito, H., and Arvin, A. M. (2004) (Transport) of varicella-zoster virus to skin by infected CD4 T cells and modulation of skin infection by innate immunity in vivo. J. Exp. Med., 200, 917–925.CrossRefGoogle Scholar
Lechmann, M., Berchtold, S., Hauber, J., and Steinkasserer, A. (2002). CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol., 23, 273–275.CrossRefGoogle ScholarPubMed
Macatonia, S. E., Gompels, M., Pinching, A. J., Patterson, S., and Knight, S. C., (1992). Antigen-presentation by macrophages but not by dendritic cells in human immunodeficiency virus (HIV) infection. Immunology, 75, 576–581.Google Scholar
Machold, R., Wiertz, E., Jones, T., and Ploegh, H. (1997). The HCMV gene products US11 and US2 differ in their ability to attack allelic forms of murine major histocompatibility complex (MHC) class I heavy chains. J. Exp. Med., 185, 363–366.CrossRefGoogle ScholarPubMed
Marland, G., Bakker, B., Adema, G. J., and Figdor, C. G. (1996). Dendritic cells in immune response induction. Stem Cells, 14, 501.CrossRefGoogle ScholarPubMed
Merigan, T. C., Rand, K. H., Pollard, R. B.et al. (1978). Human leukocyte interferon for the treatment of herpes zoster in patients with cancer. N. Engl. J. Med., 298, 981.CrossRefGoogle ScholarPubMed
Miller, D. M., Rahill, B. M., Boss, J. M.et al. (1998). Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J. Exp. Med., 187, 675–683.CrossRefGoogle ScholarPubMed
Moffat, J. F., Stein, M. D., Kaneshima, H., and Arvin, A. M. (1995). Tropism of varicella zoster virus for human CD4+ and CD8+ T-lymphocytes and epidermal cells in SCID-hu mice. J. Virol., 69, 5236–5242.Google ScholarPubMed
Morrow, G., Slobedman, B., Cunningham, A. L., and Abendroth, A. (2003). Varicella zoster virus productively infects mature dendritic cells and alters their immune function. J. Virol., 77(8), 4950–4959.CrossRefGoogle ScholarPubMed
Oxman, M. N., Levin, M. J., Johnson, G. R.et al. (2005). A vaccine to prevent herpes zoster and postherpetic neuralgia in order adults. N. Eng. J. Med., 352(22), 2271–2284.CrossRefGoogle Scholar
Raftery, M. J., Schwab, M., Eibert, S. M., Samstag, Y., Walczak, H., and Schonrich, G. (2001). Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity, 15, 997–1009.CrossRefGoogle ScholarPubMed
Reusch, U., Muranyi, W., Lucin, P., Burgert, H., Hengel, H., and Koszinowski, U. (1999). A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J., 18, 1081–1091.CrossRefGoogle ScholarPubMed
Riegler, S., Hebart, H., Einsele., Brossart, P., Jahn, G., and Sinzger, C. (2000). Monocyte derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. J. Gen. Virol., 81, 393–399.CrossRefGoogle ScholarPubMed
Salio, M., Cella, M., Suter, M., and Lanzavecchia, A. (1999). Inhibition of dendritic cell maturation by herpes simplex virus. Eur. J. Immunol., 29, 3245–3253.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Schnorr, J. J., Xanthakos, S., Keikavoussi, P., Kampgen, E., ter Meulen, V., and Schneider-Schaulies, S. (1997). Induction of maturation of human blood dendritic cell precursors by measles virus in association with immunosuppression. Proc. Natl Acad. Sci. USA, 92, 5326–5331.CrossRefGoogle Scholar
Sevilla, N., Kunz, S., Holz, A.et al. (2000). Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med., 192, 1249–1260.CrossRefGoogle ScholarPubMed
Sharp, M., Terada, K., Wilson, A.et al. (1992). Kinetics and viral protein specificity of the cytotoxic T lymphocyte response in healthy adults immunized with live attenuated varicella vaccine. J. Infect. Dis., 165, 852–858.CrossRefGoogle ScholarPubMed
Steinman, R. M. (1991). The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol., 9, 271–296.CrossRefGoogle ScholarPubMed
Steinman, R. M. (1999). Dendritic cells. In Fundamental Immunology, 4th edn. Paul, W. E., ed., pp. 547–573. Philadelphia: Lippincott Raven Publishers.Google Scholar
Steinman, R. M., Pack, M., and Inaba, K. (1997). Dendritic cell development and maturation. Adv. Exp. Med. Biol., 417, 1.CrossRefGoogle ScholarPubMed
Stevens, D. A., Ferrington, R. A., Jordan, G. W., et al. (1975) Cellular events in zoster vesicles: relation to clinical course and immune parameters. J. Infect. Dis., 131, 509.CrossRefGoogle ScholarPubMed
Tomazin, R., Hill, A. B., Jugovic, P.et al. (1996). Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J., 15, 3256–3266.Google ScholarPubMed
Wallace, M. R., Woelfl, I., Bowler, W. A.et al. (1994). Tumor necrosis factor, interleukin-2, and interferon-gamma in adult varicella. J. Med. Virol., 43, 69–71.CrossRefGoogle ScholarPubMed
Warren, M. K., Rose, W. L., Cone, J. L., Rice, W. G., and Turpin, J. A. (1997). Differential infection of CD34+ cell derived dendritic cells and monocytes with lymphocyte tropic and monocyte tropic HIV strains. J. Immunol., 158, 5035–5042.Google Scholar
Webster, A., Grint, P., Brenner, M. K.et al. (1989). Titration of IgG antibodies against varicella zoster virus before bone marrow transplantation is not predictive of future zoster. J. Med. Virol., 27 117.CrossRefGoogle Scholar
Wiertz, E. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J., and Ploegh, H. L. (1996). The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell, 84, 769–779.CrossRefGoogle ScholarPubMed
York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L., and Johnson, D. C. (1994). A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell, 77, 525–535.CrossRefGoogle ScholarPubMed
Young, J. W. and Steinman, R. M. (1990). Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells. J. Exp. Med., 171, 1315–1332.CrossRefGoogle ScholarPubMed
Young, J. W., Koulova, L., Soergel, S. A., Clark, E. A., Steinman, R. M., and Dupont, B. (1992). The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J. Clin. Invest., 90, 229–237.CrossRefGoogle ScholarPubMed
Zarling, J. M., Moran, P. A., Burke, R. L., Pachl, C., Berman, P. W., and Lasky, L. A. (1986). Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. IV. Recognition and activation by cloned glycoproteins gB and gD. J. Immunol., 136, 4669–4673.Google ScholarPubMed
Zhang, Y., Cosyns, M., Levin, M. J., and Hayward, A. R. (1994). Cytokine production in varicella zoster virus-stimulated limiting dilution lymphocyte cultures. Clin. Exp. Immunol., 98, 128–133.CrossRefGoogle ScholarPubMed
Zhou, L. J., Schwarting, R., Smith, H. M., and Tedder, T. F. (1992). A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J. Immunol., 149, 735–742.Google ScholarPubMed
Zhou, L. J. and Tedder, T. F. (1995). Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol., 154, 3821–3835.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×