Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2009
  • Online publication date: July 2010

Section 5 - Testosterone, estradiol and men, and sex hormone binding globulin

Summary

Editors' introduction

The extent to which testosterone and other androgens might affect cognitive skills in women is not yet well understood. In this chapter, Sherwin reviews changes in endogenous androgens over a woman's lifespan and research findings germane to androgens and cognitive skills in women. For younger women, there is evidence that cyclical changes during the menstrual cycle affect cognitive performance, although it is not possible to tease out effects of testosterone from those of estradiol. In older women, the relation between testosterone levels and cognitive test scores is inconsistent. The ratio of estradiol to testosterone may be important in modulating sex-advantaged cognitive functions in women, with a lower ratio leading to relatively impaired performance on cognitive tasks in which women typically excel.

References

1. Burger NZ, Johnson JV. Androgen production in women. In Tulandi T, Gelfand MM, eds. Androgens and Reproductive Aging. Boca Ratan, FL: Taylor & Francis, 2006, pp. 1–4.
2. Burger HG. Androgen production in women. Fertil Steril. 2002;77:S3–S5.
3. Davison SL, Davis SR. Androgens in women. J Steroid Biochem Mol Biol. 2003;85:363–6.
4. Zumoff B, Strain GW, Miller LK, et al. Twenty-four hour mean plasma testosterone concentration declines with age in normal premenopausal women. J Clin Endocrinol Metab. 1995;80:1429–30.
5. Adashi EY. The climacteric ovary as a functional gonadotropin-driven androgen-producing gland. Fertil Steril. 1994;62:20–7.
6. Judd H, Lucas WE, Yen SSC. Effect of oophorectomy on circulating testosterone and androstenedione levels in patients with endometrial cancer. Am J Obstet Gynecol. 1974;118:793–8.
7. Labrie F, Belanger A, Cusan L, et al. Marked decline in serum concentrations of adrenal C-19 sex steroid precursors and conjugated androgen metabolism during aging. J Clin Endocrinol Metab. 1997;82:2396–402.
8. Clancy AN, Bonsall RW, Michael RP. Immunohistochemical labeling of androgen receptors in the brain of the rat and monkey. Life Sci. 1992;50:409–17.
9. Gibbs RB. Expression of estrogen receptor-like immunoreactivity by different subgroups of basal forebrain cholinergic neurons in gonadectomized male and female rats. Brain Res. 1996;720:61–8.
10. Kerr JE, Beck SG, Handa RJ. Androgens selectively modulate c-fos messenger RNA induction in the rat hippocampus following novelty. Neuroscience. 1996;70:757–66.
11. Simerly RB, Chang C, Muramatsu MS, et al. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in-situ hybridization study. J Comp Neurol. 1990;294:76–95.
12. Osterlund MK, Hurd YL. Estrogen receptors in the human forebrain and the relation to neuropsychiatric disorders. Prog Neurobiol. 2001;64:251–67.
13. Puy L, MacLusky NJ, Becker L, et al. Immunocytochemical detection of androgen receptor in human temporal cortex: characterization and application of polyclonal androgen receptor antibodies in frozen and paraffin-embedded tissues. J Steroid Biochem Mol Biol. 1995;55:197–209.
14. Sarrieau A, Mitchell JB, Lal S, et al. Androgen binding sites in human temporal cortex. Neuroendocrinology. 1990;51:713–16.
15. Taylor AH, Al-Azzawi F. Immunolocalisation of estrogen receptor beta in human tissues. J Clin Endocr Metab. 2000;24:145–55.
16. Beyenburg S, Watzka M, Clusmann H, et al. Androgen receptor mRNA expression in the human hippocampus. Neurosci Lett. 2000;294:25–8.
17. Tohgi H, Utsugisawa K, Yamagata M, et al. Effects of age on messenger RNA expression of glucocorticoid, thyroid hormone, androgen, and estrogen receptors in postmortem human hippocampus. Brain Res. 1995;700:245–53.
18. Donahue JE, Stopa EG, Chorsky RL, et al. Cells containing immunoreactive estrogen receptor-a in the human basal forebrain. Brain Res. 2000;856:142–51.
19. Fernández-Guasti A, Kruijver FPM, Fodor M, et al. Sex differences in the distribution of androgen receptors in the human hypothalamus. J Comp Neurol. 2000;425:422–35.
20. Luine VN, Khylchevskaya RI, McEwen BS. Effect of gonadal steroids on activities of monoamine oxidase and choline acetylase in rat brain. Brain Res. 1975; 86:293–306.
21. Fink G, Sumner B, Rosie R, et al. Androgen actions on central serotonin neurotransmitters: relevance for mood, mental state, and memory. Behav Brain Sci. 1999;211:311–52.
22. Bitar MS, Ota M, Linnoila M, et al. Modification of gonadectomy-induced increases in brain monoamine metabolism by steroid hormones in male and female rats. Psychoneuroendocrinology. 1991;16:547–57.
23. DeVoogd TJ, Nottebohm F. Gonadal hormones induce dendritic growth in the adult brain. Science. 1981;214:202–4.
24. Leranth C, Hajszan T, MacLusky NJ. Androgen increases spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J Neurosci. 2004;24:495–9.
25. Archer JS, Love-Geffen TE, Herbst-Damm KL, et al. Effect of estradiol versus estradiol and testosterone on brain-activation patterns in postmenopausal women. Menopause. 2006;13:528–37.
26. Halpern DF. Sex Differences in Cognitive Abilities. Hillsdale: Lawrence Erlbaum Associates, 1992.
27. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiencies. Endocr Rev. 2000;21:245–91.
28. Baker SW, Ehrhardt AA. Prenatal androgen, intelligence and cognitive sex differences. In Friedman RC, Richart RM, Wiele RLV, eds. Sex Differences in Behavior. New York: Wiley, 1974, pp. 53–76.
29. Perlman SM. Cognitive abilities of children with hormonal abnormalities: screening by psychoeducational tests. J Learn Disabil. 1973;6:22–9.
30. Resnick SM, Berenbaum SA, Gottesman II, et al. Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Dev Psychol. 1986;22:191–8.
31. Nordenstrom A, Servin A, Bhlin G, et al. Sex-typed toy play behavior correlates with the degree of prenatal androgen exposure assessed by CYP21 genotype in girls with congenital adrenal hyperphasia. J Clin Endocrinol Metab. 2002;87:5119–24.
32. Bagger Y, Tanko L, Alexandersen G, et al. Early postmenopausal hormone therapy may prevent cognitive impairment later in life. Menopause. 2005;12:12–17.
33. Hampson E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cognition. 1990;14:26–43.
34. Maki PM, Rich JB, Rosenbaum RS. Implicit memory varies across the menstrual cycle: estrogen effects in young women. Neuropsychologia. 2002;40:518–29.
35. Gouchie C, Kimura D. The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology. 1991;16:323–34.
36. Hassler M, Gupta D, Wollmann H. Testosterone, estradiol, ACTH and musical, spatial and verbal performance. Int J Neurosci. 1992;65:45–60.
37. Moffat SD, Hampson E. A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference. Psychoneuroendocrinology. 1996;21:323–37.
38. Silverman I, Kastuk D, Choi J, et al. Testosterone levels and spatial ability in men. Psychoneuroendocrinology. 1999;24:813–22.
39. Wolf OT, Kirschbaum C. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm Behav. 2002;41:259–66.
40. Carlson LE, Sherwin BB. Higher levels of plasma estradiol and testosterone in healthy elderly men compared with age-matched women may protect aspects of explicit memory. Menopause. 2000;7:168–77.
41. Hogervorst E, De Jager C, Budge M, et al. Serum levels of estradiol and testosterone and performance in different cognitive domains in healthy elderly men and women. Psychoneuroendocrinology. 2004; 29:405–21.
42. Thilers PP, MacDonald SWS, Herlitz A. The association between endogenous free testosterone and cognitive performance: a population-based study in 35 to 90 year-old men and women. Psychoneuroendocrinology. 2006;31:565–76.
43. Sherwin BB. Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology. 1988;13:345–57.
44. Aleman A, Bronk E, Kessels RPC, et al. A single administration of testosterone improves visuospatial ability in young women. Psychoneuroendocrinology. 2004;29:612–17.
45. Shah S, Bell RJ, Savage G, et al. Testosterone aromatization and cognition in women: a randomized, placebo-controlled trial. Menopause. 2006;13:600–8.
46. Asuncion M, Calco RM, Millan JL, et al. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab. 2000;85:2434–8.
47. Lobo RA, Carmina E. Polycystic ovary syndrome. In Lobo RA, Mishell DR, Paulson RJ, eds. Infertility, Contraception and Reproductive Endocrinology, 4th edn. Malden, MA: Blackwell Science, 1997, pp. 363–83.
48. Schattmann L, Sherwin BB. Testosterone levels and cognitive functioning in women with polycystic ovary syndrome and in healthy young women. Horm Behav. 2007;51:587–96.
49. Barnard L, Balen AH, Ferriday D, et al. Cognitive functioning in polycystic ovary syndrome. Psychoneuroendocrinology. 2007;32:906–14.
50. Schattmann L, Sherwin BB. Effects of the pharmacologic manipulation of testosterone on cognitive functioning in women with polycystic ovary syndrome: a randomized, placebo-controlled treatment study. Horm Behav. 2007;51:579–86.

References

1. Roselli CE, Klosterman S, Resko JA. Anatomic relationships between aromatase and androgen receptor mRNA expression in the hypothalamus and amygdala of adult male cynomolgus monkeys. J Comp Neurol. 2001;439(2):208–23.
2. Brown TJ, Adler GH, Sharma M, Hochberg RB, MacLusky NJ. Androgen treatment decreases estrogen receptor binding in the ventromedial nucleus of the rat brain: a quantitative in vitro autoradiographic analysis. Mol Cell Neurosci. 1994;5(6):549–55.
3. Lynch CS, Story AJ. Dihydrotestosterone and estrogen regulation of rat brain androgen-receptor immunoreactivity. Physiol Behav. 2000;69(4/5): 445–53.
4. Singh R, Pervin S, Shryne J, Gorski R, Chaudhuri G. Castration increases and androgens decrease nitric oxide synthase activity in the brain: physiologic implications. Proc Natl Acad Sci USA. 2000;97(7): 3672–7.
5. Kerr JE, Allore RJ, Beck SG, Handa RJ. Distribution and hormonal regulation of androgen receptor (AR) and AR messenger ribonucleic acid in the rat hippocampus. Endocrinology. 1995;136(8):3213–21.
6. Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem. 1994;269(10):7217–23.
7. Benten WP, Lieberherr M, Sekeris CE, Wunderlich F. Testosterone induces Ca2+ influx via non-genomic surface receptors in activated T cells. FEBS Lett. 1997;407(2):211–14.
8. Benten WP, Lieberherr M, Stamm O, et al. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell. 1999;10(10):3113–23.
9. Benten WP, Lieberherr M, Giese G, et al. Functional testosterone receptors in plasma membranes of T cells. FASEB J. 1999;13(1):123–33.
10. Cyr M, Calon F, Morissette M, et al. Drugs with estrogen-like potency and brain activity: potential therapeutic application for the CNS. Curr Pharm Des. 2000;6(12):1287–312.
11. Gundlah C, Kohama SG, Mirkes SJ, et al. Distribution of estrogen receptor beta (ERbeta) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: continued expression with hormone replacement. Brain Res Mol Brain Res. 2000;76(2):191–204.
12. Osterlund MK, Gustafsson JA, Keller E, Hurd YL. Estrogen receptor beta (ERbeta) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERalpha mRNA. J Clin Endocrinol Metab. 2000;85(10):3840–6.
13. Michael RP, Rees HD, Bonsall RW. Sites in the male primate brain at which testosterone acts as an androgen. Brain Res. 1989;502(1):11–20.
14. Osterlund MK, Grandien K, Keller E, Hurd YL. The human brain has distinct regional expression patterns of estrogen receptor alpha mRNA isoforms derived from alternative promoters. J Neurochem. 2000;75(4):1390–7.
15. Ishunina TA, Fisser B, Swaab DF. Sex differences in androgen receptor immunoreactivity in basal forebrain nuclei of elderly and Alzheimer patients. Exp Neurol. 2002;176(1):122–32.
16. de Fougerolles Nunn E, Greenstein B, Khamashta M, Hughes GR. Evidence for sexual dimorphism of estrogen receptors in hypothalamus and thymus of neonatal and immature Wistar rats. Int J Immunopharmacol. 1999;21(12):869–77.
17. Nakamura N, Fujita H, Kawata M. Effects of gonadectomy on immunoreactivity for choline acetyltransferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience. 2002;109(3):473–85.
18. Kritzer MF. Long-term gonadectomy affects the density of tyrosine hydroxylase- but not dopamine-beta-hydroxylase-, choline acetyltransferase- or serotonin-immunoreactive axons in the medial prefrontal cortices of adult male rats. Cereb Cortex. 2003;13(3):282–96.
19. Kritzer MF. Effects of acute and chronic gonadectomy on the catecholamine innervation of the cerebral cortex in adult male rats: insensitivity of axons immunoreactive for dopamine-beta-hydroxylase to gonadal steroids, and differential sensitivity of axons immunoreactive for tyrosine hydroxylase to ovarian and testicular hormones. J Comp Neurol. 2000;427(4):617–33.
20. Kritzer MF, Adler A, Marotta J, Smirlis T. Regionally selective effects of gonadectomy on cortical catecholamine innervation in adult male rats are most disruptive to afferents in prefrontal cortex. Cereb Cortex. 1999;9(5):507–18.
21. Kritzer MF. Perinatal gonadectomy exerts regionally selective, lateralized effects on the density of axons immunoreactive for tyrosine hydroxylase in the cerebral cortex of adult male rats. J Neurosci. 1998;18(24):10735–48.
22. Leranth C, Hajszan T, MacLusky NJ. Androgens increase spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J Neurosci. 2004;24(2):495–9.
23. Kritzer MF, McLaughlin PJ, Smirlis T, Robinson JK. Gonadectomy impairs T-maze acquisition in adult male rats. Horm Behav. 2001;39(2):167–74.
24. Naghdi N, Oryan S, Etemadi R. The study of spatial memory in adult male rats with injection of testosterone enanthate and flutamide into the basolateral nucleus of the amygdala in Morris water maze. Brain Res. 2003;972(1/2):1–8.
25. Naghdi N, Nafisy N, Majlessi N. The effects of intrahippocampal testosterone and flutamide on spatial localization in the Morris water maze. Brain Res. 2001;897(1/2):44–51.
26. Bimonte-Nelson HA, Singleton RS, Nelson ME, et al. Testosterone, but not nonaromatizable dihydrotestosterone, improves working memory and alters nerve growth factor levels in aged male rats. Exp Neurol. 2003;181(2):301–12.
27. Woolley CS. Effects of oestradiol on hippocampal circuitry. Novartis Found Symp. 2000;230:173–80.
28. Hajszan T, MacLusky NJ, Johansen JA, Jordan CL, Leranth C. Effects of androgens and estradiol on spine synapse formation in the prefrontal cortex of normal and testicular feminization mutant male rats. Endocrinology. 2007;148(5):1963–7.
29. Yarbrough WG, Quarmby VE, Simental JA, et al. A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. J Biol Chem. 1990;265(15):8893–900.
30. MacLusky NJ, Hajszan T, Prange-Kiel J, Leranth C. Androgen modulation of hippocampal synaptic plasticity. Neuroscience. 2006;138(3):957–65.
31. Gordon HW, Lee PA. A relationship between gonadotropins and visuospatial function. Neuropsychologia. 1986;24:563–76.
32. Van Goozen SHM, Cohen-Kettenis PT, Gooren LJG, Frijda NH, Van De Poll NE. Activating effects of androgens on cognitive performance: causal evidence in a group of female-to-male transsexuals. Neuropsychologia. 1994;32(10):1153–7.
33. Slabbekoorn D, van Goozen SH, Megens J, Gooren LJ, Cohen-Kettenis PT. Activating effects of cross-sex hormones on cognitive functioning: a study of short-term and long-term hormone effects in transsexuals. Psychoneuroendocrinology. 1999;24(4): 423–47.
34. Miles C, Green R, Sanders G, Hines M. Estrogen and memory in a transsexual population. Horm Behav. 1998;34:199–208.
35. Postma A, Meyer G, Tuiten A, et al. Effects of testosterone administration on selective aspects of object-location memory in healthy young women. Psychoneuroendocrinology. 2000;25(6):563–75.
36. Sommer IE, Cohen-Kettenis PT, van Raalten T, et al. Effects of cross-sex hormones on cerebral activation during language and mental rotation: an fMRI study in transsexuals. Eur Neuropsychopharmacol. 2008;18(3):215–21.
37. Matsumoto AM. ‘Andropause’ – are reduced androgen levels in aging men physiologically important? [editorial; comment]. West J Med. 1993;159(5):618–20.
38. Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA. 1991;88(15):6613–17.
39. Eriksen EF, Colvard DS, Berg NJ, et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science. 1988;241(4861):84–6.
40. Colvard DS, Eriksen EF, Keeting PE, et al. Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci USA. 1989;86(3):854–7.
41. Khosla S, Riggs BL. Androgens, estrogens, and bone turnover in men. J Clin Endocrinol Metab. 2003;88(5):2352.
42. Korach KS, Couse JF, Curtis SW, et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog Horm Res. 1996;51:159–86; discussion 86–8.
43. Snyder PJ, Peachey H, Berlin JA, et al. Effect of transdermal testosterone treatment on serum lipid and apolipoprotein levels in men more than 65 years of age. Am J Med. 2001;111(4):255–60.
44. Barrett-Connor EL. Testosterone and risk factors for cardiovascular disease in men. Diabetes Metab. 1995;21(3):156–61.
45. Moorjani S, Dupont A, Labrie F, et al. Changes in plasma lipoproteins during various androgen suppression therapies in men with prostatic carcinoma: effects of orchiectomy, estrogen, and combination treatment with luteinizing-hormone-releasing hormone agonist and flutamide. J Clin Endocrinol Metab. 1988;66(2):314–22.
46. Leder BZ. Testosterone, estradiol and aromatase inhibitor therapy in elderly men. J Steroid Biochem Mol Biol. 2007;106(1/5):162–7.
47. Sih R, Morley JE, Kaiser FE, et al. Testosterone replacement in older hypogonadal men: a 12 month randomized controlled trial. J Clin Endocrinol Metab. 1997;82(6):1661–7.
48. Janowsky JS, Oviatt SK, Orwoll ES. Testosterone influences spatial cognition in older men. Behav Neurosci. 1994;108(2):325–32.
49. Janowsky JS, Chavez B, Orowoll E. Sex steroids modify working memory. J Cogn Neurosci. 2000;12(3):407–14.
50. Cherrier MM, Asthana S, Baker LD, et al. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology. 2001;57:80–8.
51. Maki PM, Ernst M, London ED, et al. Intramuscular testosterone treatment in elderly men: evidence of memory decline and altered brain function. J Clin Endocrinol Metab. 2007;92(11):4107–14.
52. Salminen E, Portin R, Korpela J, et al. Androgen deprivation and cognition in prostate cancer. Br J Cancer. 2003;89(6):971–6.
53. Salminen EK, Portin RI, Koskinen A, Helenius H, Nurmi M. Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin Cancer Res. 2004;10(22):7575–82.
54. Salminen EK, Portin RI, Koskinen AI, Helenius HY, Nurmi MJ. Estradiol and cognition during androgen deprivation in men with prostate carcinoma. Cancer. 2005;103(7):1381–7.
55. Almeida OP, Waterreus A, Spry N, Flicker L, Martins RN. One year follow-up study of the association between chemical castration, sex hormones, beta-amyloid, memory and depression in men. Psychoneuroendocrinology. 2004;29(8):1071–81.
56. Green HJ, Pakenham KI, Headley BC, et al. Altered cognitive function in men treated for prostate cancer with luteinizing-hormone-releasing hormone analogues and cyproterone acetate: a randomized controlled trial. BJU Int. 2002;90(4):427–32.
57. Green HJ, Pakenham KI, Headley BC, et al. Quality of life compared during pharmacological treatments and clinical monitoring for non-localized prostate cancer: a randomized controlled trial. BJU Int. 2004;93(7):975–9.
58. Cherrier MM, Rose AL, Higano C. The effects of combined androgen blockade on cognitive function during the first cycle of intermittent androgen suppression in patients with prostate cancer. J Urol. 2003;170(5):1808–11.
59. Taxel P, Stevens MC, Trahiotis M, Zimmerman J, Kaplan RF. The effect of short-term estradiol therapy on cognitive function in older men receiving hormonal suppression therapy for prostate cancer. J Am Geriatr Soc. 2004;52(2):269–73.
60. Beer TM, Bland LB, Bussiere JR, et al. Testosterone loss and estradiol administration modify memory in men. J Urol. 2006;175(1):130–5.
61. Kenny AM, Bellantonio S, Gruman CA, Acosta RD, Prestwood KM. Effects of transdermal testosterone on cognitive function and health perception in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci Med Sci. 2002;57(5):M321–5.
62. Cherrier MM, Craft S, Matsumoto AH. Cognitive changes associated with supplementation of testosterone or dihydrotestosterone in mildly hypogonadal men: a preliminary report. J Androl. 2003;24(4):568–76.
63. Vaughan C, Goldstein FC, Tenover JL. Exogenous testosterone alone or with finasteride does not improve measurements of cognition in healthy older men with low serum testosterone. J Androl. 2007;28(6):875–82.
64. Azad N, Pitale S, Barnes WE, Friedman N. Testosterone treatment enhances regional brain perfusion in hypogonadal men. J Clin Endocrinol Metab. 2003;88(7):3064–8.
65. Zitzmann M, Weckesser M, Schober O, Nieschlag E. Changes in cerebral glucose metabolism and visuospatial capability in hypogonadal males under testosterone substitution therapy. Exp Clin Endocrinol Diabetes. 2001;109(5):302–4.
66. Tan RS, Pu SJ. A pilot study on the effects of testosterone in hypogonadal aging male patients with Alzheimer's disease. Aging Male. 2003;6(1):13–17.
67. Lu PH, Masterman DA, Mulnard R, et al. Effects of testosterone on cognition and mood in male patients with mild Alzheimer disease and healthy elderly men. Arch Neurol. 2006;63(2):177–85.
68. Kenny AM, Fabregas G, Song C, Biskup B, Bellantonio S. Effects of testosterone on behavior, depression, and cognitive function in older men with mild cognitive loss. J Gerontol A Biol Sci Med Sci. 2004;59(1):75–8.
69. Cherrier MM, Matsumoto AH, Asthana S, et al. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology. 2005;64:2063–8.
70. Cherrier MM, Matsumoto AM, Amory JK, et al. The role of aromatization in testosterone supplementation: effects on cognition in older men. Neurology. 2005;64:290–6.

References

1. Becker JB, Breedlove SM, Crews D. Behavioral Endocrinology. Cambridge, MA: MIT Press.
2. Kerr JE, Allore RJ, Beck SG, Handa RJ. Distribution and hormonal regulation of androgen receptor (AR) and AR messenger ribonucleic acid in the rat hippocampus. Endocrinology. 1995;136(8):3213–21.
3. Roof RL, Havens MD. Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Res. 1992;572(1/2): 310–13.
4. Williams CL, Meck WH. The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology. 1991;16(1/3):155–76.
5. Jacobson CD, Csernus VJ, Shryne JE, Gorski RA. The influence of gonadectomy, androgen exposure, or a gonadal graft in the neonatal rat on the volume of the sexually dimorphic nucleus of the preoptic area. J Neurosci. 1981;1(10): 1142–7.
6. Diamond MC. Hormonal effects on the development of cerebral lateralization. Psychoneuroendocrinology. 1991;16(1–3):121–9.
7. Flood JF, Farr SA, Kaiser FE, La Regina M, Morley JE. Age-related decrease of plasma testosterone in SAMP8 mice: replacement improves age-related impairment of learning and memory. Physiol Behav. 1995;57(4):669–73.
8. Pouliot WA, Handa RJ, Beck SG. Androgen modulates N-methyl-D-aspartate-mediated depolarization in CA1 hippocampal pyramidal cells. Synapse. 1996;23(1):10–19.
9. Morse JK, DeKosky ST, Scheff SW. Neurotrophic effects of steroids on lesion-induced growth in the hippocampus. II. Hormone replacement. Exp Neurol. 1992;118(1):47–52.
10. Tirassa P, Thiblin I, Agren G, et al. High-dose anabolic androgenic steroids modulate concentrations of nerve growth factor and expression of its low affinity receptor (p75-NGFr) in male rat brain. J Neurosci Res. 1997;47(2):198–207.
11. Gouras GK, Xu H, Gross RS, et al. Testosterone reduces neuronal secretion of Alzheimer's beta-amyloid peptides. Proc Natl Acad Sci USA. 2000;97(3):1202–5.
12. Pike CJ. Testosterone attenuates beta-amyloid toxicity in cultured hippocampal neurons. Brain Res. 2001;919(1):160–5.
13. Rosario ER, Carroll JC, Oddo S, LaFerla FM, Pike CJ. Androgens regulate the development of neuropathology in a triple transgenic mouse model of Alzheimer's disease. J Neurosci. 2006;26(51): 13384–9.
14. Hammond J, Le Q, Goodyer C, et al. Testosterone-mediated neuroprotection through the androgen receptor in human primary neurons. J Neurochem. 2001;77(5):1319–26.
15. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86(2):724–31.
16. Lamberts SW, van den Beld AW, van der Lely AJ. The endocrinology of aging. Science. 1997;278(5337): 419–24.
17. Carruthers M. Androgen Deficiency in the Adult Male. London, UK: Taylor & Francis.
18. Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc. 2003;51(1):101–15; discussion 115.
19. Tan RS. Memory loss as a reported symptom of andropause. Arch Androl. 2001;47(3): 185–9.
20. Christiansen K, Knussmann R.. Sex hormones and cognitive functioning in men. Neuropsychobiology. 1987;18(1):27–36.
21. Gouchie C, Kimura D. The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology. 1991;16(4):323–34.
22. Moffat SD, Hampson E. A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference. Psychoneuroendocrinology. 1996;21(3):323–37.
23. Aleman A, de Vries WR, Koppeschaar HP, et al. Relationship between circulating levels of sex hormones and insulin-like growth factor-1 and fluid intelligence in older men. Exp Aging Res. 2001;27(3): 283–91.
24. Barrett-Connor E, Goodman-Gruen D, Patay B. Endogenous sex hormones and cognitive function in older men. J Clin Endocrinol Metab. 1999;84(10): 3681–5.
25. Burkhardt MS, Foster JK, Clarnette RM, et al.Interaction between testosterone and apolipoprotein E epsilon4 status on cognition in healthy older men. J Clin Endocrinol Metab. 2006;91(3):1168–72.
26. Driscoll I, Hamilton DA, Yeo RA, Brooks WM, Sutherland RJ. Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Horm Behav. 2005;47(3):326–35.
27. Fonda SJ, Bertrand R, O'Donnell A, Longcope C, McKinlay JB. Age, hormones, and cognitive functioning among middle-aged and elderly men: cross-sectional evidence from the Massachusetts Male Aging Study. J Gerontol A Biol Sci Med Sci. 2005;60(3):385–90.
28. Geerlings MI, Strozyk D, Masaki K, et al. Endogenous sex hormones, cognitive decline, and future dementia in old men. Ann Neurol. 2006;60(3):346–55.
29. Hogervorst E, De Jager C, Budge M, Smith AD. Serum levels of estradiol and testosterone and performance in different cognitive domains in healthy elderly men and women. Psychoneuroendocrinology. 2004;29(3):405–21.
30. Martin DM, Wittert G, Burns NR, Haren MT, Sugarman R. Testosterone and cognitive function in ageing men: data from the Florey Adelaide Male Ageing Study (FAMAS). Maturitas. 2007;57(2):182–94.
31. Moffat SD, Zonderman AB, Metter EJ, et al. Longitudinal assessment of serum free testosterone concentration predicts memory performance and cognitive status in elderly men. J Clin Endocrinol Metab. 2002;87(11):5001–7.
32. Morley JE, Kaiser F, Raum WJ, et al. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone. Proc Natl Acad Sci USA. 1997;94(14):7537–42.
33. Muller M, Aleman A, Grobbee DE, de Haan EH, van der Schouw YT. Endogenous sex hormone levels and cognitive function in aging men: is there an optimal level? Neurology. 2005;64(5):866–71.
34. Perry PJ, Lund BC, Arndt S, et al. Bioavailable testosterone as a correlate of cognition, psychological status, quality of life, and sexual function in aging males: implications for testosterone replacement therapy. Ann Clin Psychiatry. 2001;13(2):75–80.
35. Thilers PP, Macdonald SW, Herlitz A. The association between endogenous free testosterone and cognitive performance: a population-based study in 35 to 90 year-old men and women. Psychoneuroendocrinology. 2006;31(5):565–76.
36. Wolf OT, Kirschbaum C. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm Behav. 2002;41(3):259–66.
37. Yaffe K, Lui LY, Zmuda J, Cauley J. Sex hormones and cognitive function in older men. J Am Geriatr Soc. 2002;50(4):707–12.
38. Yeap BB, Almeida OP, Hyde Z, et al. Higher serum free testosterone is associated with better cognitive function in older men, while total testosterone is not. The Health in Men Study. Clin Endocrinol (Oxf). 2008;68(3):404–12.
39. Brinton RD. Investigative models for determining hormone therapy-induced outcomes in brain: evidence in support of a healthy cell bias of estrogen action. Ann N Y Acad Sci. 2005;1052:57–74.
40. Sherwin BB. Estrogen and memory in women: how can we reconcile the findings? Horm Behav. 2005;47(3):371–5.
41. Guazzo EP, Kirkpatrick PJ, Goodyer IM, Shiers HM, Herbert J. Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. J Clin Endocrinol Metab. 1996;81(11):3951–60.
42. Mulchahey JJ, Ekhator NN, Zhang H, et al. Cerebrospinal fluid and plasma testosterone levels in post-traumatic stress disorder and tobacco dependence. Psychoneuroendocrinology. 2001;26(3):273–85.
43. Moffat SD, Zonderman AB, Metter EJ, et al. Free testosterone and risk for Alzheimer disease in older men. Neurology. 2004;62(2):188–93.
44. Bowen RL, Isley JP, Atkinson RL. An association of elevated serum gonadotropin concentrations and Alzheimer disease. J Neuroendocrinol. 2000;12(4):351–354.
45. Hogervorst E, Williams J, Budge M, et al. Serum total testosterone is lower in men with Alzheimer's disease. Neuroendocrinol Lett. 2001;22(3):163–8.
46. Paoletti AM, Congia S, Lello S, et al. Low androgenization index in elderly women and elderly men with Alzheimer's disease. Neurology. 2004;62(2):301–3.
47. Watanabe T, Koba S, Kawamura M, et al. Small dense low-density lipoprotein and carotid atherosclerosis in relation to vascular dementia. Metabolism. 2004;53(4):476–82.
48. Ravaglia G, Forti P, Maioli F, et al. Endogenous sex hormones as risk factors for dementia in elderly men and women. J Gerontol A Biol Sci Med Sci. 2007;62(9):1035–41.
49. Pennanen C, Laakso MP, Kivipelto M, Ramberg J, Soininen H. Serum testosterone levels in males with Alzheimer's disease. J Neuroendocrinol. 2004;16(2):95–8.
50. Rosario ER, Chang L, Stanczyk FZ, Pike CJ. Age-related testosterone depletion and the development of Alzheimer disease. JAMA. 2004;292(12):1431–2.
51. Hogervorst E, Bandelow S, Combrinck M, Smith AD. Low free testosterone is an independent risk factor for Alzheimer's disease. Exp Gerontol. 2004;39(11/12): 1633–9.
52. Rasmuson S, Nasman B, Carlstrom K, Olsson T. Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer's disease. Dement Geriatr Cogn Disord. 2002;13(2):74–9.
53. Chu LW, Tam S, Lee PW, et al. Bioavailable testosterone is associated with a reduced risk of amnestic mild cognitive impairment in older men. Clin Endocrinol (Oxf). 2008;68(4):589–98.
54. Hogervorst E, Bandelow S. The controversy over levels of sex steroids in cases with Alzheimer's disease. J Neuroendocrinol. 2004;16(2):93–4.
55. Meethal SV, Smith MA, Bowen RL, Atwood CS. The gonadotropin connection in Alzheimer's disease. Endocrine. 2005;26(3):317–26.
56. Bowen RL, Smith MA, Harris PL, et al. Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer's disease pathology. J Neurosci Res. 2002;70(3):514–18.

References

1. Maki PM, Ernst M, London ED, et al. Intramuscular testosterone treatment in elderly men: evidence of memory decline and altered brain function. J Clin Endocrinol Metab. 2007;92(11):4107–14.
2. Resnick SM, Maki PM, Rapp SR, et al. Effects of combination estrogen plus progestin hormone treatment on cognition and affect. J Clin Endocrinol Metab. 2006;91(5):1802–10.
3. Shumaker S, Legault C, Rapp S, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA. 2003;289:2651–62.
4. Morley JE, Kaiser FE, Perry HM, 3rd, et al. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997;46(4):410–13.
5. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001 Feb;86(2):724–31.
6. Feldman HA, Longcope C, Derby CA, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.
7. Rosario ER, Chang L, Stanczyk FZ, Pike CJ. Age-related testosterone depletion and the development of Alzheimer disease. JAMA. 2004;292(12):1431–2.
8. Hogervorst E, Williams J, Budge M, et al. Serum total testosterone is lower in men with Alzheimer's disease. Neuro Endocrinol Lett. 2001;22(3):163–8.
9. Moffat SD, Zonderman AB, Metter EJ, et al. Free testosterone and risk for Alzheimer disease in older men. Neurology. 2004;62(2):188–93.
10. Moffat SD, Zonderman AB, Metter EJ, et al. Longitudinal assessment of serum free testosterone concentration predicts memory performance and cognitive status in elderly men. J Clin Endocrinol Metab. 2002;87(11):5001–7.
11. Ramsden M, Nyborg AC, Murphy MP, et al. Androgens modulate beta-amyloid levels in male rat brain. J Neurochem. 2003;87(4):1052–5.
12. Gouras GK, Xu H, Gross RS, et al. Testosterone reduces neuronal secretion of Alzheimer's beta-amyloid peptides. Proc Natl Acad Sci USA. 2000;97(3):1202–5.
13. Goodenough S, Engert S, Behl C. Testosterone stimulates rapid secretory amyloid precursor protein release from rat hypothalamic cells via the activation of the mitogen-activated protein kinase pathway. Neurosci Lett. 2000;296(1):49–52.
14. Gandy S, Almeida OP, Fonte J, et al. Chemical andropause and amyloid-beta peptide. JAMA. 2001;285(17):2195–6.
15. Almeida OP, Waterreus A, Spry N, Flicker L, Martins RN. One year follow-up study of the association between chemical castration, sex hormones, beta-amyloid, memory and depression in men. Psychoneuroendocrinology. 2004;29(8):1071–81.
16. Janowsky JS, Chavez B, Orwoll E. Sex steroids modify working memory. J Cogn Neurosci. 2000;12(3):407–14.
17. Janowsky JS, Oviatt SK, Orwoll ES. Testosterone influences spatial cognition in older men. Behav Neurosci. 1994;108(2):325–32.
18. Sih R, Morley JE, Kaiser FE, et al. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 1997;82(6):1661–7.
19. Kenny AM, Bellantonio S, Gruman CA, Acosta RD, Prestwood KM. Effects of transdermal testosterone on cognitive function and health perception in older men with low bioavailable testosterone levels. J Gerontol A Biol Sci Med Sci. 2002;57(5):M321–5.
20. Kenny AM, Fabregas G, Song C, Biskup B, Bellantonio S. Effects of testosterone on behavior, depression, and cognitive function in older men with mild cognitive loss. J Gerontol A Biol Sci Med Sci. 2004;59(1):75–8.
21. Cherrier MM, Asthana S, Plymate S, et al. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology. 2001;57(1):80–8.
22. Haren MT, Wittert GA, Chapman IM, Coates P, Morley JE. Effect of oral testosterone undecanoate on visuospatial cognition, mood and quality of life in elderly men with low-normal gonadal status. Maturitas. 2005;50(2):124–33.
23. Cherrier MM, Matsumoto AM, Amory JK, et al. The role of aromatization in testosterone supplementation: effects on cognition in older men. Neurology. 2005;64(2):290–6.
24. Cherrier MM, Matsumoto AM, Amory JK, et al. Characterization of verbal and spatial memory changes from moderate to supraphysiological increases in serum testosterone in healthy older men. Psychoneuroendocrinology. 2007;32(1):72–9.
25. Yue X, Lu M, Lancaster T, et al. Brain estrogen deficiency accelerates A-beta plaque formation in an Alzheimer's disease animal model. Proc Natl Acad Sci USA. 2005;102(52):19198–203.
26. Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on bone mineral density in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(6):1966–72.
27. Liverman CT, Blazer DG. Testosterone and aging: clinical research directions. Institute of Medicine Committee on Assessing the Need for Clinical Trials of Testosterone Replacement Therapy. Washington DC: National Academies Press, 2003.
28. Swerdloff RS, Wang C. Androgens and the ageing male. Best Pract Res Clin Endocrinol Metab. 2004;18(3):349–62.
29. Krause W, Mueller U, Mazur A. Testosterone supplementation in the aging male: which questions have been answered? Aging Male. 2005;8(1):31–8.
30. Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab. 1999;84(8):2647–53.
31. Bhasin S, Woodhouse L, Casaburi R, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005;90(2):678–88.
32. Wang C, Catlin DH, Starcevic B, et al. Testosterone metabolic clearance and production rates determined by stable isotope dilution/tandem mass spectrometry in normal men: influence of ethnicity and age. J Clin Endocrinol Metab. 2004 ;89(6):2936–41.
33. Snyder PJ. Effects of age on testicular function and consequences of testosterone treatment. J Clin Endocrinol Metab. 2001;86(6):2369–72.
34. Brinton RD. Investigative models for determining hormone therapy-induced outcomes in brain: evidence in support of a healthy cell bias of estrogen action. Ann N Y Acad Sci. 2005;1052:57–74.
35. Cherrier MM, Matsumoto AM, Amory JK, et al. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology. 2005;64(12):2063–8.
36. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. JAMA. 2000;283:1007–15.
37. Lu PH, Masterman DA, Mulnard R, et al. Effects of testosterone on cognition and mood in male patients with mild Alzheimer disease and healthy elderly men. Arch Neurol. 2006;63(2):177–85.
38. Moffat SD, Resnick SM. Long-term measures of free testosterone predict regional cerebral blood flow patterns in elderly men. Neurobiol Aging. 2007;28(6):914–20.
39. Simerly RB, Chang C, Muramatsu M, Swanson LW. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol. 1990;294(1):76–95.
40. Beyenburg S, Watzka M, Clusmann H, et al. Androgen receptor mRNA expression in the human hippocampus. Neurosci Lett. 2000;294(1):25–8.
41. Leranth C, Prange-Kiel J, Frick KM, Horvath TL. Low CA1 spine synapse density is further reduced by castration in male non-human primates. Cereb Cortex. 2004;14(5):503–10.
42. Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci. 2003;23(5):1588–92.
43. Finley SK, Kritzer MF. Immunoreactivity for intracellular androgen receptors in identified subpopulations of neurons, astrocytes and oligodendrocytes in primate prefrontal cortex. J Neurobiol. 1999;40(4):446–57.
44. Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1–47.
45. Kritzer M. The distribution of immunoreactivity for intracellular androgen receptors in the cerebral cortex of hormonally intact adult male and female rats: localization in pyramidal neurons making corticocortical connections. Cereb Cortex. 2004;14(3):268–80.
46. Redoute J, Stoleru S, Gregoire MC, et al. Brain processing of visual sexual stimuli in human males. Hum Brain Mapp. 2000;11(3):162–77.
47. Tierney MC, Yao C, Kiss A, McDowell I. Neuropsychological tests accurately predict incident Alzheimer disease after 5 and 10 years. Neurology. 2005;64(11):1853–9.

References

1. Twist SJ, Taylor GA, Weddell A, et al. Brain oestradiol and testosterone levels in Alzheimer's disease. Neurosci Lett. 2000;286(1):1–4.
2. NAMS continuing medical education activity. Menopause. 2005;12(5):496.
3. Burger HG, Dudley EC, Cui J, et al. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab. 2000;85:2832–8.
4. Overlie I, Moen MH, Morkrid L, et al. The endocrine transition around menopause – a five year prospective study with profiles of gonadotropins, estrogens and SHBG among healthy women. Acta Obstetr Gynecol Scand. 1999;78:642–7.
5. Zumoff B, Strain GW, Miller KL, et al. Twenty-four-hour mean plasma testosterone concentration declines with age in normal premenopausal women. J Clin Endocrinol Metab. 1995;80(4):1429–30.
6. Davison SL, Bell R, Donath S, et al. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90:3847–53.
7. Gleason CE, Schmitz TW, Koscik RL, et al. Hormone effects on fMRI and cognitive measures of encoding: importance of hormone preparation. Neurology. 2006;67:2039–41.
8. Wharton W, Fitzgerald A, Carlsson C, et al. Effects of hormone therapy duration on functional MRI activation. Graylyn Conference in Women's Cognitive Health, 2007, Abstract.
9. Shaywitz SE, Shaywitz BA, Pugh KR, et al. Effect of estrogen on brain activation patterns in postmenopausal women during working memory tasks. JAMA. 1999;281:1197–202.
10. Hogervorst E, Bandelow S, Combrinck M, et al. Low free testosterone is an independent risk factor for Alzheimer's disease. Exp Gerontol. 2004;39(11/12):1633–9.
11. Cherrier MM, Asthana S, Plymate S. Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology. 2001;57:80–8.
12. Cherrier MM, Matsumoto AM, Amory JK, et al. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology. 2005;64:2063–8.
13. Smith MD, Jones LS, Wilson MA. Sex differences in hippocampal slice excitability: role of testosterone. Neuroscience. 2002;109:517–30.
14. Pouliot WA, Handa RJ, Beck SG. Synapse. 1996;23:10–19.
15. Morse JK, DeKosky ST, Schett SW. Exp Neurol. 1992;118:47–52.
16. Tirassa P, Thiblin I, Agren G, et al. Neurosci Res. 1997;47:198–207.
17. Archer JS, Love-Geffen TE, Herbst-Damm KL, et al. NAMS Fellowship findings: effect of estradiol versus estradiol and testosterone on brain-activation patterns in postmenopausal women. Menopause. 2006;13(3):528–37.
18. Leranth C, Hajszan T, MacLusky NJ. Androgens increase spine synapse density in the CA1 hippocampal subfield of ovariectomized female rats. J Neurosci. 2004;24(2):495–9.
19. Gandy S, Almeida OP, Fonte J, et al. Chemical andropause and amyloid-beta peptide. JAMA. 2001;285:2195–6.
20. Papasozomenos SC. The heat-shock induced hyperphosphorylation of tau is estrogen-independent and prevented by androgens: implications for Alzheimer's disease. Proc Natl Acad Sci USA. 1997;94:6612–17.
21. Gouras GK, Xu H, Gross RS, et al. Testosterone reduces neuronal secretion of Alzheimer's beta-amyloid peptides. Proc Natl Acad Sci USA. 2000;97(3):1202–5.
22. Papasozomenos SC, Shanavas A. Testosterone prevents the heat shock-induced overactivation of glycogen synthase kinase-3β but not of cyclin-dependent kinase 5 and c-Jun NH2-terminal kinase and concomitantly abolishes hyperphosphorylation of τ: Implications for Alzheimer's disease. Proc Natl Acad Sci. 2002;99(3):1140–5.
23. Davison SL, Davis SR. Androgens in women. J Steroid Biochem Mol Biol. 2003;85:363–6.
24. Simon JA. Safety of estrogen/androgen regimens. J Reprod Med. 2001;46(3 Suppl.):281–90.
25. Wierman ME, Basson R, Davis SR, et al. Androgen therapy in women: an Endocrine Society Clinical Practice guideline. J Clin Endocrinol Metab. 2006;91(10):3697–710.
26. Wharton W, Hirshman E, Merritt P, et al. Oral contraceptives and androgenicity: influences on visuospatial task performance in younger individuals. Exp Clin Psychopharm. 2008;16(2):156–64.
27. Moffat SD, Hampson E. A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference. Psychoneuroendocrinology. 1996;21:323–37.
28. Miller KK, Grieco KA, Klibanski A. Testosterone administration in women with anorexia nervosa. J Clin Endocrinol Metab. 2005;90:1428–33.
29. Aleman A, Bronk E, Kessels R, et al. A single administration of testosterone improves visuospatial ability in young women. Psychoneuroendocrinology. 2004;29:612–17.
30. Drake EB, Henderson VW, Stanczyk FZ, et al. Associations between circulating sex steroid hormones and cognition in normal elderly women. Neurology. 2000;54:599–603.
31. Wolf OT, Kirschbaum C. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm Behav. 2002;41:259–66.
32. Wisniewski AB, Nguyen TT, Dobs AS. Evaluation of high-dose estrogen and high-dose estrogen plus methyltestosterone treatment on cognitive task performance in postmenopausal women. Horm Res. 2002;58:150–5.
33. Regestein QR, Friebely J, Shifren J, et al. Neuropsychological effects of methyltestosterone in women using menopausal hormone replacement. J Womens Health Gend Based Med. 2001;10(7):671–6.
34. Sherwin BB. Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology. 1988;13:345–57.
35. Rosenberg L, Park S. Verbal and spatial functions across the menstrual cycle in healthy young women. Psychoneuroendocrinology. 2002;27(7):835–41.
36. Sherwin BB. Mild cognitive impairment: potential pharmacological treatment options. J Am Geriatr Soc. 2000;48(4):431–41.

References

1. Cummings JL, Cole G. Alzheimer disease. JAMA. 2002;287:2335–8.
2. Yaffe K, Lui LY, Grady D, et al. Cognitive decline in women in relation to non-protein-bound oestradiol concentrations. Lancet. 2000;356:708–12.
3. Tang MX, Jacobs D, Stern Y, et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease. Lancet. 1996;348:429–32.
4. Veiga S, Melcangi RC, Doncarlos LL, Garcia-Segura LM, Azcoitia I. Sex hormones and brain aging. Exp Gerontol. 2004;39:1623–31.
5. Den Heijer T, Geerlings MI, Hofman A, et al. Higher estrogen levels are not associated with larger hippocampi and better memory performance. Arch Neurol. 2003;60:213–20.
6. Geerlings MI, Launer LJ, de Jong FH, et al. Endogenous estradiol and risk of dementia in women and men: the Rotterdam Study. Ann Neurol. 2003;53:607–15.
7. Geerlings MI, Ruitenberg A, Witteman JC, et al. Reproductive period and risk of dementia in postmenopausal women. JAMA. 2001;285:1475–81.
8. Shumaker SA, Legault C, Kuller L, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study. JAMA. 2004;291:2947–58.
9. Muller M, van der Schouw YT, Thijssen JH, Grobbee DE. Endogenous sex hormones and cardiovascular disease in men. J Clin Endocrinol Metab. 2003;88:5076–86.
10. Muller M, Grobbee DE, Thijssen JH, van den Beld AW, van der Schouw YT. Sex hormones and male health: effects on components of the frailty syndrome. Trends Endocrinol Metab. 2003;14:289–96.
11. de Ronde W, Pols HA, van Leeuwen JP, de Jong FH. The importance of oestrogens in males. Clin Endocrinol (Oxf). 2003;58:529–42.
12. Lessov-Schlaggar CN, Reed T, Swan GE, et al. Association of sex steroid hormones with brain morphology and cognition in healthy elderly men. Neurology. 2005;65:1591–6.
13. Aleman A, de Vries WR, Koppeschaar HP, et al. Relationship between circulating levels of sex hormones and insulin-like growth factor-1 and fluid intelligence in older men. Exp Aging Res. 2001;27:283–91.
14. Martin DM, Wittert G, Burns NR, Haren MT, Sugarman R. Testosterone and cognitive function in ageing men: data from the Florey Adelaide Male Ageing Study (FAMAS). Maturitas. 2007;57:182–94.
15. Muller M, Aleman A, Grobbee DE, de Haan EH, van der Schouw YT. Endogenous sex hormone levels and cognitive function in aging men. Is there an optimal level? Neurology. 2005;64(5):866–71.
16. Wolf OT, Kirschenbaum C. Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm Behav. 2002;41:259–66.
17. Yaffe K, Lui LY, Zmuda J, Cauley J. Sex hormones and cognitive function in older men. J Am Geriatr Soc. 2002;50:707–12.
18. Hogervorst E, De Jager C, Budge M, Smith AD. Serum levels of estradiol and testosterone and performance in different cognitive domains in healthy elderly men and women. Psychoneuroendocrinology. 2004;29:405–21.
19. Senanarong V, Vannasaeng S, Poungvarin N, et al. Endogenous estradiol in elderly individuals: cognitive and noncognitive associations. Arch Neurol. 2002;59:385–9.
20. Paoletti AM, Congia S, Lello S, et al. Low androgenization index in elderly women and elderly men with Alzheimer's disease. Neurology. 2004;62:301–3.
21. Irie F, Strozyk D, Peila R, et al. Brain lesions on MRI and endogenous sex hormones in elderly men. Neurobiol Aging. 2006;27:1137–44.
22. Strozyk D, White LR, Petrovitch H, et al. Sex hormones and neuropathology in elderly men: the HAAS. Neurobiol Aging. 2007;28(1): 62–8.
23. Barrett-Connor E, Goodman-Gruen D, Patay B. Endogenous sex hormones and cognitive function in older men. J Clin Endocrinol Metab. 1999;84:3681–5.
24. Muller M, van den Beld AW, Grobbee DE, de Jong FH, Lamberts SW. Sex hormones and cognitive decline in elderly men. Psychoneuroendocrinology. 2009; 34(1):27–31.
25. Ravaglia G, Forti P, Maioli F, et al. Endogenous sex hormones as risk factors for dementia in elderly men and women. J Gerontol A Biol Sci Med Sci. 2007;62:1035–41.
26. Yaffe K, Barnes D, Lindquist K, et al. Endogenous sex hormone levels and risk of cognitive decline in an older biracial cohort. Neurobiol Aging. 2007;28:171–8.
27. Geerlings MI, Strozyk D, Masaki K, et al. Endogenous sex hormones, cognitive decline, and future dementia in old men. Ann Neurol. 2006;60:346–55.
28. Elias MF, Beiser A, Wolf PA, et al. The preclinical phase of Alzheimer disease: a 22-year prospective study of the Framingham Cohort. Arch Neurol. 2000;57:808–13.
29. Hogervorst E, Lehmann DJ, Warden DR, McBroom J, Smith AD. Apolipoprotein E epsilon4 and testosterone interact in the risk of Alzheimer's disease in men. Int J Geriatr Psychiatry. 2002;17:938–40.
30. Yaffe K, Haan M, Byers A, Tangen C, Kuller L. Estrogen use, APOE, and cognitive decline: evidence of gene-environment interaction. Neurology. 2000;54:1949–54.
31. Breteler MM. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol Aging. 2000;21:153–60.
32. Luchsinger JA, Mayeux R. Cardiovascular risk factors and Alzheimer's disease. Curr Atheroscler Rep. 2004;6:261–6.
33. Sudhir K, Komesaroff PA. Clinical review 110: Cardiovascular actions of estrogens in men. J Clin Endocrinol Metab. 1999;84:3411–15.
34. Arnlov J, Pencina MJ, Amin S, et al. Endogenous sex hormones and cardiovascular disease incidence in men. Ann Intern Med. 2006;145:176–84.
35. Muller M, den Tonkelaar I, Thijssen JHH, Grobbee DE, van der Schouw YT. Endogenous sex hormones in men aged 40–80 years. Eur J Endocrinol. 2003;149:583–9.
36. Muller M, Grobbee DE, den Tonkelaar I, Lamberts SW, van der Schouw YT. Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab. 2005;90:2618–23.
37. Phillips GB, Jing T, Heymsfield SB. Relationships in men of sex hormones, insulin, adiposity, and risk factors for myocardial infarction. Metabolism. 2003;52:784–90.
38. Nakhai Pour HR, Grobbee DE, Muller M, van der Schouw YT. Association of endogenous sex hormone with C-reactive protein levels in middle-aged and elderly men. Clin Endocrinol (Oxf). 2007;66:394–8.
39. Tivesten A, Mellstrom D, Jutberger H, et al. Low serum testosterone and high serum estradiol associate with lower extremity peripheral arterial disease in elderly men. The MrOS Study in Sweden. J Am Coll Cardiol. 2007;50:1070–6.
40. Phillips GB, Pinkernell BH, Jing TY. The association of hyperestrogenemia with coronary thrombosis in men. Arterioscler Thromb Vasc Biol. 1996;16:1383–7.
41. Muller M, van den Beld AW, Bots ML, et al. Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation. 2004;109:2074–9.
42. Tivesten A, Hulthe J, Wallenfeldt K, et al. Circulating estradiol is an independent predictor of progression of carotid artery intima-media thickness in middle-aged men. J Clin Endocrinol Metab. 2006;91:4433–7.
43. Abbott RD, Launer LJ, Rodriguez BL, et al. Serum estradiol and risk of stroke in elderly men. Neurology. 2007;68:563–8.
44. de Ronde W, van der Schouw YT, Muller M, et al. Associations of sex-hormone-binding globulin (SHBG) with non-SHBG-bound levels of testosterone and estradiol in independently living men. J Clin Endocrinol Metab. 2005;90:157–62.
45. Hammond GL. Potential functions of plasma steroid-binding proteins. Trends Endocrinol Metab. 1995;6:298–304.
46. Caldwell JD, Suleman F, Chou SH, et al. Emerging roles of steroid-binding globulins. Horm Metab Res. 2006;38:206–18.
47. Herbert Z, Gothe S, Caldwell JD, et al. Identification of sex hormone-binding globulin in the human hypothalamus. Neuroendocrinology. 2005;81:287–93.
48. Hogervorst E, Bandelow S, Combrinck M, Smith AD. Low free testosterone is an independent risk factor for Alzheimer's disease. Exp Gerontol. 2004;39:1633–9.
49. Hoskin EK, Tang MX, Manly JJ, Mayeux R. Elevated sex-hormone-binding globulin in elderly women with Alzheimer's disease. Neurobiol Aging. 2004;25:141–7.
50. Muller M, Schupf N, Manly JJ, Mayeux R, Luchsinger JA. Sex hormone-binding globulin and incident Alzheimer's disease in elderly men and women. Neurobiol Aging. 2008. [Epub ahead of print].
51. Garcia-Segura LM, Veiga S, Sierra A, Melcangi RC, Azcoitia I. Aromatase: a neuroprotective enzyme. Prog Neurobiol. 2003;71:31–41.
52. Longcope C, Billiar RB, Takaoka Y, et al. Tissue sites of aromatization in the female rhesus monkey. Endocrinology. 1983;113:1679–82.
53. Lambert JC, Harris JM, Mann D, et al. Are the estrogen receptors involved in Alzheimer's disease? Neurosci Lett. 2001;306:193–7.

References

1. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev. 2005;26(6):833–76.
2. Morley JE. Androgens and aging. Maturitas. 2001;38(1):61–71; discussion 3.
3. Pike CJ, Rosario ER, Nguyen TV. Androgens, aging, and Alzheimer's disease. Endocrine. 2006;29(2):233–41.
4. Rosario ER, Pike CJ. Androgen regulation of beta-amyloid protein and the risk of Alzheimer's disease. Brain Res Rev. 2008;57(2):444–53.
5. Hogervorst E, Combrinck M, Smith AD. Testosterone and gonadotropin levels in men with dementia. Neuroendocrinol Lett. 2003;24(3/4):203–8.
6. Hogervorst E, Williams J, Budge M, et al. Serum total testosterone is lower in men with Alzheimer's disease. Neuroendocrinol Lett. 2001;22(3):163–8.
7. Pennanen C, Laakso MP, Kivipelto M, Ramberg J, Soininen H. Serum testosterone levels in males with Alzheimer's disease. J Neuroendocrinol. 2004;16(2):95–8.
8. Moffat SD, Zonderman AB, Metter EJ, et al. Free testosterone and risk for Alzheimer disease in older men. Neurology. 2004;62(2):188–93.
9. Rosario ER, Chang L, Stanczyk FZ, Pike CJ. Age-related testosterone depletion and the development of Alzheimer disease. JAMA. 2004;292(12):1431–2.
10. MacLusky NJ, Hajszan T, Prange-Kiel J, Leranth C. Androgen modulation of hippocampal synaptic plasticity. Neuroscience. 2006;138(3):957–65.
11. Galea LA. Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Rev. 2008;57(2):332–41.
12. Pike CJ, Nguyen TV, Ramsden M, et al. Androgen cell signaling pathways involved in neuroprotective actions. Horm Behav. 2008;53(5):693–705.
13. Ramsden M, Shin TM, Pike CJ. Androgens modulate neuronal vulnerability to kainate lesion. Neuroscience. 2003;122(3):573–8.
14. Papasozomenos SC, Papasozomenos T. Androgens prevent the heat shock-induced hyperphosphorylation but not dephosphorylation of tau in female rats. Implications for Alzheimer's disease. J Alzheimers Dis. 1999;1(3):147–53.
15. Hardy J. Alzheimer's disease: the amyloid cascade hypothesis: an update and reappraisal. J Alzheimers Dis. 2006;9(3 Suppl):151–3.
16. Almeida OP, Flicker L. Testosterone and dementia: too much ado about too little data. J Br Menopause Soc. 2003;9(3):107–10.
17. Gandy S, Almeida OP, Fonte J, et al. Chemical andropause and amyloid-beta peptide. JAMA. 2001;285(17):2195–6.
18. Gillett MJ, Martins RN, Clarnette RM, et al. Relationship between testosterone, sex hormone binding globulin and plasma amyloid beta peptide 40 in older men with subjective memory loss or dementia. J Alzheimers Dis. 2003;5(4):267–9.
19. Ramsden M, Nyborg AC, Murphy MP, et al. Androgens modulate beta-amyloid levels in male rat brain. J Neurochem. 2003;87(4):1052–5.
20. Rosario ER, Carroll JC, Oddo S, LaFerla FM, Pike CJ. Androgens regulate the development of neuropathology in a triple transgenic mouse model of Alzheimer's disease. J Neurosci. 2006;26(51):13384–9.
21. Gouras GK, Xu H, Gross RS, et al. Testosterone reduces neuronal secretion of Alzheimer's beta-amyloid peptides. Proc Natl Acad Sci USA. 2000;97(3):1202–5.
22. Yao M, Nguyen TV, Rosario ER, Ramsden M, Pike CJ. Androgens regulate neprilysin expression: role in reducing beta-amyloid levels. J Neurochem 2008.
23. Azcoitia I, Sierra A, Veiga S, Garcia-Segura LM. Aromatase expression by reactive astroglia is neuroprotective. Ann N Y Acad Sci. 2003;1007:298–305.
24. Xu H, Wang R, Zhang YW, Zhang X. Estrogen, beta-amyloid metabolism/trafficking, and Alzheimer's disease. Ann N Y Acad Sci. 2006;1089:324–42.
25. Goodenough S, Engert S, Behl C. Testosterone stimulates rapid secretory amyloid precursor protein release from rat hypothalamic cells via the activation of the mitogen-activated protein kinase pathway. Neurosci Lett. 2000;296(1):49–52.
26. Bowen RL, Isley JP, Atkinson RL. An association of elevated serum gonadotropin concentrations and Alzheimer disease? J Neuroendocrinol. 2000;12(4):351–4.
27. Casadesus G, Webber KM, Atwood CS, et al. Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim Biophys Acta. 2006;1762(4):447–52.
28. Bowen RL, Verdile G, Liu T, et al. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-beta precursor protein and amyloid-beta deposition. J Biol Chem. 2004;279(19):20539–45.
29. Gharib SD, Wierman ME, Shupnik MA, Chin WW. Molecular biology of the pituitary gonadotropins. Endocr Rev. 1990;11(1):177–99.
30. Hersh LB, Rodgers DW. Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res. 2008;5(2):225–31.
31. Janowsky JS. The role of androgens in cognition and brain aging in men. Neuroscience. 2006;138(3):1015–20.
32. Cherrier MM, Craft S, Matsumoto AH. Cognitive changes associated with supplementation of testosterone or dihydrotestosterone in mildly hypogonadal men: a preliminary report. J Androl. 2003;24(4):568–76.
33. Janowsky JS, Oviatt SK, Orwoll ES. Testosterone influences spatial cognition in older men. Behav Neurosci. 1994;108(2):325–32.
34. Moffat SD, Zonderman AB, Metter EJ, et al. Longitudinal assessment of serum free testosterone concentration predicts memory performance and cognitive status in elderly men. J Clin Endocrinol Metab. 2002;87(11):5001–7.
35. Emmelot-Vonk MH, Verhaar HJ, Nakhai Pour HR, et al. Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial. JAMA. 2008;299(1):39–52.
36. Haren MT, Wittert GA, Chapman IM, Coates P, Morley JE. Effect of oral testosterone undecanoate on visuospatial cognition, mood and quality of life in elderly men with low-normal gonadal status. Maturitas. 2005;50(2):124–33.
37. Maki PM, Ernst M, London ED, et al. Intramuscular testosterone treatment in elderly men: evidence of memory decline and altered brain function. J Clin Endocrinol Metab. 2007;92(11):4107–14.
38. Cherrier MM, Matsumoto AM, Amory JK, et al. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology. 2005;64(12):2063–8.
39. Tan RS, Culberson JW. An integrative review on current evidence of testosterone replacement therapy for the andropause. Maturitas. 2003;45(1):15–27.
40. Lu PH, Masterman DA, Mulnard R, et al. Effects of testosterone on cognition and mood in male patients with mild Alzheimer disease and healthy elderly men. Arch Neurol. 2006;63(2):177–85.
41. Green HJ. Altered cognitive function in men treated for prostate cancer with luteinizing hormone-releasing analogues and cyproterone acetate: a randomized controlled trial. BJU International. 2002;90(4):427–32.
42. Salminen EK, Portin RI, Koskinen A, Helenius H, Nurmi M. Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin Cancer Res. 2004;10(22):7575–82.
43. Lu-Yao GL, Albertsen PC, Moore DF, et al. Survival following primary androgen deprivation therapy among men with localized prostate cancer. JAMA. 2008;300(2):173–81.
44. Fleshner N, Zlotta AR. Prostate cancer prevention: past, present, and future. Cancer. 2007;110(9):1889–99.
45. Wilson EM, French FS. Binding properties of androgen receptors. Evidence for identical receptors in rat testis, epididymis, and prostate. J Biol Chem. 1976;251(18):5620–9.
46. Ostrowski J, Kuhns JE, Lupisella JA, et al. Pharmacological and x-ray structural characterization of a novel selective androgen receptor modulator: potent hyperanabolic stimulation of skeletal muscle with hypostimulation of prostate in rats. Endocrinology. 2007;148(1):4–12.
47. Shao TC, Li HL, Kasper S, et al. Comparison of the growth-promoting effects of testosterone and 7-alpha-methyl-19-nor-testosterone (MENT) on the prostate and levator ani muscle of LPB-tag transgenic mice. Prostate. 2006;66(4):369–76.
48. Venken K, Boonen S, Van Herck E, et al. Bone and muscle protective potential of the prostate-sparing synthetic androgen 7alpha-methyl-19-nortestosterone: evidence from the aged orchidectomized male rat model. Bone. 2005;36(4):663–70.
49. von Eckardstein S, Noe G, Brache V, et al. A clinical trial of 7 alpha-methyl-19-nortestosterone implants for possible use as a long-acting contraceptive for men. J Clin Endocrinol Metab. 2003;88(11):5232–9.
50. Gao W, Reiser PJ, Coss CC, et al. Selective androgen receptor modulator treatment improves muscle strength and body composition and prevents bone loss in orchidectomized rats. Endocrinology. 2005;146(11):4887–97.
51. Rosario ER, Chang L, Head EH, Stanczyk FZ, Pike CJ. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol Aging, 2009 May 8 [Epub ahead of print].