Skip to main content Accessibility help
×
Home
  • Print publication year: 2016
  • Online publication date: May 2016

Chapter 13 - Neuropathology offrontotemporal dementia and related disorders

from Section 4 - Pathology and pathophysiology

Related content

Powered by UNSILO
1. Rademakers, R, Neumann, M, Mackenzie, IR. Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 2012;8:423–34.
2. Mackenzie, IR, Neumann, M, Bigio, EH, et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 2009;117:1518.
3. Mackenzie, IR, Neumann, M, Bigio, EH, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 2010;119:14.
4. Weingarten, MD, Lockwood, AH, Hwo, SY, et al. A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 1975;72:1858–62.
5. Goedert, M, Spillantini, MG, Jakes, R, et al. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 1989;3:519–26.
6. Spillantini, MG, Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol 2013;12:609–22.
7. Lee, G, Leugers, CJ. Tau and tauopathies. Prog Mol Biol Transl Sci 2012;107:263–93.
8. Iqbal, K, Liu, F, Gong, CX, et al. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 2009;118:5369.
9. Noble, W, Hanger, DP, Miller, CC, et al. The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol 2013;4:83.
10. van Swieten, J, Spillantini, MG. Hereditary frontotemporal dementia caused by tau gene mutations. Brain Pathol 2007;17:6373.
11. Dickson, DW, Rademakers, R, Hutton, ML. Progressive supranuclear palsy: pathology and genetics. Brain Pathol 2007;17:7482.
12. Myers, AJ, Pittman, AM, Zhao, AS, et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 2007;25:561–70.
13. Kovacs, GG, Rozemuller, AJ, van Swieten, JC, et al. Neuropathology of the hippocampus in FTLD-tau with Pick bodies: a study of the BrainNet Europe Consortium. Neuropathol Appl Neurobiol 2013;39:166–78.
14. Dickson, DW, Ahmed, Z, Algom, AA, et al. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 2010;23:394400.
15. Dickson, DW. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 1999;246 Suppl 2:11615.
16. Kouri, N, Whitwell, JL, Josephs, KA, et al. Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol 2011;7:263–72.
17. Ahmed, Z, Bigio, EH, Budka, H, et al. Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol 2013;126:537–44.
18. Ghetti, B, Wszolek, ZK, Boeve, BF, et al. Frontotemporal dementia and parkinsonism linked to chromosome 17. In: Dickson, DW, Weller, RO, eds. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Chichester, UK: Blackwell Publishing Ltd.; 2011; 110–34.
19. Miki, Y, Mori, F, Hori, E, et al. Hippocampal sclerosis with four-repeat tau-positive round inclusions in the dentate gyrus: a new type of four-repeat tauopathy. Acta Neuropathol 2009;117:713–18.
20. Kovacs, GG, Milenkovic, I, Wohrer, A, et al. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol 2013;126:365–84.
21. Tolnay, M, Probst, A. Argyrophilic grain disease. Handb Clin Neurol 2008;89:553–63.
22. Saito, Y, Ruberu, NN, Sawabe, M, et al. Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 2004;63:911–18.
23. Jellinger, KA, Attems, J. Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol 2007;113:107–17.
24. Frank, S, Clavaguera, F, Tolnay, M. Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol 2008;115:3953.
25. Clavaguera, F, Akatsu, H, Fraser, G, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA 2013;110:9535–40.
26. Halliday, G, Bigio, EH, Cairns, NJ, et al. Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathol 2012;124:373–82.
27. Neumann, M, Sampathu, DM, Kwong, LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314:130–3.
28. Buratti, E, Baralle, FE. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 2010;7:420–9.
29. Mackenzie, IR, Rademakers, R, Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 2010;9:9951007.
30. Neumann, M, Kwong, LK, Lee, EB, et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 2009;117:137–49.
31. Igaz, LM, Kwong, LK, Xu, Y, et al. Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 2008;173:182–94.
32. Sampathu, DM, Neumann, M, Kwong, LK, et al. Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol 2006;169:1343–52.
33. Mackenzie, IR, Baborie, A, Pickering-Brown, S, et al. Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol 2006;112:539–49.
34. Cairns, NJ, Neumann, M, Bigio, EH, et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol 2007;171:227–40.
35. Neumann, M, Mackenzie, IR, Cairns, NJ, et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 2007;66:152–7.
36. Mackenzie, IR, Neumann, M, Baborie, A, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 2011;122:111–13.
37. Baker, M, Mackenzie, IR, Pickering-Brown, SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442:916–19.
38. Cruts, M, Gijselinck, I, van der Zee, J, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006;442:920–4.
39. Mackenzie, IR, Baker, M, Pickering-Brown, S, et al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 2006;129:3081–90.
40. DeJesus-Hernandez, M, Mackenzie, IR, Boeve, BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011;72:245–56.
41. Renton, AE, Majounie, E, Waite, A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72:257–68.
42. Hsiung, GY, DeJesus-Hernandez, M, Feldman, HH, et al. Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 2012;135:709–22.
43. Mori, K, Weng, SM, Arzberger, T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013;339:1335–8.
44. Ash, PE, Bieniek, KF, Gendron, TF, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 2013;77:639–46.
45. Mackenzie, IR, Arzberger, T, Kremmer, E, et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 2013;126:859–79.
46. Kimonis, VE, Fulchiero, E, Vesa, J, et al. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta 2008;1782:744–8.
47. Borroni, B, Bonvicini, C, Alberici, A, et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 2009;30:E974–83.
48. Benajiba, L, Le Ber, I, Camuzat, A, et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 2009;65:470–3.
49. Kovacs, GG, Murrell, JR, Horvath, S, et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 2009;24:1843–7.
50. Lee, EB, Lee, VM, Trojanowski, JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 2012;13:3850.
51. Da Cruz, S, Cleveland, DW. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 2011;21:904–19.
52. Wu, LS, Cheng, WC, Shen, CK. Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J Biol Chem 2012;287:27335–44.
53. Neumann, M, Rademakers, R, Roeber, S, et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 2009;132:2922–31.
54. Kwiatkowski, TJ Jr., Bosco, DA, Leclerc, AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009;323:1205–8.
55. Vance, C, Rogelj, B, Hortobagyi, T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009;323:1208–11.
56. Neumann, M, Roeber, S, Kretzschmar, HA, et al. Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 2009;118:605–16.
57. Munoz, DG, Neumann, M, Kusaka, H, et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathol 2009;118:617–27.
58. Neumann, M, Bentmann, E, Dormann, D, et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 2011;134:2595–609.
59. Neumann, M, Valori, CF, Ansorge, O, et al. Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathol 2012;124:705–16.
60. Tan, AY, Manley, JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009;1:8292.
61. Kovar, H. Jekyll, Dr. and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma 2011;2011:837474.
62. Fujii, R, Takumi, T. TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 2005;118:5755–65.
63. Dormann, D, Madl, T, Valori, CF, et al. Arginine methylation next to the PY-NLS modulates transportin binding and nuclear import of FUS. EMBO J 2012;31:4258–75.
64. Cairns, NJ, Grossman, M, Arnold, SE, et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 2004;63:1376–84.
65. Mackenzie, IR, Foti, D, Woulfe, J, et al. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 2008;131:1282–93.
66. Mackenzie, IR, Munoz, DG, Kusaka, H, et al. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol 2011;121:207–18.
67. Mackenzie, IR, Feldman, H. Neurofilament inclusion body disease with early onset frontotemporal dementia and primary lateral sclerosis. Clin Neuropathol 2004;23:183–93.
68. Dormann, D, Rodde, R, Edbauer, D, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import. EMBO J 2010;29:2841–57.
69. Ravenscroft, TA, Baker, MC, Rutherford, NJ, et al. Mutations in protein N-arginine methyltransferases are not the cause of FTLD-FUS. Neurobiol Aging 2013;34:2235.e11–13.
70. Holm, IE, Englund, E, Mackenzie, IR, et al. A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 2007;66:884–91.
71. Holm, IE, Isaacs, AM, Mackenzie, IR. Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene. Acta Neuropathol 2009;118:719–20.
72. Wider, C, Van Gerpen, JA, DeArmond, S, et al. Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD): a single entity? Neurology 2009;72:1953–9.
73. Forman, MS, Farmer, J, Johnson, JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 2006;59:952–62.
74. Munoz, DG, Woulfe, J, Kertesz, A. Argyrophilic thorny astrocyte clusters in association with Alzheimer's disease pathology in possible primary progressive aphasia. Acta Neuropathol 2007;114:347–57.
75. Josephs, KA, Hodges, JR, Snowden, JS, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 2011;122:137–53.