Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T07:13:01.291Z Has data issue: false hasContentIssue false

12 - Perspectives

Published online by Cambridge University Press:  05 October 2012

K. H. Petersen
Affiliation:
Norwegian University of Life Sciences, Norway
H. Lindén
Affiliation:
Norwegian University of Life Sciences, Norway
A. M. Dale
Affiliation:
University of California San Diego, USA
G. T. Einevoll
Affiliation:
Norwegian University of Life Sciences, Norway
T. Stieglitz
Affiliation:
Albert-Ludwig-University of Freiburg, Germany
Romain Brette
Affiliation:
Ecole Normale Supérieure, Paris
Alain Destexhe
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

In the nineteenth century, Julius Bernstein invented an ingenious device called the “differential rheotome,” a rotating wheel which could record the time course of action potentials (see Chapter 3). Since then, many sophisticated techniques have been introduced to measure correlates of neural activity: measurements of electricity produced by single neurons (Chapters 3 and 4) or multiple neurons (Chapters 5–7 and 9), measurements based on brain metabolism (Chapters 8 and 11) or on calcium dynamics (Chapter 10). These techniques are always more or less indirect measurements of neural activity, and they have diverse spatial and temporal resolutions, and spatial scales. Each chapter in this book has described the quantitative relationship between neural activity (e.g. membrane potential or synaptic activity) and the measured quantity, as it is currently understood. This effort serves two purposes: to give a better understanding and interpretation of the measurements, and to help enhance existing techniques or develop new ones. To conclude this book, the authors of all the chapters describe ongoing developments in their field, open questions to be addressed, and new emerging techniques.

Extracellular recording

Substrate-integrated microelectrode arrays (MEAs) are planar arrays of microelectrodes used to record electrical activity in neuronal cell cultures or acute brain slices (Taketani and Baudray, 2006; Egert et al., 2010; Gross, 2010). While their history goes back to the 1970s, the rapid development of photolithographic techniques (stimulated by the needs of the computer industry) has now made prefabricated high-density MEA chips a popular research tool.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bédard, C. and Destexhe, A. (2009). Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophys. J., 96 (7), 2589–2603.CrossRefGoogle ScholarPubMed
Bédard, C. and Destexhe, A. (2011). A generalized theory for current-source density analysis in brain tissue. Physi. Rev. E, 84, 041909.Google ScholarPubMed
Bédard, C., Rodrigues, S., Roy, N., Contreras, D. and Destexhe, A. (2010). Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials. J. Comput. Neurosci., 29 (3), 389–403.CrossRefGoogle ScholarPubMed
Brette, R., Piwkowska, Z., Monier, C., Rudolph-Lilith, M., Fournier, J., Levy, M., Frégnac, Y., Bal, T. and Destexhe, A. (2008). High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron, 59 (3), 379–391.CrossRefGoogle ScholarPubMed
Brette, R., Piwkowska, Z., Monier, C., Francisco, J., Gonzalez, G., Frégnac, Y., Bal, T. and Destexhe, A. (2009). Dynamic clamp with high-resistance electrodes using active electrode compensation in vitro and in vivo, 30 pages.
Buitenweg, J. R., Rutten, W. L. C. and Marani, E. (2002). Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes. IEEE Trans. Biomed. Eng., 49 (12), 1580–1590.CrossRefGoogle ScholarPubMed
Contreras, D., Destexhe, A., Sejnowski, T. J. and Steriade, M. (1996). Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science, 274 (5288), 771–774.CrossRefGoogle ScholarPubMed
Dannhauer, M., Lanfer, B., Wolters, C. H. and Knösche, T. R. (2011). Modeling of the human skull in EEG source analysis. Human Brain Mapping, 32 (9), 1383–1399.CrossRefGoogle ScholarPubMed
Dehghani, N., Bédard, C., Cash, S. S., Halgren, E. and Destexhe, A. (2010). Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media. J. Comput. Neurosci., 29 (3), 405–421.CrossRefGoogle ScholarPubMed
Egert, U., Kindervater, R. and Stett, A. (2010). Conference Proceedings of the 7th International Meeting of Substrate-Integrated Microelectrode Arrays. Reutlingen, Germany. Stuttgart: BIOPRO Baden-Württemberg.Google Scholar
Frey, U., Egert, U., Heer, F., Hafizovic, S. and Hierlemann, A. (2009). Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron., 24 (7), 2191–2198.CrossRefGoogle ScholarPubMed
Göbel, W. and Helmchen, F. (2007). New angles on neuronal dendrites in vivo. J. Neurophysiol., 98 (6), 3770–3779.CrossRefGoogle ScholarPubMed
Göbel, W., Kampa, B. M. and Helmchen, F. (2007). Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods, 4 (1), 73–79.CrossRefGoogle ScholarPubMed
Gramfort, A., Papadopoulo, T., Olivi, E. and Clerc, M. (2011). Forward field computation with OpenMEEG. Comp. Intel. Neurosc., 2011, 1–13.Google Scholar
Granstedt, A. E., Szpara, M. L., Kuhn, B., Wang, S. S. and Enquist, L. W. (2009). Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus. PloS One, 4 (9), e6923.CrossRefGoogle ScholarPubMed
Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M. and Helmchen, F. (2010). High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature Methods, 7 (5), 399–405.Google ScholarPubMed
Gross, G. W. (2010). Multielectrode arrays. Scholarpedia, 3 (6), 5749.Google Scholar
Helmchen, F. and Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2 (12), 932–940.CrossRefGoogle ScholarPubMed
Kerr, J. N. D. and Denk, W. (2008). Imaging in vivo: watching the brain in action. Nature Rev. Neurosci., 9 (3), 195–205.CrossRefGoogle ScholarPubMed
Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R. and Papadopoulo, T. (2005). A common formalism for the integral formulations of the forward EEG problem. IEEE Trans. Med. Imaging, 24 (1), 12–28.CrossRefGoogle ScholarPubMed
Mank, M., Santos, A. F., Direnberger, S., Mrsic-Flogel, T. D., Hofer, S. B., Stein, V., Hendel, T., Reiff, D. F., Levelt, C., Borst, A., Bonhoeffer, T., Hübener, M. and Griesbeck, O. (2008). A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods, 5 (9), 805–811.CrossRefGoogle ScholarPubMed
Ozen, S., Sirota, A., Belluscio, M. A., Anastassiou, C. A., Stark, E., Koch, C. and Buzsáki, G. (2010). Transcranial electric stimulation entrains cortical neuronal populations in rats. J. Neurosci., 30 (34), 11476–11485.CrossRefGoogle ScholarPubMed
Pospischil, M., Piwkowska, Z., Bal, T. and Destexhe, A. (2009). Extracting synaptic conductances from single membrane potential traces. Neuroscience, 158 (2), 545–552.CrossRefGoogle ScholarPubMed
Taketani, M. and Baudray, M. (2006). Advances in Network Electrophysiology Using Multi-Electrode Arrays. New York: Springer.CrossRefGoogle Scholar
Tufail, Y., Matyushov, A., Baldwin, N., Tauchmann, M. L., Georges, J., Yoshihiro, A., Tillery, S. I. H. and Tyler, W. J. (2010). Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 66 (5), 681–694.CrossRefGoogle ScholarPubMed
Vorwerk, J. (2011). Comparison of numerical approaches to the EEG forward problem. Master thesis in mathematics, Münster.Google Scholar
Wallace, D. J., zum Alten Borgloh, S. M., Astori, S., Yang, Y., Bausen, M., Kügler, S., Palmer, A. E., Tsien, R. Y., Sprengel, R., Kerr, J. N. D., Denk, W. and Hasan, M. T. (2008). Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nature Methods, 5 (9), 797–804.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Perspectives
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Perspectives
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Perspectives
  • Edited by Romain Brette, Ecole Normale Supérieure, Paris, Alain Destexhe, Centre National de la Recherche Scientifique (CNRS), Paris
  • Book: Handbook of Neural Activity Measurement
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979958.012
Available formats
×