Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-04T16:16:49.177Z Has data issue: false hasContentIssue false

4 - Fundamentals of color vision II: higher-order color processing

from Part II - Foundations: basics of color science

Published online by Cambridge University Press:  05 April 2016

Andrew J. Elliot
Affiliation:
University of Rochester, New York
Mark D. Fairchild
Affiliation:
Rochester Institute of Technology, New York
Anna Franklin
Affiliation:
University of Sussex
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstis, S. M., and Cavanagh, P. (1983). A minimum motion technique for judging equiluminance. In Mollon, J. D. and Sharpe, L. T. (eds.), Colour Vision: Psychophysics and Physiology (pp. 6677). London: Academic Press.Google Scholar
Arend, L., and Reeves, A. (1986). Simultaneous color constancy. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 3(10), 1743–51.CrossRefGoogle ScholarPubMed
Bachy, R., Dias, J., Alleysson, D., and Bonnardel, V. (2012). Hue discrimination, unique hues and naming. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(2), A60–8.CrossRefGoogle ScholarPubMed
Barlow, H., and Földiák, P. (1989). Adaptation and decorrelation in the cortex. In Miall, C., Durbin, G. J., and Mitchison, G. J. (eds.), The Computing Neuron (pp. 5472). Wokingham: Addison-Wesley.Google Scholar
Benucci, A., Frazor, R. A., and Carandini, M. (2007). Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron, 55(1), 103–17.CrossRefGoogle ScholarPubMed
Bosking, W. H., Crowley, J. C., and Fitzpatrick, D. (2002). Spatial coding of position and orientation in primary visual cortex. Nature Neuroscience, 5(9), 874–82.CrossRefGoogle ScholarPubMed
Boynton, R. M., and Kaiser, P. K. (1968). Vision: the additivity law made to work for heterochromatic photometry with bipartite fields. Science, 161(3839), 366–8.CrossRefGoogle ScholarPubMed
Brown, A. M., Lindsey, D. T., and Guckes, K. M. (2011). Color names, color categories, and color-cued visual search: sometimes, color perception is not categorical. Journal of Vision, 11(12), 121.CrossRefGoogle Scholar
Bushnell, B. N., Harding, P. J., Kosai, Y., Bair, W., and Pasupathy, A. (2011). Equiluminance cells in visual cortical area. Journal of Neuroscience, 31(35), 12398–412.CrossRefGoogle ScholarPubMed
Bushnell, B. N., and Pasupathy, A. (2012). Shape encoding consistency across colors in primate V4. Journal of Neurophysiology, 108(5), 12991308.CrossRefGoogle ScholarPubMed
Cao, D. (2014). S-cone discrimination in the presence of two adapting fields: data and model. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31(4), A6574.CrossRefGoogle ScholarPubMed
Cao, D., Lee, B. B., and Sun, H. (2010). Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway. Journal of Vision, 10(11), 115.CrossRefGoogle ScholarPubMed
Cavanagh, P., Tyler, C. W., and Favreau, O. E. (1984). Perceived velocity of moving chromatic gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1(8), 893–9.CrossRefGoogle ScholarPubMed
Chaparro, A., Stromeyer, C. F., Huang, E. P., Kronauer, R. E., and Eskew, R. T. (1993). Colour is what the eye sees best. Nature, 361(6410), 348–50.CrossRefGoogle ScholarPubMed
Chatterjee, S., and Callaway, E. M. (2002). S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron, 35(6), 1135–46.CrossRefGoogle Scholar
Clifford, C. W. G., Spehar, B., Solomon, S. G., Martin, P. R., and Zaidi, Q. (2003). Interactions between color and luminance in the perception of orientation. Journal of Vision, 3(2), 106–15.CrossRefGoogle ScholarPubMed
Conway, B. R. (2001). Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). Journal of Neuroscience, 21(8), 2768–83.CrossRefGoogle ScholarPubMed
Conway, B. R. (2014). Color signals through dorsal and ventral visual pathways. Visual Neuroscience, 31(2), 197209.CrossRefGoogle ScholarPubMed
Conway, B. R., and Livingstone, M. S. (2006). Spatial and temporal properties of cone signals in alert macaque primary visual cortex. Journal of Neuroscience, 26(42), 10826–46.CrossRefGoogle ScholarPubMed
Conway, B. R., Moeller, S., and Tsao, D. Y. (2007). Specialized color modules in macaque extrastriate cortex. Neuron, 56(3), 560–73.CrossRefGoogle ScholarPubMed
Conway, B. R., and Tsao, D. Y. (2005). Color architecture in alert macaque cortex revealed by fMRI. Cerebral Cortex, 16(11), 1604–13.Google ScholarPubMed
Cooper, B., Sun, H., and Lee, B. B. (2012). Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(2), A314–23.CrossRefGoogle ScholarPubMed
Cottaris, N. P., and De Valois, R. L. (1998). Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature, 395(6705), 896900.CrossRefGoogle ScholarPubMed
Cropper, S. J., and Derrington, A. M. (1996). Rapid colour-specific detection of motion in human vision. Nature, 379(6560), 72–4.CrossRefGoogle ScholarPubMed
Cropper, S. J., and Wuerger, S. M. (2005). The perception of motion in chromatic stimuli. Behavioral and Cognitive Neuroscience Reviews, 4(3), 192217.CrossRefGoogle ScholarPubMed
Dacey, D. M., and Petersen, M. R. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9666–70.Google ScholarPubMed
de Monasterio, F. M., McCrane, E. P., Newlander, J. K., and Schein, S. J. (1985). Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Investigative Ophthalmology and Visual Science, 26(3), 289302.Google ScholarPubMed
Derrington, A. M., and Henning, G. B. (1993). Detecting and discriminating the direction of motion of luminance and colour gratings. Vision Research, 33(5–6), 799811.CrossRefGoogle ScholarPubMed
Derrington, A. M., Krauskopf, J., and Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 241–65.CrossRefGoogle ScholarPubMed
Deutscher, G. (2011). Through the Language Glass: Why the World Looks Different in Other Languages. New York: Random House.Google Scholar
De Valois, R. L., and De Valois, K. K. (1993). A multi-stage color model. Vision Research, 33(8), 1053–65.CrossRefGoogle ScholarPubMed
DeWeerd, P., Peralta, M. R., Desimone, R., and Ungerleider, L. G. (1999). Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nature Neuroscience, 2(8), 753–8.CrossRefGoogle Scholar
Dowling, J. E. (1987). The Retina: An Approachable Part of the Brain. Cambridge, MA: Harvard University Press.Google Scholar
Drivonikou, G. V., Kay, P., Regier, T., Ivry, R. B., Gilbert, A. L., Franklin, A., and Davies, I. R. L. (2007). Further evidence that Whorfian effects are stronger in the right visual field than the left. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 10971102.CrossRefGoogle ScholarPubMed
Edelman, S. (1998). Representation is representation of similarities. Behavioral and Brain Sciences, 21(4), 449–67.CrossRefGoogle ScholarPubMed
Engel, S., Zhang, X., and Wandell, B. (1997). Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature, 388(6637), 6871.CrossRefGoogle ScholarPubMed
Eskew, R. T. (2009). Higher order color mechanisms: a critical review. Vision Research, 49(22), 26862704.CrossRefGoogle ScholarPubMed
Eskew, R. T., Newton, J. R., and Giulianini, F. (2001). Chromatic detection and discrimination analyzed by a Bayesian classifier. Vision Research, 41(7), 893909.CrossRefGoogle ScholarPubMed
Estévez, O., and Spekreijse, H. (1982). The “silent substitution” method in visual research. Vision Research, 22(6), 681–91.CrossRefGoogle Scholar
Felleman, D. J., and Van Essen, D. C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of Neurophysiology, 57(4), 889920.CrossRefGoogle ScholarPubMed
Fonteneau, E., and Davidoff, J. (2007). Neural correlates of colour categories. NeuroReport, 18(13), 1323–7.CrossRefGoogle ScholarPubMed
Forbes, A., Burleigh, S., and Neyland, M. (1955). Electric responses to color shift in frog and turtle retina. Journal of Neurophysiology, 18(6), 517–35.CrossRefGoogle ScholarPubMed
Foster, D. H., Amano, K., and Nascimento, S. M. (2006). Color constancy in natural scenes explained by global image statistics. Visual Neuroscience, 23(3–4), 341–9.CrossRefGoogle ScholarPubMed
Foster, D. H., Amano, K., Nascimento, S. M. C., and Foster, M. J. (2006). Frequency of metamerism in natural scenes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 23(10), 2359–72.CrossRefGoogle ScholarPubMed
Foster, D. H., and Nascimento, S. M. C. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings of the Royal Society of London. B, Biological Sciences, 257(1349), 115–21.Google ScholarPubMed
Gegenfurtner, K. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4(7), 563–72.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Hawken, M. J. (1995). Temporal and chromatic properties of motion mechanisms. Vision Research, 35(11), 1547–63.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Hawken, M. J. (1996). Interaction of motion and color in the visual pathways. Trends in Neurosciences, 19(9), 394401.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Kiper, D. C. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(11), 1880–8.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., and Kiper, D. C. (2003). Color vision. Annual Review of Neuroscience, 26, 181206.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., Kiper, D. C., Beusmans, J. M., Carandini, M., Zaidi, Q., and Movshon, J. A. (1994). Chromatic properties of neurons in macaque MT. Visual Neuroscience, 11(3), 455–66.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., Kiper, D. C., and Levitt, J. B. (1997). Functional properties of neurons in macaque area V3. Journal of Neurophysiology, 77(4), 1906–23.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1937). Adaptation, after-effect, and contrast in the perception of tilted lines. II. Simultaneous contrast and the areal restriction of the after-effect. Journal of Experimental Psychology, 20(6), 553–69.Google Scholar
Giesel, M., and Gegenfurtner, K. R. (2010). Color appearance of real objects varying in material, hue, and shape. Journal of Vision, 10(9), 121.CrossRefGoogle ScholarPubMed
Gilbert, A. L., Regier, T., Kay, P., and Ivry, R. B. (2006). Whorf hypothesis is supported in the right visual field but not the left. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 489–94.Google Scholar
Giulianini, F., and Eskew, R. T. (1998). Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Research, 38(24), 3913–26.CrossRefGoogle ScholarPubMed
Gordon, J., and Abramov, I. (1977). Color vision in the peripheral retina. II. Hue and saturation. Journal of the Optical Society of America, 67(2), 202–7.CrossRefGoogle ScholarPubMed
Granzier, J. M., and Gegenfurtner, K. R. (2012). Effects of memory colour on colour constancy for unknown coloured objects. i-Perception, 3(3), 190215.CrossRefGoogle ScholarPubMed
Granzier, J. J. M., Vergne, R., and Gegenfurtner, K. R. (2014). The effects of surface gloss and roughness on color constancy for real 3-D objects. Journal of Vision, 14(2), 120.CrossRefGoogle ScholarPubMed
Hamburger, K., and Shapiro, A. G. (2009). Spillmann’s weaves are more resilient than Hermann’s grid. Vision Research, 49(16), 2121–30.CrossRefGoogle Scholar
Handford, M. (1987). Where’s Waldo? New York: Little, Brown and Co.Google Scholar
Hanley, R., and Roberson, D. (2008). Do infants see colors differently? Scientific American, 14 May (www.scientificamerican.com/article/do-infants-see-colors-dif/).Google Scholar
Hansen, T., and Gegenfurtner, K. R. (2006). Higher level chromatic mechanisms for image segmentation. Journal of Vision, 6(3), 239–59.CrossRefGoogle ScholarPubMed
Hansen, T., and Gegenfurtner, K. R. (2009). Independence of color and luminance edges in natural scenes. Visual Neuroscience, 26(1), 3549.CrossRefGoogle ScholarPubMed
Hansen, T., and Gegenfurtner, K. R. (2013). Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space. Journal of Vision, 13(1), 121.CrossRefGoogle ScholarPubMed
Hansen, T., Olkkonen, M., Walter, S., and Gegenfurtner, K. R. (2006). Memory modulates color appearance. Nature Neuroscience, 9(11), 1367–8.CrossRefGoogle ScholarPubMed
Hansen, T., Walter, S., and Gegenfurtner, K. R. (2007). Effects of spatial and temporal context on color categories and color constancy. Journal of Vision, 7(4), 115.CrossRefGoogle ScholarPubMed
Harnad, S. (1987). Psychophysical and cognitive aspects of categorical perception: a critical overview. In Harnad, S. (ed.), Categorical Perception: The Groundwork of Cognition (pp. 127). New York: Cambridge University Press.Google Scholar
Haslam, C., Wills, A. J., Haslam, S. A., Kay, J., Baron, R., and McNab, F. (2007). Does maintenance of colour categories rely on language? Evidence to the contrary from a case of semantic dementia. Brain and Language, 103(3), 251–63.CrossRefGoogle Scholar
Hass, C. A., and Horwitz, G. D. (2013). V1 mechanisms underlying chromatic contrast detection. Journal of Neurophysiology, 109, 2483–94.CrossRefGoogle ScholarPubMed
Hawken, M. J., Gegenfurtner, K. R., and Tang, C. (1994). Contrast dependence of colour and luminance motion mechanisms in human vision. Nature, 367, 268–70.CrossRefGoogle ScholarPubMed
Helmholtz, H. (1852). Ueber die Theorie der zusammengesetzten Farben. Annalen der Physik und Chemie, 163, 4566.CrossRefGoogle Scholar
Helmholtz, H. (1855). Ueber die Zusammensetzung von Spectralfarben. Annalen der Physik und Chemie, 170, 128.CrossRefGoogle Scholar
Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leipzig: Leopold Voss.Google Scholar
Hering, E. (1878). Zur Lehre vom Lichtsinne. Vienna: Carl Gerold’s Sohn.Google Scholar
Hess, R. H., Baker, C. L., and Zihl, J. (1989). The “motion-blind” patient: low-level spatial and temporal filters. Journal of Neuroscience, 9(5), 1628–40.CrossRefGoogle Scholar
Heywood, C. A., and Cowey, A. (1987). On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. Journal of Neuroscience, 7(9), 2601–17.CrossRefGoogle ScholarPubMed
Hurvich, L. M., and Jameson, D. (1957). An opponent-process theory of color vision. Psychological Review, 64(6), 384404.CrossRefGoogle Scholar
Johnson, E. N., Hawken, M. J., and Shapley, R. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neuroscience, 4(4), 409–16.CrossRefGoogle ScholarPubMed
Johnson, E. N., Hawken, M. J., and Shapley, R. (2004). Cone inputs in macaque primary visual cortex. Journal of Neurophysiology, 91, 2501–14.CrossRefGoogle ScholarPubMed
Judd, D. B. (1949). Response functions for types of vision according to the Müller theory. Journal of Research of the National Bureau of Standards, 42(1), 116.CrossRefGoogle Scholar
Kaas, J. H., and Lyon, D. C. (2001). Visual cortex organization in primates: theories of V3 and adjoining visual areas. Progress in Brain Research, 134, 285–95.CrossRefGoogle ScholarPubMed
Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., and Hudspeth, A. J. (2012). Principles of Neural Science, 5th edn. New York: McGraw-Hill.Google Scholar
Kaplan, E., and Shapley, R. M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 83(8), 2755–7.Google ScholarPubMed
Kara, P., and Boyd, J. D. (2009). A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature, 458(7238), 627–31.CrossRefGoogle ScholarPubMed
Kay, P., Regier, T., Gilbert, A. L., and Ivry, R. B. (2009). Lateralized Whorf: language influences perceptual decision in the right visual field. In Minett, J. W. and William, S.-Y. W. (eds.), Language, Evolution, and the Brain (pp. 261–84). City University of Hong Kong Press.Google Scholar
Kiper, D. C., Fenstemaker, S. B., and Gegenfurtner, K. R. (1997). Chromatic properties of neurons in macaque area V2. Visual Neuroscience, 14(6), 1061–72.CrossRefGoogle ScholarPubMed
Kitaoka, A., Gyoba, J., Kawabata, H., and Sakurai, K. (2001). Two competing mechanisms underlying neon color spreading, visual phantoms and grating induction. Vision Research, 41(18), 2347–54.CrossRefGoogle ScholarPubMed
Kleinholdermann, U., Franz, V. H., Gegenfurtner, K. R., and Stockmeier, K. (2009). Grasping isoluminant stimuli. Experimental Brain Research, 197(1), 1522.CrossRefGoogle ScholarPubMed
Kleinschmidt, A., Lee, B. B., Requardt, M., and Frahm, J. (1996). Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation. Experimental Brain Research, 110(2), 279–88.CrossRefGoogle ScholarPubMed
Kraft, J. M., and Brainard, D. H. (1999). Mechanisms of color constancy under nearly natural viewing. Proceedings of the National Academy of Sciences of the United States of America, 96(1), 307–12.Google ScholarPubMed
Krauskopf, J., and Gegenfurtner, K. (1992). Color discrimination and adaptation. Vision Research, 32(11), 2165–75.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D. R., and Heeley, D. W. (1982). Cardinal directions of color space. Vision Research, 22(9), 1123–31.CrossRefGoogle ScholarPubMed
Krauskopf, J., Williams, D. R., Mandler, M. B., and Brown, A. M. (1986). Higher order color mechanisms. Vision Research, 26(1), 2332.CrossRefGoogle ScholarPubMed
Krauskopf, J., and Zaidi, Q. (1986) Induced desensitization. Vision Research, 26(5), 759–62.CrossRefGoogle ScholarPubMed
Kuehni, R. G. (2004). Variability in unique hue selection: a surprising phenomenon. Color Research and Application, 29(2), 158–62.Google Scholar
Lamme, V. A., and Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–9.CrossRefGoogle ScholarPubMed
Lamme, V. A., Supèr, H., and Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–35.CrossRefGoogle ScholarPubMed
Landisman, C. E., and Ts’o, D. Y. (2002a). Color processing in macaque striate cortex: electrophysiological properties. Journal of Neurophysiology, 87(6), 3138–51.CrossRefGoogle ScholarPubMed
Landisman, C. E., and Ts’o, D. Y. (2002b). Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. Journal of Neurophysiology, 87(6), 3126–37.CrossRefGoogle ScholarPubMed
Lashgari, R., Li, X., Chen, Y., Kremkow, J., Bereshpolova, Y., Swadlow, H. A., and Alonso, J.-M. (2012). Response properties of local field potentials and neighboring single neurons in awake primary visual cortex. Journal of Neuroscience, 32(33), 11396–413.CrossRefGoogle ScholarPubMed
Lee, B. B., Martin, P. R., and Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology, 404, 323–47.CrossRefGoogle ScholarPubMed
Lee, B. B., Shapley, R. M., Hawken, M. J., and Sun, H. (2012). Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 29(2), A223–32.CrossRefGoogle ScholarPubMed
Lee, J., and Stromeyer, C. F. (1989). Contribution of human short-wave cones to luminance and motion detection. Journal of Physiology, 413, 563–93.CrossRefGoogle ScholarPubMed
Le Grand, Y. (1949). Les seuils différentiels de couleurs dans la théorie de Young. Revue d’Optique, 28, 261–78.Google ScholarPubMed
Lennie, P., Krauskopf, J., and Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience, 10(2), 649–69.CrossRefGoogle ScholarPubMed
Lennie, P., Pokorny, J., and Smith, V. C. (1993). Luminance. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 10(6), 1283–93.CrossRefGoogle ScholarPubMed
Leventhal, A. G., Rodieck, R. W., and Dreher, B. (1981). Retinal ganglion cell classes in the Old-World monkey: morphology and central projections. Science, 213(4512), 1139–42.CrossRefGoogle ScholarPubMed
Liu, Q., Chen, A. T., Wang, Q., Zhou, L., and Sun, H. J. (2008). An evidence for the effect of categorical perception on color perception. Acta Psychologica Sinica, 40, 813.CrossRefGoogle Scholar
Livingstone, M. S., and Hubel, D. H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience, 4(1), 309–56.CrossRefGoogle ScholarPubMed
Livingstone, M. S., and Hubel, D. H. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–9.CrossRefGoogle ScholarPubMed
Lu, Z. L., Lesmes, L. A., and Sperling, G. (1999). The mechanism of isoluminant chromatic motion perception. Proceedings of the National Academy of Sciences of the United Statesof America, 96(14), 8289–94.Google ScholarPubMed
Lu, Z. L., and Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35(19), 26972722.CrossRefGoogle ScholarPubMed
MacLeod, D. I., and Boynton, R. M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America, 69(8), 1183–6.CrossRefGoogle ScholarPubMed
Maloney, L. (1999). Physics-based approaches to modeling surface color perception. In Gegenfurtner, K. R. and Sharpe, L. T. (eds.), Color Vision: From Genes to Perception (pp. 387422). Cambridge University Press.Google Scholar
Maxwell, J. C. (1857). XVIII.—Experiments on colour, as perceived by the eye, with remarks on colour-blindness. Transactions of the Royal Society of Edinburgh, 21(2), 275–98.CrossRefGoogle Scholar
Maxwell, J. C. (1860). On the theory of compound colours, and the relations of the colours of the spectrum. Philosophical Transactions of the Royal Society of London, 150, 5784.Google Scholar
McKeefry, D. J., Murray, I. J., and Parry, N. R. (2007). Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 24(10), 3168–79.CrossRefGoogle ScholarPubMed
Merigan, W. H. (1996). Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques. Visual Neuroscience, 13(1), 5160.CrossRefGoogle ScholarPubMed
Merigan, W. H. (2000). Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention. Visual Neuroscience, 17(06), 949–58.CrossRefGoogle Scholar
Merigan, W. H., and Pham, H. A. (1998). V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations. Visual Neuroscience, 15(2), 359–67.CrossRefGoogle ScholarPubMed
Michael, C. R. (1978a). Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. Journal of Neurophysiology, 41(3), 572–88.Google ScholarPubMed
Michael, C. R. (1978b). Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. Journal of Neurophysiology, 41(5), 1233–49.Google ScholarPubMed
Michael, C. R. (1978c). Color-sensitive complex cells in monkey striate cortex. Journal of Neurophysiology, 41(5), 1250–66.CrossRefGoogle ScholarPubMed
Michael, C. R. (1979). Color-sensitive hypercomplex cells in monkey striate cortex. Journal of Neurophysiology, 42(3), 726–44.CrossRefGoogle ScholarPubMed
Mollon, J. D. (1989). “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. Journal of Experimental Biology, 146, 2138.CrossRefGoogle ScholarPubMed
Mollon, J. D. (2009). A neural basis for unique hues? Current Biology, 19(11), R441–2.CrossRefGoogle ScholarPubMed
Müller, G. E. (1930a). Über die Farbenempfindungen. Psychophysiche Untersuchungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 17, 1430.Google Scholar
Müller, G. E. (1930b). Über die Farbenempfindungen. Psychophysiche Untersuchungen. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 18, 435647.Google Scholar
Murphey, D. K., Yoshor, D., and Beauchamp, M. S. (2008). Perception matches selectivity in the human anterior color center. Current Biology, 18(3), 216–20.CrossRefGoogle ScholarPubMed
Nerger, J. L., Volbrecht, V. J., and Ayde, C. J. (1995). Unique hue judgments as a function of test size in the fovea and at 20-deg temporal eccentricity. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 12(6), 1225–32.CrossRefGoogle ScholarPubMed
Newton, J. R., and Eskew, R. T. (2003). Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity. Visual Neuroscience, 20(5), 511–21.CrossRefGoogle ScholarPubMed
Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., and Reid, R. C. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442(7105), 925–8.CrossRefGoogle ScholarPubMed
Olkkonen, M., Hansen, T., and Gegenfurtner, K. R. (2009). Categorical color constancy for simulated surfaces. Journal of Vision, 9(12), 118.CrossRefGoogle ScholarPubMed
Olkkonen, M., Witzel, C., Hansen, T., and Gegenfurtner, K. R. (2010). Categorical color constancy for real surfaces. Journal of Vision, 10(9), 122.CrossRefGoogle ScholarPubMed
Pasupathy, A., and Connor, C. E. (2002). Population coding of shape in area V4. Nature Neuroscience, 5(12), 1332–8.CrossRefGoogle ScholarPubMed
Pelli, D. (1981). The Effects of Visual Noise. Ph.D. dissertation, University of Cambridge.Google Scholar
Perry, V. H., Oehler, R., and Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience, 12(4), 1101–23.Google Scholar
Pinna, B., Brelstaff, G., and Spillmann, L. (2001). Surface color from boundaries: a new “watercolor” illusion. Vision Research, 41(20), 2669–76.CrossRefGoogle ScholarPubMed
Powell, G., Bompas, A., and Sumner, P. (2012). Making the incredible credible: afterimages are modulated by contextual edges more than real stimuli. Journal of Vision, 12(10), 113.CrossRefGoogle ScholarPubMed
Rabin, J., Switkes, E., Crognale, M., Schneck, M. E., and Adams, A. J. (1994). Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing. Vision Research, 34(20), 2657–71.CrossRefGoogle ScholarPubMed
Regan, D. (1973). Evoked potentials specific to spatial patterns of luminance and colour. Vision Research, 13(12), 23812402.CrossRefGoogle ScholarPubMed
Reid, R. C., and Shapley, R. M. (1992). Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature, 356(6371), 716–18.CrossRefGoogle ScholarPubMed
Reid, R. C., and Shapley, R. M. (2002). Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. Journal of Neuroscience, 22(14), 6158–75.CrossRefGoogle ScholarPubMed
Roe, A. W., and Ts’o, D. Y. (1999). Specificity of color connectivity between primate V1 and V2. Journal of Neurophysiology, 82(5), 2719–30.CrossRefGoogle ScholarPubMed
Roorda, A., and Williams, D. R. (1999). The arrangement of the three cone classes in the living human eye. Nature, 397, 520–2.CrossRefGoogle ScholarPubMed
Sachtler, W. L., and Zaidi, Q. (1992). Chromatic and luminance signals in visual memory. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 9(6), 877–94.CrossRefGoogle ScholarPubMed
Sankeralli, M. J., and Mullen, K. T. (1997). Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 14(10), 2633–46.CrossRefGoogle ScholarPubMed
Schein, S. J., and Desimone, R. (1990). Spectral properties of V4 neurons in the macaque. Journal of Neuroscience, 10(10), 3369–89.CrossRefGoogle ScholarPubMed
Schein, S. J., Marrocco, R. T., and de Monasterio, F. M. (1982). Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? Journal of Neurophysiology, 47(2), 193213.CrossRefGoogle Scholar
Schiller, P. H. (1993). The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Visual Neuroscience, 10(4), 717–46.CrossRefGoogle ScholarPubMed
Schiller, P. H. (1995). Effect of lesions in visual cortical area V4 on the recognition of transformed objects. Nature, 376(6538), 342–4.CrossRefGoogle ScholarPubMed
Schrödinger, E. (1920). Theorie der Pigmente von größter Leuchtkraft. Annalen Der Physik, 367(15), 603–22.CrossRefGoogle Scholar
Schrödinger, E. (1925). Über das Verhältnis der Vierfarben zur Dreifarbentheorie. Sitzungberichte. Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik. Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, 134, 471–90.Google Scholar
Seidemann, E., Poirson, A. B., Wandell, B. A., and Newsome, W. T. (1999). Color signals in area MT of the macaque monkey. Neuron, 24(4), 911–17.CrossRefGoogle ScholarPubMed
Shapiro, A. G. (2008). Separating color from color contrast. Journal of Vision, 8(1), 118.CrossRefGoogle ScholarPubMed
Shapley, R., and Hawken, M. (2002). Neural mechanisms for color perception in the primary visual cortex. Current Opinion in Neurobiology, 12(4), 426–32.CrossRefGoogle ScholarPubMed
Shipp, S., de Jong, B. M., Zihl, J., Frackowiak, R. S., and Zeki, S. (1994). The brain activity related to residual motion vision in a patient with bilateral lesions of V5. Brain, 117(5), 1023–38.CrossRefGoogle Scholar
Shipp, S., and Zeki, S. (2002). The functional organization of area V2. I. Specialization across stripes and layers. Visual Neuroscience, 19(2), 187210.CrossRefGoogle ScholarPubMed
Sillito, A. M., Cudeiro, J., and Jones, H. E. (2006). Always returning: feedback and sensory processing in visual cortex and thalamus. Trends in Neurosciences, 29(6), 307–16.CrossRefGoogle ScholarPubMed
Sincich, L. C., and Horton, J. C. (2002). Pale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex. Journal of Comparative Neurology, 447(1), 1833.CrossRefGoogle ScholarPubMed
Sincich, L. C., and Horton, J. C. (2005). The circuitry of V1 and V2: integration of color, form, and motion. Annual Review of Neuroscience, 28, 303–26.CrossRefGoogle ScholarPubMed
Singh, K. D., Smith, A. T., and Greenlee, M. W. (2000). Spatiotemporal frequency and direction sensitivities of human visual areas measured using fMRI. NeuroImage, 12(5), 550–64.CrossRefGoogle ScholarPubMed
Smith, V. C., and Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research, 15(2), 161–71.CrossRefGoogle Scholar
Smithson, H., and Zaidi, Q. (2004). Colour constancy in context: roles for local adaptation and levels of reference. Journal of Vision, 4(9), 693710.CrossRefGoogle ScholarPubMed
Song, J.-H., Rowland, J., McPeek, R. M., and Wade, A. R. (2011). Attentional modulation of fMRI responses in human V1 is consistent with distinct spatial maps for chromatically defined orientation and contrast. Journal of Neuroscience, 31(36), 12900–5.CrossRefGoogle ScholarPubMed
Stevanov, J., Marković, S., and Kitaoka, A. (2012). Aesthetic valence of visual illusions. i-Perception, 3(2), 112–40.CrossRefGoogle ScholarPubMed
Stockman, A., and Sharpe, L. T. (2000). The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Research, 40(13), 1711–37.Google ScholarPubMed
Stockman, A., and Sharpe, L. T. (2006). Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Ophthalmic and Physiological Optics, 26(3), 225–39.CrossRefGoogle ScholarPubMed
Stoughton, C. M., and Conway, B. R. (2008). Neural basis for unique hues. Current Biology, 18(16), R698–9.CrossRefGoogle ScholarPubMed
Stromeyer, C. F., Chaparro, A., and Kronauer, R. E. (1996). The colour and motion of moving patterns are processed independently? Investigative Ophthalmology and Visual Science, 37(Suppl.), s916.Google Scholar
Stromeyer, C. F., Kronauer, R. E., Ryu, A., Chaparro, A., and Eskew, R. T. (1995). Contributions of human long-wave and middle-wave cones to motion detection. Journal of Physiology, 485(1), 221–43.CrossRefGoogle ScholarPubMed
Stromeyer, C. F., Thabet, R., Chaparro, A., and Kronauer, R. E. (1999). Spatial masking does not reveal mechanisms selective to combined luminance and red-green color. Vision Research, 39(12), 20992112.CrossRefGoogle ScholarPubMed
Toscani, M., Valsecchi, M., and Gegenfurtner, K. R. (2013). Optimal sampling of visual information for lightness judgments. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 11163–8.Google ScholarPubMed
Ts’o, D. Y., and Gilbert, C. D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. Journal of Neuroscience, 8(5), 1712–27.Google ScholarPubMed
Ungerleider, L. G., and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.), Analysis of Visual Behavior (pp. 549–86). Boston, MA: MIT Press.Google Scholar
Valberg, A. (2001). Unique hues: an old problem for a new generation. Vision Research, 41(13), 1645–57.Google ScholarPubMed
Van Essen, D. C., and Zeki, S. M. (1978). The topographic organization of rhesus monkey prestriate cortex. Journal of Physiology, 277, 193226.CrossRefGoogle Scholar
Victor, J. D., Purpura, K., Katz, E., and Mao, B. (1994). Population encoding of spatial frequency, orientation, and color in macaque V1. Journal of Neurophysiology, 72(5), 2151–66.CrossRefGoogle ScholarPubMed
von Kries, J. (1905). Die Gesichtsempfindungen. In Nagel, W. (ed.), Handbuch der Physiologie der Menschen (pp. 109282). Braunschweig: Vieweg.Google Scholar
von Kries, J. (1970/1878). Physiology of visual sensations. In MacAdam, D. L. (ed.), Sources of Color Science. Cambridge, MA: MIT Press.Google Scholar
Wade, A. R., Brewer, A. A., Rieger, J. W., and Wandell, B. A. (2002). Functional measurements of human ventral occipital cortex: retinotopy and colour. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 357(1424), 963–73.Google ScholarPubMed
Wagner, G., and Boynton, R. M. (1972). Comparison of four methods of heterochromatic photometry. Journal of the Optical Society of America, 62(12), 1508–15.CrossRefGoogle ScholarPubMed
Walsh, V., Butler, S. R., Carden, D., and Kulikowski, J. J. (1992). The effects of V4 lesions on the visual abilities of macaques: shape discrimination. Behavioural Brain Research, 50(1–2), 115–26.CrossRefGoogle ScholarPubMed
Walsh, V., Carden, D., Butler, S. R., and Kulikowski, J. J. (1993). The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy. Behavioural Brain Research, 53(1–2), 5162.CrossRefGoogle ScholarPubMed
Walsh, V., Kulikowski, J. J., Butler, S. R., and Carden, D. (1992). The effects of lesions of area V4 on the visual abilities of macaques: colour categorization. Behavioural Brain Research, 52(1), 81–9.CrossRefGoogle ScholarPubMed
Walsh, V., Le Mare, C., Blaimire, A., and Cowey, A. (2000). Normal discrimination performance accompanied by priming deficits in monkeys with V4 or TEO lesions. NeuroReport, 11(7), 1459–62.Google ScholarPubMed
Watt, J. M., and Breyer-Brandwijk, M. G. (1932). The Medicinal and Poisonous Plants of Southern Africa. Edinburgh: Livingstone.Google Scholar
Webster, M. A., Miyahara, E., Malkoc, G., and Raker, V. E. (2000). Variations in normal color vision. II. Unique hues. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 17(9), 1545–55.Google ScholarPubMed
Webster, M. A., and Mollon, J. D. (1994). The influence of contrast adaptation on color appearance. Vision Research, 34(15), 19932020.CrossRefGoogle ScholarPubMed
Weliky, M., Bosking, W. H., and Fitzpatrick, D. (1996). A systematic map of direction preference in primary visual cortex. Nature, 379(6567), 725–8.CrossRefGoogle ScholarPubMed
White, B. J., Kerzel, D., and Gegenfurtner, K. R. (2006). Visually guided movements to color targets. Experimental Brain Research, 175(1), 110–26.CrossRefGoogle ScholarPubMed
Witzel, C., and Gegenfurtner, K. R. (2011). Is there a lateralized category effect for color?. Journal of Vision, 11(12), 125.CrossRefGoogle Scholar
Witzel, C., and Gegenfurtner, K. R. (2013). Categorical sensitivity to color differences. Journal of Vision, 13(7), 133.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research, 171(1), 1128.CrossRefGoogle ScholarPubMed
Wyszecki, G., and Stiles, W. S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. New York: Wiley.Google Scholar
Yau, J. M., Pasupathy, A., Brincat, S. L., and Connor, C. E. (2012). Curvature processing dynamics in macaque area V4. Cerebral Cortex, 23(1), 198209.CrossRefGoogle ScholarPubMed
Young, T. (1802). The Bakerian lecture: On the theory of light and colours. Philosophical Transactions of the Royal Society of London, 92, 1248.Google Scholar
Zaidi, Q. (1992). Parallel and serial connections between human color mechanisms. Advances in Psychology, 86, 227–59.CrossRefGoogle Scholar
Zaidi, Q. (2005). The role of adaptation in color constancy. In Clifford, C. W. G. and Rhodes, G. (eds.), Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision. Oxford University Press.Google Scholar
Zaidi, Q., and Bostic, M. (2008). Color strategies for object identification. Vision Research, 48(26), 2673–81.CrossRefGoogle ScholarPubMed
Zaidi, Q., and DeBonet, J. S. (2000). Motion energy versus position tracking: spatial, temporal, and chromatic parameters. Vision Research, 40(26), 3613–35.CrossRefGoogle ScholarPubMed
Zaidi, Q., Ennis, R., Cao, D., and Lee, B. (2012). Neural locus of color afterimages. Current Biology, 22(3), 220–4.CrossRefGoogle ScholarPubMed
Zaidi, Q., and Halevy, D. (1993). Visual mechanisms that signal the direction of color changes. Vision Research, 33(8), 1037–51.CrossRefGoogle ScholarPubMed
Zaidi, Q., and Shapiro, A. G. (1993). Adaptive orthogonalization of opponent-color signals. Biological Cybernetics, 69(5–6), 415–28.CrossRefGoogle ScholarPubMed
Zeki, S. (1983a). Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience, 9(4), 741–65.Google ScholarPubMed
Zeki, S. (1983b). Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience, 9(4), 767–81.Google ScholarPubMed
Zeki, S. (1983c). The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proceedings of the Royal Society of London. B, Biological Sciences, 217(1209), 449–70.Google ScholarPubMed
Zemany, L., Stromeyer, C. F., Chaparro, A., and Kronauer, R. E. (1998). Motion detection on flashed, stationary pedestal gratings: evidence for an opponent-motion mechanism. Vision Research, 38(6), 795812.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×