Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 14
  • Print publication year: 2015
  • Online publication date: September 2015

19 - Epidermal electronics – flexible electronics for biomedical applications

from Part IV - Biomimetic systems

Summary

Most people are impressed, if not amazed, at the fantastic progress in the biomedical field, which barely existed 50 years ago. There have been giant leaps not just in the manner in which technology is being used to treat patients, but also in the way the electronics and sensors have diffused into society and resulted in paradigm shifts in health monitoring. Electronic microsystems can now be ingested (e.g. swallowable capsules) to explore the gastrointestinal tract and can transmit the acquired information to a base station [1]. The march of electronic technologies to the atomic scale and to non-planarity (i.e. three dimensions), and rapid advances in system, cell, and molecular biology will forge an increased synergy between electronics and biology, and we can see more exciting opportunities in the near future. For example, in the next decade it may become possible to restore vision or reverse the effects of spinal cord injury or disease, or for a lab-on-a-chip to allow medical diagnoses without a clinic, or instantaneous biological agent detection. Some of these fields are discussed in detail in other chapters of this book. Similarly, we may see new ways of recording neural signals or brain–machine interfaces if the electronics could become ultra-thin, bendable, and stretchable, and thus integrate intimately with the soft, curvilinear surfaces of biological tissues. Some of these developments are discussed in Chapters 22–27. Recent results in this direction are encouraging and make it a real possibility in the near future [2,3]. This chapter is about this key enabler, i.e. epidermal electronics, which will lead to further convergence of biology and electronics. The term epidermal electronics here also refers to electronic skin or e-skin (Figure 19.1), which is an ultra-thin and lightweight structure with electronic and/or sensing components on flexible/bendable substrates.

Related content

Powered by UNSILO
References
McCaffrey, C., Chevalerias, O., Mathuna, C. O., and Twomey, K. 2008. Swallowable-capsule technology. IEEE Pervasive Comput., 7(1), 23–29.
Kim, D-H., Viventi, J., Amsden, J.J. et al. 2010. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater., 9, 511–517.
Kim, D-H., Lu, N., Ma, R., et al. 2011. Epidermal electronics. Science, 333(6044), 838–843.
Dahiya, R. S., Mittendorfer, P., Valle, M., Cheng, G., and Lumelsky, V. 2013. Directions towards effective utilization of tactile skin – a review. IEEE Sensors J., 1–18.
Mueller, R. L., and Sanborn, T. A. 1995. The history of interventional cardiology: Cardiac catheterization, angioplasty, and related interventions. Am. Heart J., 129(1), 146–172.
Kim, D-H., Lu, N., Ghaffari, R., et al. 2011. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater., 10(4), 316–323.
Sun, Y., and Rogers, J. A. 2004. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett., 4(10), 1953–1959. .
Dahiya, R. S., Adami, A., Collini, C., and Lorenzelli, L. 2012. Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates. Microelectron. Eng., 98, 502–507.
Sekitani, T., Zschieschang, U., Klauk, H., and Someya, T. 2010. Flexible organic transistors and circuits with extreme bending stability. Nature Mater., 9(12), 1015–1022.
Gardeniers, J. G. E, and Van den Berg, A. 2004. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal. Bioanal. Chem., 378(7), 1700–1703.
Srinivasan, V., Pamula, V. K., and Fair, R. B. 2004. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab-on-a-chip, 4(4), 310–315.
Weigl, B. H., Bardell, R. L., and Cabrera, C. R. 2003. Lab-on-a-chip for drug development. Adv. Drug Delivery Rev., 55(3), 349–377.
Zrenner, E. 2012. Artificial vision: Solar cells for the blind. Nature Photon., 6(6), 344–345.
Weiland, J. D., and Humayun, M. S. 2008. Visual prosthesis. Proc. IEEE, 96(7), 1076–1084.
Horsager, A., Greenberg, R. J., and Fine, I. 2010. Spatiotemporal interactions in retinal prosthesis subjects. Invest. Ophthalmol. Vis. Sci., 51, 1223–1233.
Stieglitz, T., Haberer, W., and Goertz, M. 2004. Development of an inductively coupled epiretinal vision prosthesis. Proc. 26th Annual Int. Conf. IEEE EMBS San Francisco, CA, USA. pp. 4178–4181
Lacour, S.P., Benmerah, S., Tarte, E., et al. 2010. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput., 48, 945–954.
Xu, X., Davanco, M., Qi, X., and Forrest, S. R. 2008. Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays. Org. Electron., 9(6), 1122–1127.
Hsu, P. I., Bhattacharya, R., Gleskova, H., et al. 2002. Thin-film transistor circuits on large-area spherical surfaces. Appl. Phys. Lett., 81, 1723–1725.
Ko, H. C., Stoykovich, M. P., Song, J., et al. 2008. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454, 748–753.
Dahiya, R. S., and Valle, M. 2013. Robotic Tactile Sensing – Technologies and System. Dordrecht: Springer Science + Business Media. p 245.
Dahiya, R. S., Adami, A., Pinna, L. et al. 2014. Tactile sensing chip with POSFET array and integrated interface electronics. IEEE Sensors J., 14, 3448–3457.
Dahiya, R. S., Metta, G., Valle, M., and Sandini, G. 2010. Tactile sensing – from humans to humanoids. IEEE Trans. Robot., 26(1), 1–20.
Dahiya, R. S., Cattin, D., Adami, A., et al. 2011. Towards tactile sensing system on chip for robotic applications. IEEE Sensors J., 11(12), 3216–3226.
Dahiya, R. S., Metta, G., Cannata, G., and Valle, M. 2011. Guest Editorial Special Issue on robotic sense of touch. IEEE Trans. Robot., 27(3), 385–388.
Cannata, G., Dahiya, R. S., Maggiali, M., et al. 2010. Modular skin for humanoid robot systems. Proc. 4th Int. Conf. Cognitive Systems (CogSys2010), Zurich, Switzerland. pp 1–2.
Cheng, G., and Mittendorfer, P. 2011. Humanoid multi-modal tactile sensing modules. IEEE Trans. Robot., 27(3), 13–22.
Ohmura, Y., and Kuniyoshi, Y. 2007. Humanoid robot which can lift a 30 kg box by whole body contact and tactile feedback. Proce. IEEE/RSJ Int. Conf. Intelligent Robots & Systems, San Diego, USA. pp 1136–1141.
Mukai, T., Onishi, M., Odashima, T., Hirano, S., and Luo, Z. 2008. Development of the tactile sensor system of a human-interactive robot “RI-MAN”. IEEE Trans. Robot., 24(2), 505–512.
Kim, D-H., Ahn, J-H., Choi, , et al. 2008. Stretchable and foldable silicon integrated circuits. Science, 320, 507–511.
Lacour, S. P., Tsay, C., and Wagner, S. 2004. An elastically stretchable TFT circuit. IEEE Elect. Device Lett., 25(12), 792–794.
Dahiya, R. S., and Gori, M. 2010. Probing with and into fingerprints. J. Neurophysiol., 104(1), 1–3.
Nathan, A., Ahnood, A., Cole, M. T., et al. 2012. Flexible electronics: the next ubiquitous platform. Proc. IEEE, 100, 1486–1517.
Purves, D., Augustine, G.A., Fitzpatrick, D. et al. 2008. Neuroscience. Sunderland, MA: Sinauer.
Frings, S., and Bradley, J. 2004. Transduction Channels in Sensory Cells. Weinheim, Germany: Wiley-VCH. p 155.
Matschinsky, F. M. 1996. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes, 45(2), 223–241.
Chaudhari, N., Yang, H., Lamp, C., et al. 1996. The taste of monosodium glutamate: Membrane receptors in taste buds. J. Neurosci., 16(12), 3817–3826.
Turner, C. W., Gantz, B. J., Vidal, C., Behrens, A., and Henry, B. A. 2004. Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing. J. Acoust. Soc. Am., 115(4), 1729–1735.
Chute, P. M., and Nevins, M. E. 2002. The Parents’ Guide to Cochlear Implants. Washington, DC: Gallaudet Univ. Press.
Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M. 2012. A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil., 9(21), 1–17.
Dahiya, R. S., and Gennaro, S. 2013. Bendable ultra-thin chips on flexible foils. IEEE Sensors J., 13(11), 4121–4138.
Dahiya, R. S., Adami, A., Collini, C., and Lorenzelli, L. 2012. Bendable ultra-thin silicon chips on foil. IEEE Conf: Sensors
Teng, X-F., Zhang, Y-T., Poon, C. C. Y., and Bonato, P. 2008. Wearable medical systems for p-Health. IEEE Rev. Biomed. Eng., 1, 62–74.
Bonato, P. 2010. Wearable sensors and systems – From enabling technology to clinical applications. IEEE Rev. Biomed. Eng., 29, 25–37.
Paradiso, R., Loriga, G., Taccini, N., Gemignani, A., and Ghelarducci, B. 2005. WEALTHY, a wearable healthcare system: new frontier on e-textile. J. Telecom. Inform. Technol., 4, 105–113.
Jung, S., Lauterbach, C., Strasser, M., and Weber, W. 2003. Enabling technologies for disappearing electronics in smart textiles. Proc. 2003 IEEE Int. Solid-State Circuits Conf. IEEE. pp 386–387.
Lee, J.B., and Subramanian, V. 2005. Weave patterned organic transistors on fiber for E-textiles. IEEE Trans. Electron Devices, 52(2), 269–275.
Cherenack, K., Zysset, C., Kinkeldei, T., Mnzenrieder, N., and Trster, G. 2010. Woven electronic fibers with sensing and display functions for smart textiles. Adv. Mater., 22(45), 5178–5182.
Baxter, J. B., and Aydil, E. S. 2005. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett., 86(5), 053114.
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P. 2005. Nanowire dye-sensitized solar cells. Nature Mater., 4(6), 455–459.
Rensmo, H., Keis, K., Lindstrm, H., et al. 1997. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B, 101(14), 2598–2601.
Myny, K., Steudel, S., Vicca, P., et al. 2009. Plastic circuits and tags for 13.56 MHz radio-frequency communication. Solid-State Electron., 53(12), 1220–1226.
Baude, P. F., Ender, D. A., Haase, M. A., et al. 2003. Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett., 82(22), 3964–3966.
Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., and Gruner, G. 2009. Film supercapacitors using single-walled carbon nanotubes. Nano Lett., 9(5), 1872–1876.
Nukala, V. N., and Halal, W. E. 2010. Emerging neurotechnologies: Trends, relevance and prospects. Synesis: J. Sci. Technol. Ethics Policy, 1(1), G36–G53.
CONTEST. Available online at: .
Rodger, D. C., Fong, A., Li, H., et al. 2008. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors Actuators B: Chem., 132(2), 449–460.
Kelly, S. K., Shire, D. B., Chen, J., et al. 2011. Communication and control system for a 15-channel hermetic retinal prosthesis. Biomed. Signal Processing Control, 6(4), 356–363.