Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T17:48:49.451Z Has data issue: false hasContentIssue false

19 - Epidermal electronics – flexible electronics for biomedical applications

from Part IV - Biomimetic systems

Published online by Cambridge University Press:  05 September 2015

Ravinder S. Dahiya
Affiliation:
University of Glasgow
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Most people are impressed, if not amazed, at the fantastic progress in the biomedical field, which barely existed 50 years ago. There have been giant leaps not just in the manner in which technology is being used to treat patients, but also in the way the electronics and sensors have diffused into society and resulted in paradigm shifts in health monitoring. Electronic microsystems can now be ingested (e.g. swallowable capsules) to explore the gastrointestinal tract and can transmit the acquired information to a base station [1]. The march of electronic technologies to the atomic scale and to non-planarity (i.e. three dimensions), and rapid advances in system, cell, and molecular biology will forge an increased synergy between electronics and biology, and we can see more exciting opportunities in the near future. For example, in the next decade it may become possible to restore vision or reverse the effects of spinal cord injury or disease, or for a lab-on-a-chip to allow medical diagnoses without a clinic, or instantaneous biological agent detection. Some of these fields are discussed in detail in other chapters of this book. Similarly, we may see new ways of recording neural signals or brain–machine interfaces if the electronics could become ultra-thin, bendable, and stretchable, and thus integrate intimately with the soft, curvilinear surfaces of biological tissues. Some of these developments are discussed in Chapters 22–27. Recent results in this direction are encouraging and make it a real possibility in the near future [2,3]. This chapter is about this key enabler, i.e. epidermal electronics, which will lead to further convergence of biology and electronics. The term epidermal electronics here also refers to electronic skin or e-skin (Figure 19.1), which is an ultra-thin and lightweight structure with electronic and/or sensing components on flexible/bendable substrates.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 245 - 255
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McCaffrey, C., Chevalerias, O., Mathuna, C. O., and Twomey, K. 2008. Swallowable-capsule technology. IEEE Pervasive Comput., 7(1), 23–29.CrossRefGoogle Scholar
Kim, D-H., Viventi, J., Amsden, J.J. et al. 2010. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater., 9, 511–517.CrossRefGoogle ScholarPubMed
Kim, D-H., Lu, N., Ma, R., et al. 2011. Epidermal electronics. Science, 333(6044), 838–843.CrossRefGoogle ScholarPubMed
Dahiya, R. S., Mittendorfer, P., Valle, M., Cheng, G., and Lumelsky, V. 2013. Directions towards effective utilization of tactile skin – a review. IEEE Sensors J., 1–18.Google Scholar
Mueller, R. L., and Sanborn, T. A. 1995. The history of interventional cardiology: Cardiac catheterization, angioplasty, and related interventions. Am. Heart J., 129(1), 146–172.CrossRefGoogle ScholarPubMed
Kim, D-H., Lu, N., Ghaffari, R., et al. 2011. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Mater., 10(4), 316–323.CrossRefGoogle ScholarPubMed
Sun, Y., and Rogers, J. A. 2004. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett., 4(10), 1953–1959. .CrossRefGoogle Scholar
Dahiya, R. S., Adami, A., Collini, C., and Lorenzelli, L. 2012. Fabrication of single crystal silicon micro-/nanostructures and transferring them to flexible substrates. Microelectron. Eng., 98, 502–507.CrossRefGoogle Scholar
Sekitani, T., Zschieschang, U., Klauk, H., and Someya, T. 2010. Flexible organic transistors and circuits with extreme bending stability. Nature Mater., 9(12), 1015–1022.CrossRefGoogle ScholarPubMed
Gardeniers, J. G. E, and Van den Berg, A. 2004. Lab-on-a-chip systems for biomedical and environmental monitoring. Anal. Bioanal. Chem., 378(7), 1700–1703.CrossRefGoogle ScholarPubMed
Srinivasan, V., Pamula, V. K., and Fair, R. B. 2004. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab-on-a-chip, 4(4), 310–315.CrossRefGoogle ScholarPubMed
Weigl, B. H., Bardell, R. L., and Cabrera, C. R. 2003. Lab-on-a-chip for drug development. Adv. Drug Delivery Rev., 55(3), 349–377.CrossRefGoogle ScholarPubMed
Zrenner, E. 2012. Artificial vision: Solar cells for the blind. Nature Photon., 6(6), 344–345.CrossRefGoogle Scholar
Weiland, J. D., and Humayun, M. S. 2008. Visual prosthesis. Proc. IEEE, 96(7), 1076–1084.CrossRefGoogle Scholar
Horsager, A., Greenberg, R. J., and Fine, I. 2010. Spatiotemporal interactions in retinal prosthesis subjects. Invest. Ophthalmol. Vis. Sci., 51, 1223–1233.CrossRefGoogle ScholarPubMed
Stieglitz, T., Haberer, W., and Goertz, M. 2004. Development of an inductively coupled epiretinal vision prosthesis. Proc. 26th Annual Int. Conf. IEEE EMBS San Francisco, CA, USA. pp. 4178–4181
Lacour, S.P., Benmerah, S., Tarte, E., et al. 2010. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput., 48, 945–954.CrossRefGoogle ScholarPubMed
Xu, X., Davanco, M., Qi, X., and Forrest, S. R. 2008. Direct transfer patterning on three dimensionally deformed surfaces at micrometer resolutions and its application to hemispherical focal plane detector arrays. Org. Electron., 9(6), 1122–1127.CrossRefGoogle Scholar
Hsu, P. I., Bhattacharya, R., Gleskova, H., et al. 2002. Thin-film transistor circuits on large-area spherical surfaces. Appl. Phys. Lett., 81, 1723–1725.CrossRefGoogle Scholar
Ko, H. C., Stoykovich, M. P., Song, J., et al. 2008. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 454, 748–753.CrossRefGoogle ScholarPubMed
Dahiya, R. S., and Valle, M. 2013. Robotic Tactile Sensing – Technologies and System. Dordrecht: Springer Science + Business Media. p 245.CrossRefGoogle Scholar
Dahiya, R. S., Adami, A., Pinna, L. et al. 2014. Tactile sensing chip with POSFET array and integrated interface electronics. IEEE Sensors J., 14, 3448–3457.CrossRefGoogle Scholar
Dahiya, R. S., Metta, G., Valle, M., and Sandini, G. 2010. Tactile sensing – from humans to humanoids. IEEE Trans. Robot., 26(1), 1–20.CrossRefGoogle Scholar
Dahiya, R. S., Cattin, D., Adami, A., et al. 2011. Towards tactile sensing system on chip for robotic applications. IEEE Sensors J., 11(12), 3216–3226.CrossRefGoogle Scholar
Dahiya, R. S., Metta, G., Cannata, G., and Valle, M. 2011. Guest Editorial Special Issue on robotic sense of touch. IEEE Trans. Robot., 27(3), 385–388.CrossRefGoogle Scholar
Cannata, G., Dahiya, R. S., Maggiali, M., et al. 2010. Modular skin for humanoid robot systems. Proc. 4th Int. Conf. Cognitive Systems (CogSys2010), Zurich, Switzerland. pp 1–2.
Cheng, G., and Mittendorfer, P. 2011. Humanoid multi-modal tactile sensing modules. IEEE Trans. Robot., 27(3), 13–22.Google Scholar
Ohmura, Y., and Kuniyoshi, Y. 2007. Humanoid robot which can lift a 30 kg box by whole body contact and tactile feedback. Proce. IEEE/RSJ Int. Conf. Intelligent Robots & Systems, San Diego, USA. pp 1136–1141.
Mukai, T., Onishi, M., Odashima, T., Hirano, S., and Luo, Z. 2008. Development of the tactile sensor system of a human-interactive robot “RI-MAN”. IEEE Trans. Robot., 24(2), 505–512.CrossRefGoogle Scholar
Kim, D-H., Ahn, J-H., Choi, , et al. 2008. Stretchable and foldable silicon integrated circuits. Science, 320, 507–511.CrossRefGoogle ScholarPubMed
Lacour, S. P., Tsay, C., and Wagner, S. 2004. An elastically stretchable TFT circuit. IEEE Elect. Device Lett., 25(12), 792–794.CrossRefGoogle Scholar
Dahiya, R. S., and Gori, M. 2010. Probing with and into fingerprints. J. Neurophysiol., 104(1), 1–3.CrossRefGoogle ScholarPubMed
Nathan, A., Ahnood, A., Cole, M. T., et al. 2012. Flexible electronics: the next ubiquitous platform. Proc. IEEE, 100, 1486–1517.CrossRefGoogle Scholar
Purves, D., Augustine, G.A., Fitzpatrick, D. et al. 2008. Neuroscience. Sunderland, MA: Sinauer.Google Scholar
Frings, S., and Bradley, J. 2004. Transduction Channels in Sensory Cells. Weinheim, Germany: Wiley-VCH. p 155.CrossRefGoogle Scholar
Matschinsky, F. M. 1996. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes, 45(2), 223–241.CrossRefGoogle ScholarPubMed
Chaudhari, N., Yang, H., Lamp, C., et al. 1996. The taste of monosodium glutamate: Membrane receptors in taste buds. J. Neurosci., 16(12), 3817–3826.CrossRefGoogle ScholarPubMed
Turner, C. W., Gantz, B. J., Vidal, C., Behrens, A., and Henry, B. A. 2004. Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing. J. Acoust. Soc. Am., 115(4), 1729–1735.CrossRefGoogle ScholarPubMed
Chute, P. M., and Nevins, M. E. 2002. The Parents’ Guide to Cochlear Implants. Washington, DC: Gallaudet Univ. Press.Google Scholar
Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M. 2012. A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil., 9(21), 1–17.CrossRefGoogle ScholarPubMed
Dahiya, R. S., and Gennaro, S. 2013. Bendable ultra-thin chips on flexible foils. IEEE Sensors J., 13(11), 4121–4138.CrossRefGoogle Scholar
Dahiya, R. S., Adami, A., Collini, C., and Lorenzelli, L. 2012. Bendable ultra-thin silicon chips on foil. IEEE Conf: Sensors
Teng, X-F., Zhang, Y-T., Poon, C. C. Y., and Bonato, P. 2008. Wearable medical systems for p-Health. IEEE Rev. Biomed. Eng., 1, 62–74.CrossRefGoogle ScholarPubMed
Bonato, P. 2010. Wearable sensors and systems – From enabling technology to clinical applications. IEEE Rev. Biomed. Eng., 29, 25–37.Google ScholarPubMed
Paradiso, R., Loriga, G., Taccini, N., Gemignani, A., and Ghelarducci, B. 2005. WEALTHY, a wearable healthcare system: new frontier on e-textile. J. Telecom. Inform. Technol., 4, 105–113.Google Scholar
Jung, S., Lauterbach, C., Strasser, M., and Weber, W. 2003. Enabling technologies for disappearing electronics in smart textiles. Proc. 2003 IEEE Int. Solid-State Circuits Conf. IEEE. pp 386–387.
Lee, J.B., and Subramanian, V. 2005. Weave patterned organic transistors on fiber for E-textiles. IEEE Trans. Electron Devices, 52(2), 269–275.CrossRefGoogle Scholar
Cherenack, K., Zysset, C., Kinkeldei, T., Mnzenrieder, N., and Trster, G. 2010. Woven electronic fibers with sensing and display functions for smart textiles. Adv. Mater., 22(45), 5178–5182.CrossRefGoogle ScholarPubMed
Baxter, J. B., and Aydil, E. S. 2005. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett., 86(5), 053114.CrossRefGoogle Scholar
Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P. 2005. Nanowire dye-sensitized solar cells. Nature Mater., 4(6), 455–459.CrossRefGoogle ScholarPubMed
Rensmo, H., Keis, K., Lindstrm, H., et al. 1997. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B, 101(14), 2598–2601.CrossRefGoogle Scholar
Myny, K., Steudel, S., Vicca, P., et al. 2009. Plastic circuits and tags for 13.56 MHz radio-frequency communication. Solid-State Electron., 53(12), 1220–1226.CrossRefGoogle Scholar
Baude, P. F., Ender, D. A., Haase, M. A., et al. 2003. Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett., 82(22), 3964–3966.CrossRefGoogle Scholar
Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., and Gruner, G. 2009. Film supercapacitors using single-walled carbon nanotubes. Nano Lett., 9(5), 1872–1876.CrossRefGoogle ScholarPubMed
Nukala, V. N., and Halal, W. E. 2010. Emerging neurotechnologies: Trends, relevance and prospects. Synesis: J. Sci. Technol. Ethics Policy, 1(1), G36–G53.Google Scholar
CONTEST. Available online at: .
Rodger, D. C., Fong, A., Li, H., et al. 2008. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sensors Actuators B: Chem., 132(2), 449–460.CrossRefGoogle Scholar
Kelly, S. K., Shire, D. B., Chen, J., et al. 2011. Communication and control system for a 15-channel hermetic retinal prosthesis. Biomed. Signal Processing Control, 6(4), 356–363.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×