Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T22:39:31.923Z Has data issue: false hasContentIssue false

37 - CMOS electrochemical biosensors: instrumentation and integration

from Part VII - Lab-on-a-chip

Published online by Cambridge University Press:  05 September 2015

Xiaowen Liu
Affiliation:
Michigan State University
Lin Li
Affiliation:
Michigan State University
Andrew J. Mason
Affiliation:
Michigan State University
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Introduction

There is an opportunity for greatly increased synergy between electronics and biology, fostered by the march of electronics technologies to the atomic scale, and by rapid advances in system, cell, and molecular biology. The convergence of biology and electronics has the potential for significant impacts on many areas important to national economies and well-being, including healthcare and medicine, homeland security, forensics, and protecting the environment and the food supply. Electrochemical biosensors are label-free detection, which eliminates the external labels or indicators and greatly shortens the assay time. They are widely used for the detection of protein binding events, hybridized DNA, neuron tissue, bacteria, and enzyme reactions.

Miniaturized sensor arrays are capable of parallel analysis of multiple parameters. Because of the distinct advantages of microsystem platforms, there has been a trend to integrate sensor arrays onto the surface of silicon chips and perform measurement using on-chip CMOS electronics [1–3]. At the same time, there is a great opportunity to expand lab-on-a-chip solutions that replace bulky benchtop sample analysis tools with simple, low-power, portable systems. The fabrication compatibility between many bio/chemical sensor interfaces and CMOS technology makes a CMOS circuit an outstanding candidate for a silicon-based lab-on-chip solution [4].

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 448 - 468
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schienle, M., Paulus, C., Frey, A., et al., “A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion,” IEEE J. Solid State Circuits, vol. 39, pp. 2438–2445, 2004.CrossRefGoogle Scholar
Eversmann, B., Jenkner, M., Hofmann, F., et al., “A 128×128 CMOS biosensor array for extracellular recording of neural activity,” IEEE J. Solid-State Circuits, vol. 38, pp. 2306–2317, 2003.CrossRefGoogle Scholar
Zhu, X. and Ahn, C., “On-chip electrochemical analysis system using nanoelectrodes and bioelectronic CMOS chip,” IEEE J. Sensors, vol. 6, pp. 1280–1286, 2006.CrossRefGoogle Scholar
Jang, B. and Hassibi, A., “Biosensor systems in standard CMOS processes: Fact or fiction?IEEE Symp. Indust. Electron., pp. 2045–2050, 2008.Google Scholar
Thevenot, D. R., Toth, K., Durst, R. A., and Wilsond, G. S., “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron., vol. 16, pp. 121–131, 2001.Google ScholarPubMed
Pohanka, M. and Skládal, P., “Electrochemical biosensors – principles and applications,” J. Appl. Biomed., vol. 6, pp. 57–64, 2008.Google Scholar
Bard, A., and Faulkner, L., Electrochemical Methods: Fundamentals and Applications, 2nd edn. John Wiley & Sons, 2000.Google Scholar
Wang, J., “Amperometric biosensors for clinical and therapeutic drug monitoring: a review,” J. Pharm. Biomed. Anal., vol. 19, pp. 47–53, 1999.CrossRefGoogle ScholarPubMed
Stefan, R. I., van Staden, J. F., and Aboul-Enein, H. Y., “Immunosensors in clinical analysis,”Fresenius J. Anal. Chem., vol. 366, pp. 659–668, 2000.CrossRefGoogle Scholar
Palchettia, I., Cagnini, A., Carlo, M. D., et al., “Determination of anticholinesterase pesticides in real samples using a disposable biosensor,” Anal. Chim. Acta, vol. 337, pp. 315–321, 1997.CrossRefGoogle Scholar
Mongra, A. C., Kaur, A., and Bansal, R. K., “Review study on electrochemical-based biosensors,” Int. J. Eng. Res. Applic., vol. 2, pp. 743–749, 2012.Google Scholar
Yang, C., Jadhav, S. R., Worden, R. M., and Mason, A. J., “Compact low-power impedance-to-digital converter for sensor array microsystems,” IEEE J. Solid State Circuits, vol. 44, pp. 2844–2855, 2009.CrossRefGoogle Scholar
Stelzle, M., Weissmuller, G., and Sackmann, E., “On the application of supported bilayers as receptive layers for biosensors with electrical detection,” J. Phys. Chem., vol. 97, pp. 2974–2981, 1993.CrossRefGoogle Scholar
Yin, F., “A novel capacitive sensor based on human serum albumin-chelant complex as heavy metal ions chelating proteins,” Anal. Lett., vol. 37, pp. 1269–1284, 2004.CrossRefGoogle Scholar
Bontidean, I., Berggren, C., Johansson, G., et al., “Detection of heavy metal ions at femtomolar levels using protein-based biosensors,” Anal. Chem., vol. 70, p. 4162, 1998.CrossRefGoogle ScholarPubMed
Yang, L. J., Li, Y. B., Griffis, C. L., and Johnson, M. G., “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium,” Biosens. Bioelectron., vol. 19, pp. 1139–1147, 2004.CrossRefGoogle ScholarPubMed
Mishra, N. N., Retterer, S., Zieziulewicz, T. J., et al., “On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis,” Biosens. Bioelectron., vol. 21, pp. 696–704, 2005.CrossRefGoogle ScholarPubMed
Turner, R. F. B., Harrison, D. J., and Baltes, H. P., “A CMOS potentiostat for amperometric chemical sensors,” IEEE J. Solid-State Circuits, vol. 22, pp. 473–478, June 1987.CrossRefGoogle Scholar
Ahmadi, M. M. J., G.A., “Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors,” IEEE Trans. Circuits Systems, vol. 56, pp. 1339–1348, 2008.CrossRefGoogle Scholar
Li, L., Liu, X., Qureshi, W. A., and Mason, A. J., “CMOS amperometric instrumentation and packaging for biosensor array applications,” IEEE Biomed. Circuits Systems Conf., vol. 5, pp. 439–448, 2012.CrossRefGoogle Scholar
Martin, S. M., Gebara, F. H., Larivee, B. J., and Brown, R. B., “A CMOS-integrated microinstrument for trace detection of heavy metals,” IEEE J. Solid State Circuits, vol. 40, pp. 2777–2786, 2005.CrossRefGoogle Scholar
Lauwers, E., Suls, J., Gumbrecht, W., et al., “A CMOS multiparameter biochemical microsensor with temperature control and signal interfacing,” IEEE J. Solid State Circuits, vol. 36, pp. 2030–2038, 2001.CrossRefGoogle Scholar
Levine, P. M., Gong, P., Levicky, R., and Shepard, K. L., “Active CMOS sensor array for electrochemical biomolecular detection,” IEEE J. Solid State Circuits, vol. 43, pp. 1859–1971, 2008.CrossRefGoogle Scholar
Martin, S. M., Gebara, F. H., Strong, T. D., and Brown, R. B., “A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat,” IEEE Int. Symp. Circuits Systems, vol. 4, pp. 892–895, May 2004.Google Scholar
Carminati, M., Ferrari, G., Guagliardo, F., Farina, M., and Sampietro, M., “Low-noise single-chip potentiostat for nano-bio-electrochemistry over a 1 MHz bandwidth,” IEEE Electron. Circuits Systems, pp. 952–955, 2009.Google Scholar
Busoni, L., Carla, M., and Lanzi, L., “A comparison between potentiostatic circuits with grounded work or auxiliary electrode,” Rev. Sci. Instrum., vol. 73, pp. 1921–1923, 2002.CrossRefGoogle Scholar
Martin, S. M., Gebara, F. H., Strong, T. D., and Brown, R. B., “A fully differential potentiostat,” IEEE J. Sensors, vol. 9, pp. 135–142, 2009.CrossRefGoogle Scholar
Ayers, S., Gillis, K. D., Lindau, M., and Minch, B. A., “Design of a CMOS potentiostat circuit for electrochemical detector arrays,” IEEE Trans. Circuits Systems, vol. 54, pp. 736–744, 2007.CrossRefGoogle ScholarPubMed
Yang, C., Huang, Y., Hassler, B. L., Worden, R. M., and Mason, A. J., “Amperometric electrochemical microsystem for a miniaturized protein biosensor array,” IEEE Trans. Biomed. Circuits Systems, vol. 3, pp. 160–168, 2009.CrossRefGoogle Scholar
Gore, A., Chakrabartty, S., Pal, S., and Alocilja, E. C., “A multichannel femtoampere-sensitivity potentiostat array for biosensing applications,” IEEE Tran. Circuits Systems, vol. 53, pp. 2357–2363, 2006.CrossRefGoogle Scholar
Narula, H. S. and Harris, J. G., “A time-based VLSI potentiostat for ion current measurements,” IEEE J. Sensors, vol. 6, pp. 239–247, 2006.CrossRefGoogle Scholar
Reay, R. J., Kounaves, S.P., and Kovacs, G.T.A., “An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation,” IEEE Int. Solid-State Circuits Conf., pp. 162–163, 1994.CrossRefGoogle Scholar
Breten, M., Lehmann, T., and Bruun, E., “Integrating data converters for picoampere currents from electrochemical transducers,” IEEE Int. Symp. Circuits Systems, vol. 5, pp. 709–712, 2000.Google Scholar
Li, L., Liu, X., and Mason, A., “CMOS amperometric instrumentation and packaging for biosensor array applications,” IEEE Trans. Biomed. Circuits Systems, vol. 5, pp. 439–448, 2011.CrossRefGoogle Scholar
Kim, D., Goldstein, B., Tang, W., Sigworth, F. J., and Culurciello, E., “Noise analysis and performance comparison of low current measurement systems for biomedical applications,” IEEE Trans. Biomed. Circuits Systems, vol. 7, pp. 52–62 (2012).Google Scholar
Bandyopadhyay, A., Mulliken, G., Cauwenberghs, G., and Thakor, N., “VLSI potentiostat array for distributed electrochemical neural recording,” IEEE Int. Symp. Circuits Systems, pp. 740–743, 2002.Google Scholar
Ferrari, G., Gozzini, F., Molari, A., and Sampietro, M., “Transimpedance amplifier for high sensitivity current measurements on nanodevices,” IEEE J. Solid State Circuits, vol. 44, pp. 1609–1616, 2009.CrossRefGoogle Scholar
Kakerow, R. G., Kappert, H., Spiegel, E., and Manoli, Y., “Low-power single-chip CMOS potentiostat,” Int. Conf. Transducers Solid-State Sensors Actuators Microsystems, vol. 1, pp. 142–145, 1995.CrossRefGoogle Scholar
Nazari, M. H. and Genov, R., “A fully differential CMOS potentiostat,” IEEE Int. Symp. Circuits Systems, pp. 2177–2180, 2009.Google Scholar
Ferrari, G., Gozzini, F., and Sampietro, M., “Very high sensitivity CMOS circuit to track fast biological current signals,” IEEE Biomedical Circuits Systems Conf., pp. 53–56, 2006.Google Scholar
Ferrari, G. and Sampietro, F. G. M., “A current-sensitive front-end amplifier for nano-biosensors with a 2 MHz BW,” IEEE Int. Solid-State Circuits Conf., Dig. Tech, pp. 164–165, 2007.Google Scholar
Ferrari, G., Farina, M., Guagliardo, F., Carminati, M., and Sampietro, M., “Ultra-low-noise CMOS current preamplifier from dc to 1 MHz,” Electron. Lett., vol. 45, p. 1278, 2009.CrossRefGoogle Scholar
Genov, R., Stanacevic, M., Naware, M., Cauwenberghs, G., and Thakor, N., “16-channel integrated potentiostat for distributed neurochemical sensing,” IEEE Trans. Circuits and Systems, vol. 53, pp. 2371–2376, 2006.CrossRefGoogle Scholar
Stanaćević, M., Murari, K., Rege, A., Cauwenberghs, G., and Thakor, N. V., “VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing,” IEEE Trans. Circuits Systems, vol. 1, pp. 63–72, 2007.CrossRefGoogle ScholarPubMed
Murari, K., Stanacevic, M., Cauwenberghs, G., and Thakor, N. V., “Integrated potentiostat for neurotransmitter sensing,” IEEE Eng. Med. Biol. Mag., vol. 24, pp. 23–29, 2005.CrossRefGoogle ScholarPubMed
Barsoukov, E. and Macdonald, J., Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. John Wiley and Sons, 2005.CrossRefGoogle Scholar
Rairigh, D., Yang, C., and Mason, A., “Analysis of on-chip impedance spectroscopy methodologies for sensor arrays,” Sensor Lett., vol. 4, pp. 398–402, 2006.CrossRefGoogle Scholar
Min, M. and Parve, T., “Improvement of lock-in electrical bio-impedance analyzer for implantable medical devices,” IEEE Trans. Instrum. Meas., vol. 56, pp. 968–974, 2007.CrossRefGoogle Scholar
Jafari, H. M. and Genov, R., “CMOS impedance spectrum analyzer with dual-slope multiplying ADC,” IEEE Biomed. Circuits Systems Conf., pp. 361–364, 2011.Google Scholar
Gozzini, F., Ferrari, G., and Sampietro, M., “An instrument on-chip for impedance measurements on nanobiosensors with attofarad resolution,” IEEE Int. Solid-State Circuits Conf., pp. 346–347, 2009.Google Scholar
Yúfera, A., Rueda, A., Muñoz, J. M., et al., “A tissue impedance measurement chip for myocardial ischemia detection,” IEEE Trans. Circuits Systems, vol. 52, pp. 2620–2628, 2005.CrossRefGoogle Scholar
Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D., and Hassibi, A., “A CMOS electrochemical impedance spectroscopy (EIS) biosensor array,” IEEE Trans. Biomed. Circuits Systems, vol. 4, pp. 379–390, 2010.CrossRefGoogle ScholarPubMed
Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D., and Hassibi, A., “A CMOS electrochemical impedance spectroscopy biosensor array for label-free biomolecular detection,” IEEE Int. Solid-State Circuits Conf., pp. 492–493, 2010.Google Scholar
Mazhab-Jafari, H., Soleymani, L., and Genov, R., “16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs,” IEEE Trans. Biomed. Circuits Systems, vol. 6, pp. 468–478, 2012.CrossRefGoogle ScholarPubMed
Meade, M. L., Lock-in Amplifiers: Principles and Applications. INSPEC/IEE, 1983.Google Scholar
Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D., and Hassibi, A., “A CMOS electrochemical impedance spectroscopy (EIS) biosensor array,” IEEE Biomed. Circuits Systems Conf., vol. 4, pp. 379–390, 2010.CrossRefGoogle ScholarPubMed
Yang, C., Huang, Y., Hassler, B. L., Worden, R. M., and Mason, A. J., “Amperometric electrochemical microsystem for a miniaturized protein biosensor array,” IEEE Trans. Biomed. Circuits Systems, vol. 3, pp. 160–168, Jun. 2009.CrossRefGoogle Scholar
Huang, Y. and Mason, A. J., “A redox-enzyme-based electrochemical biosensor with a CMOS integrated bipotentiostat,” in IEEE Biomed. Circuits Systems Conf., Beijing, pp. 29–32, 2009.Google Scholar
Hwang, S., Lafratta, C. N., Agarwal, V., et al., “CMOS microelectrode array for electrochemical lab-on-a-chip applications,” IEEE J. Sensors, vol. 9, pp. 609–615, 2009.CrossRefGoogle Scholar
Frey, U., Sedivy, J., Heer, F., et al., “Switch-matrix-based high-density microelectrode array in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, pp. 467–482, 2010.CrossRefGoogle Scholar
Li, L., Liu, X., and Mason, A. J., “Die-level photolithography and etchless parylene packaging processes for on-CMOS electrochemical biosensors,” in Int. Symp. Circuits Systems, Seoul, pp. 2401–2404, 2012.Google Scholar
Schienle, M., Frey, A., Hofmann, F., et al., “A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion,” IEEE J. Solid-State Circuits, vol. 39, pp. 2438–2445, 2004.CrossRefGoogle Scholar
Levine, P. M., Gong, P., Levicky, R., and Shepard, K. L., “Active CMOS sensor array for electrochemical biomolecular detection,” IEEE J. Solid-State Circuits, vol. 43, pp. 1859–1871, 2008.CrossRefGoogle Scholar
Sansen, W., Wachter, D. D., Callewaert, L., Lambrechts, M., and Claes, A., “A smart sensor for the voltammetric measurement of oxygen or glucose concentrations,” Sensors Actuators B, vol. 1, pp. 298–302, 1990.CrossRefGoogle Scholar
Thewes, R., Hofmann, F., Frey, A., et al., “Sensor arrays for fully electronic DNA detection on CMOS,” in IEEE ISSCC Dig. Tech. Papers, pp. 350–351, 2002.Google Scholar
Christen, J. M. B. and Andreou, A. G., “Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation,” IEEE Trans. Biomed. Circuits Systems, vol. 1, pp. 3–18, 2007.CrossRefGoogle ScholarPubMed
Ghafar-Zadeh, E., Sawan, M., and Therriault, D., “Novel direct-write CMOS-based laboratory-on-chip design, assembly and experimental results,” Sens. Actuators A, Phys., vol. 134, pp. 27–36, 2007.CrossRefGoogle Scholar
Prodromakis, T., Georgiou, P., Constandinou, T. G., Michelakis, K., and Toumazou, C., “Batch encapsulation technique for CMOS based chemical sensors,” in IEEE Biomed. Circuits Systems Conf., pp. 321–324, 2008.Google Scholar
Oelßner, W., Zosel, J., Guth, U., et al., “Encapsulation of ISFET sensor chips,” Sensors Actuators B: Chem., vol. 105, pp. 104–117, 2005.CrossRefGoogle Scholar
Dumschat, C., Müller, H., Rautschek, H., et al., “Encapsulation of chemically sensitive field-effect transistors with photocurable epoxy resins,” Sensors Actuators B: Chem., vol. 2, pp. 271–276, 1990.CrossRefGoogle Scholar
Prodromakis, T., Michelakis, K., Zoumpoulidis, T., Dekker, R., and Toumazou, C., “Biocompatible encapsulation of CMOS based chemical sensors,” in IEEE Int. Conf. Sensors, pp. 791–794, 2009.Google Scholar
Yang, C., Jadhav, S. R., Worden, M. R., and Mason, A. J., “Compact low power impedance-to-digital converter for sensor array microsystems,” IEEE J. Solid State Circuits, vol. 44, pp. 2844–2855, 2009.CrossRefGoogle Scholar
Grieshaber, D., MacKenzie, R., Voros, J., and Reimhult, E., “Electrochemical biosensors – sensor principles and architectures,” Sensors Actuators B: Chem., vol. 8, pp. 1400–1458, 2008.CrossRefGoogle ScholarPubMed
Zhang, M., Smith, A., and Gorski, W., “Carbon nanotube-chitosan system for electrochemical sensing basd on dehydrogenase enzymes,” Anal. Chem., vol. 76, pp. 5045–5050, 2004.CrossRefGoogle Scholar
Jadhav, S. R., Sui, D., Garavito, M. R., and Worden, M. R., “Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity,” J. Colloid Interf. Sci., vol. 322, pp. 465–472, 2008.CrossRefGoogle ScholarPubMed
Krysinski, P., Zebrowska, A., Michota, A., et al., “Tethered mono- and bilayer lipid membranes on Au and Hg,” Langmuir, vol. 17, pp. 3852–3857, 2001.CrossRefGoogle Scholar
Octal current input, 20-bit analog-to-digital converter. Texas Instruments, 2009.
Martin, S. M., Gebara, F. H., Larivee, B. J., and Brown, R. B., “A CMOS-integrated microinstrument for trace detection of heavy metals,” IEEE J. Solid State Circuits, vol. 40, pp. 2777–2786, 2005.CrossRefGoogle Scholar
Liu, X., Li, L., and Mason, A. J., “Thermal control microsystem for protein characterization and sensing,” in IEEE Biomed. Circuits Systems Conf., Beijing, pp. 277–280, 2009.Google Scholar
Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D., and Hassibi, A., “A CMOS electrochemical impedance spectroscopy (EIS) biosensor array,” IEEE. Trans. Biomed. Circuits Syst., vol. 4, pp. 379–390, 2010.CrossRefGoogle ScholarPubMed
Li, W., Rodger, C., Meng, E., et al., “Wafer-level parylene packaging with integrated RF electronics for wireless retinal prostheses,” IEEE J. Microelectromech. Systems, vol. 19, pp. 735–742, 2010.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×