Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: July 2019

2 - Electronic Properties

1.Hamaguchi, C., Basic Semiconductor Physics (Springer, 2009).
2.Davies, J. H., The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge University Press, 1998).
3.Stauber, T., Peres, N. M. R., and Guinea, F., “Electronic transport in graphene: A semiclassical approach including midgap states,” Physical Review B, Vol. 76, 205423 (2007).
4.Adam, S., Hwang, E. H., and Das Sarma, S., “Scattering mechanisms and Boltzmann transport in graphene,” Physica E, Vol. 40, pp. 10221025 (2008).
5.Hwang, E. H. and Das Sarma, S., “Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer,” Physical Review B, Vol. 77, 195412 (2008).
6.Hong, X., Zou, K., and Zhu, J., “Quantum scattering time and its implications on scattering sources in graphene,” Physical Review B, Vol. 80, 241415 (2009).
7.Peres, N. M. R., “Colloquium: The transport properties of graphene: an introduction,” Review of Modern Physics, Vol. 82, pp. 26732700 (2010).
8.Peres, N. M. R., Guinea, F., and Castro Neto, A. H., “Electronic properties of disordered two-dimensional carbon,” Physical Review B, Vol. 73, 125411 (2006).
9.Das Sarma, S., Adam, S., Hwang, E. H., and Rossi, E., “Electronic transport in two-dimensional graphene,” Review of Modern Physics, Vol. 83, pp. 407470 (2011).
10.Aleiner, I. L. and Efetov, K. B., “Effect of disorder on transport in graphene,” Physical Review Letters, Vol. 97, 236801 (2006).
11.Lundstrom, M., Fundamentals of Carrier Transport (Cambridge University Press, 2009).
12.Hwang, E. H. and Das Sarma, S., “Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene,” Physical Review B, Vol. 77, 115449 (2008).
13.Fratini, S. and Guinea, F., “Substrate-limited electron dynamics in graphene,” Physical Review B, Vol. 77, 195415 (2008).
14.Wang, S. Q. and Mahan, G. D., “Electron scattering from surface excitations,” Physical Review B, Vol. 6, pp. 45174524 (1972).
15.Konar, A., Fang, T., and Jena, D., “Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors,” Physical Review B, Vol. 82, 115452 (2011).
16.Lin, I. T. and Liu, J. M., “Surface polar optical phonon scattering of carriers in graphene on various substrates,” Applied Physics Letters, Vol. 103, 081606 (2013).
17.Perebeinos, V. and Avouris, P., “Inelastic scattering and current saturation in graphene,” Physical Review B, Vol. 81, 195442 (2010).
18.Fischetti, M. V., Neumayer, D. A., and Cartier, E. A., “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering,” Journal of Applied Physics, Vol. 90, pp. 45874608 (2001).
19.Feldman, D. W., Parker, J. H. Jr., Choyke, W. J., and Patrick, L., “Phonon dispersion curves by Raman scattering in SiC, polytypes 3C, 4H, 6H, 15R, and 21R,” Physical Review, Vol. 173, pp. 787793 (1968).
20.Geick, R., Perry, C. H., and Rupprecht, G., “Normal modes in hexagonal boron nitride,” Physical Review, Vol. 146, pp. 543547 (1966).
21.Rode, D. L., “Electron mobility in direct-gap polar semiconductors,” Physical Review B, Vol. 2, pp. 10121024 (1970).
22.Basko, D. M., “Theory of resonant multiphonon Raman scattering in graphene,” Physical Review B, Vol. 78, 125418 (2008).
23.Bolotin, K. I., Sikes, K. J., Jiang, Z., et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, Vol. 146, pp. 351355 (2008).
24.Mariani, E. and von Oppen, F., “Temperature-dependent resistivity of suspended graphene,” Physical Review B, Vol. 82, 195403 (2010).
25.Castro, E. V., Ochoa, H., Katsnelson, M. I., et al., “Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Physical Review Letters, Vol. 105, 266601 (2010).
26.Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., et al., “Giant intrinsic carrier mobilities in graphene and its bilayer,” Physical Review Letters, Vol. 100, 016602 (2008).
27.Efetov, D. K. and Kim, P., “Controlling electron‒phonon interactions in graphene at ultrahigh carrier densities,” Physical Review Letters, Vol. 105, 256805 (2010).
28.Chen, J. H., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M. S., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology, Vol. 3, pp. 206209 (2008).
29.Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L., and Kim, P., “Temperature-dependent transport in suspended graphene,” Physical Review Letters, Vol. 101, 096802 (2008).
30.Ponomarenko, L. A., Yang, R., Mohiuddin, T. M., et al., “Effect of a high-κ environment on charge carrier mobility in graphene,” Physical Review Letters, Vol. 102, 206603 (2009).
31.Kuzmenko, A. B., van Heumen, E., Carbone, F., and van der Marel, D., “Universal optical conductance of graphite,” Physical Review Letters, Vol. 100, 117401 (2008).
32.Chung, D., “Review graphite,” Journal of Materials Science, Vol. 37, pp. 14751489 (2002).
33.Lin, I. T. and Liu, J. M., “Terahertz frequency-dependent carrier scattering rate and mobility of monolayer and AA-stacked multilayer graphene,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, 8400108 (2014).