Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T02:12:29.606Z Has data issue: false hasContentIssue false

6 - Geodetic Observations as a Monitor of Climate Change

from Part II - Future Earth and Geodetic Issues

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 72 - 88
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarca del Rio, R. (1999), The influence of global warming in Earth rotation speed, Ann. Geophys., 17, p. 806811, doi:10.1007/s00585-999-0806-x.Google Scholar
Adhikari, S., and Ivins, E. R. (2016), Climate-driven polar motion: 2003–2015, Science Advances 2(4), doi: 10.1126/sciadv.1501693.Google Scholar
Amos, C.B., Burgmann, R., Johanson, I. A., and Blewitt, G. (2014) Uplift and seismicity driven by groundwater depletion in central California, Nature 509, p. 483486, doi:10.1038/nature13275.Google Scholar
Argus, D. F., Fu, Y., and Landerer, F. W. (2014), Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion, Geophys. Res. Lett., 41, doi:10.1002/2014GL059570.Google Scholar
Barnes, R. T. H., Hide, R., White, A. A., and Wilson, C. (1983), Atmospheric angular momentum fluctuations, length-of-day changes and polar motion, Proc. R. Soc. Lond., A, 387, p. 3173.Google Scholar
Bevis, M., Wahr, J., Khan, S. A., Madsen, F. B., Brown, A., Willis, M., Kendrick, E., Knudsen, P., Box, J. E., van Dam, T., Caccamise, D. J. II, Johns, B., Nylen, T., Abbot, R., White, S., Miner, J., Forsberg, R., Zhou, H., Wang, J., Wilson, T., Bromwich, D., and Francis, O (2012), Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change, Proc. Natl Acad. Sci. USA, 109, p. 1194411948, doi:10.1073/pnas.1204664109.Google Scholar
Bettadpur, S. (2012), CSR Level-2 Processing Standards Document for Product Release 05, GRACE 327–742, The GRACE Project, Center for Space Research, University of Texas at Austin.Google Scholar
Blewitt, G., Lavallee, D., Clarke, P., and Nurutdinov, K. (2001), A new global mode of Earth deformation: Seasonal cycle detected, Science, 294, p. 23422345.Google Scholar
Boening, C., Lebsock, M., Landerer, F., and Stephens, G. (2012), Snowfall-driven mass change on the East Antarctic ice sheet, Geophys. Res. Lett., 39, doi:10.1029/2012GL053316.Google Scholar
Borsa, A. A., Agnew, D. C., and Cayan, D. R. (2014), Ongoing drought-induced uplift in the western United States, Science, 345, p. 15871590.Google Scholar
Cazenave, A., and Chen, J. (2010), Time-variable gravity from space and present-day mass redistribution in theEarth system, Earth and Planetary Science Letters, 298 (3), p. 263274, ISSN 0012–821X, doi: 10.1016/j.epsl.2010.07.035.Google Scholar
Chambers, D. P., Wahr, J., and Nerem, R. S. (2004), Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, doi:10.1029/2004GL020461.Google Scholar
Chanard, K., Avouac, J. P., Ramillien, G., and Genrich, J. (2014), Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure, J. Geophys. Res. Solid Earth, 119, doi:10.1002/2013JB010451.Google Scholar
Chao, B. F., (2005), On inversion for mass distribution from global (time-variable) gravity field. Journal of Geodynamics, 39, p. 223230.Google Scholar
Chen, J. L., Wilson, C. R., Chao, B. F., Shum, C. K., and Tapley, B. D. (2000), Hydrological and oceanic excitations to polar motion and length-of-day variation, Geophys. J. Int., 141(1), p. 149156.Google Scholar
Chen, J. L., Wilson, C. R., Hu, X. G., Taple, B. D. (2003), Large-scale mass redistribution in the oceans, 1993–2001, Geophy. Res. Lett., 30(20), 2024, doi:10.1029/2003GL018048.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2006), Satellite gravity measurements confirm accelerated melting of Greenland ice sheet, Science, 313, p. 19581960, doi:10.1126/science.1129007.Google Scholar
Chen, J. L., Wilson, C. R., Tapley, B. D., Blankenship, D. D., and Ivins, E. R. (2007), Patagonia icefield melting observed by Gravity Recovery and Climate Experiment (GRACE), Geophy. Res. Lett., 34, doi:10.1029/2007GL031871.Google Scholar
Chen, J. L., Wilson, C. R., Blankenship, D. D., and Tapley, B. D. (2009) Accelerated Antarctic ice loss from satellite gravity measurements, Nature Geoscience 2, p. 859862, doi:10.1038/NGEO694.Google Scholar
Chen, J. L., Wilson, C. R., and Zhou, Y. H. (2012), Seasonal excitation of polar motion, J. Geodyn., 62, p. 815.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2013,) Contribution of ice sheet and mountain glacier melt to recent sea level rise, Nature Geoscience, 6, p. 549552, doi: 10.1038/NGEO1829.Google Scholar
Chen, J. L., Wilson, C. R., Ries, J. C., and Tapley, B. D. (2013), Rapid ice melting drives Earth’s pole to the east, Geophys. Res. Lett., 40(11), p. 26252630.Google Scholar
Chen, J. L., Li, J., Zhang, Z. Z., Ni, S. N. (2014), Long-term groundwater variations in northwest India from satellite gravity measurements, Global and Planetary Change, 116, p. 130138, doi: 10.1016/j.gloplacha.2014.02.007.Google Scholar
Chen, J. L., Wilson, C. R., Li, J.., and Zhang, Z. (2015), Reducing leakage error in GRACE-observed long-term ice mass change: a case study in west Antarctica, J. Geodesy, 89, p. 925940, doi: 10.1007/s00190–015–0824–2.Google Scholar
Cheng, M. and Tapley, B. D., (1999), Seasonal variations in low degree zonal harmonics of the Earth’s gravity field from satellite laser ranging observations, Journal of Geophysical Research, 104, p. 26672682, doi:10.1029/1998JB900036.Google Scholar
Cheng, M. and Tapley, B. D. (2004), Variations in the Earth’s oblateness during the past 28 years, J. of Geophys. Res., 109(B18), doi:10.1029/2004JB003028.Google Scholar
Cheng, M. K., and Ries, J. R. (2012), Monthly estimates of C20 from 5 SLR satellites based on GRACE RL05 models, GRACE Technical Note 07, The GRACE Project, Center for Space Research, University of Texas at Austin (ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-07_C20_SLR.txt).Google Scholar
Collilieux, X., Altamimi, Z., Ray, J., van Dam, T., and Wu, X. (2009), Effect of the satellite laser ranging network distribution on geocenter motion estimation, J. Geophys. Res., 114, doi:10.1029/2008JB005727.Google Scholar
Cox, C. M. and Chao, B. F. (2002) Detection of a large-scale mass redistribution in the terrestrial system since 1998, Science, 297, p. 831833.Google Scholar
Dahle, C. et al. (2013), GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005, Scientific Technical Report STR12/02 – Data, GFZ, Postdam.Google Scholar
Dickey, J. O., Marcus, S. L., de Viron, Olivier, and Fukumori, I. (2002), Recent Earth oblateness variations: unraveling climate and postglacial rebound effects, Science 298, p. 19751977.Google Scholar
de Viron, O., Dehant, V., Goosse, H., and Crucifix, M. (2002), Effect of global warming on the length‐of‐day, Geophys. Res. Lett., 29(7), doi: 10.1029/2001GL013672Google Scholar
Dobslaw, H., Dill, R., Grötzsch, A., Brzeziński, A., and Thomas, M. (2010), Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere, J. Geophys. Res., 115.Google Scholar
Eubanks, T. M. (1993), Variations in the orientation of the Earth, in Contributions of Space Geodesy to Geodynamics-Earth Dynamics, Vol. 24 Geodyn. Ser., pp. 154, eds Smith, D. E. & Turcotte, D. L., AGU, Washington, DC.Google Scholar
Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., Swenson, S. C., de Linage, C. R., and Rodell, M. (2011), Satellites measure recent rates of groundwater depletion in California’s Central Valley, Geophys. Res. Lett., 38, doi:10.1029/2010GL046442.Google Scholar
Famiglietti, J. S. and Rodell, M., (2013), Water in the balance, Science, 340, p. 13001301, doi:10.1126/science.1236460.Google Scholar
Farrell, W. (1972), Deformation of the Earth by surface loads, Rev. Geophys., 10, doi: 10.1029/RG010i003p00761.Google Scholar
Fu, Y., Freymueller, J. T., and Jensen, T. (2012), Seasonal hydrological loading in southern Alaska observed by GPS and GRACE, Geophys. Res. Lett., 39, doi:10.1029/2012GL052453.Google Scholar
Fu, Y., and Freymueller, J. T. (2012), Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements, J. Geophys. Res., 117, doi:10.1029/2011JB008925.Google Scholar
Fu, Y., Argus, D. F., Freymueller, J. T., and Heflin, M. B. (2013), Horizontal motion in elastic response to seasonal loading of rain water in the Amazon Basin and monsoon water in Southeast Asia observed by GPS as inferred from GRACE, Geophys. Res. Lett., 40, p. 60486053, doi:10.1002/2013GL058093.Google Scholar
Gross, R. S., Fukumori, I., and Menemenlis, D.,(2003), Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000, J. Geophys. Res, 108(B8), 2370, doi:10.1029/2002JB002143.Google Scholar
Gross, R. S., Fukumori, I., Menemenlis, D. and Gegout, P. (2004), Atmospheric and oceanic excitation of length-of-day variations during 1980–2000, J. Geophys. Res, 109, doi:10.1029/2003JB002432.Google Scholar
Gross, R. S., Fukumori, I., and Menemenlis, D. (2005), Atmospheric and oceanic excitations on decadal-scale Earth orientation variations, J. Geophys. Res., 110, doi:10.1029/2004JB003565.Google Scholar
Gross, R. S. (2007), Earth rotation variations – long period, in Treatise on Geophysics, Vol. 3: Geodesy, p. 239294, ed. Herring, T. A., Elsevier.Google Scholar
Gunter, B. C., Didova, O., Riva, R. E. M., Ligtenberg, S. R. M., Lenaerts, J. T. M., King, M. A., van den Broeke, M. R., and Urban, T. (2014), Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change, The Cryosphere, 8, p. 743760, doi:10.5194/tc-8-743-2014.Google Scholar
Han, S.-C., Shum, C. K., Bevis, M., Ji, C., and Kuo, C. Y. (2006), Crustal dilatation observed by GRACE After the 2004 Sumatra-Andaman Earthquake, Science, 313, p. 658662, doi:10.1126/science.1128661.Google Scholar
Han, S.-C., Sauber, J., and Pollitz, F. (2015), Coseismic compression/dilatation and viscoelastic uplift/subsidence following the 2012 Indian Ocean earthquakes quantified from satellite gravity observations, Geophy. Res. Lett., 42, p. 37643772, doi:10.1002/2015GL063819.Google Scholar
Han, S.-C., Sauber, J., and Pollitz, F. (2016), Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands, Geophy. Res. Lett., 43, p.31693177, doi:10.1002/2016GL068167.Google Scholar
Höpfner, J. (2001), Atmospheric, oceanic and hydrological contributions to seasonal variations in length of day, J. Geod., 75, 137150.Google Scholar
Huang, M., Zhu, L., Gong, H., and Shao, Y. (2016), Close correlation between global air temperature change and polar motion during 1962–2013, J. Geophys. Res., 121, p. 11,24811,263, doi:10.1002/2016JD024842.Google Scholar
Ivins, E. R. and James, T. D. (2005), Antarctic glacial isostatic adjustment: a new assessment, Antarctic Science, 17, p. 537549, doi:10.1017/S0954102005002968.Google Scholar
James, T. S. and Ivins, E. R. (1997), Global geodetic signatures of the Antarctic ice sheet, J. Geophys. Res., 102, p. 605633.Google Scholar
Jekeli, C. (1981), Alternative Methods to Smooth the Earth’s Gravity Field, Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH.Google Scholar
Jochmann, H. and Greiner-Mai, H. (1996), Climate variations and the earth’s rotation, J. Geodyn., 21(2), p. 161176.Google Scholar
Lambeck, K. (1980), The Earth’s Variable Rotation: Geophysical Causes and Consequences, Cambridge University Press, New York.Google Scholar
Landerer, F. W., and Swenson, S. C. (2012), Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, doi:10.1029/2011WR011453.Google Scholar
Leuliette, E. W. and Miller, L. (2009), Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophy. Res. Lett., 36, p. 4608, doi:10.1029/2008GL036010.Google Scholar
Li, J., Chen, J. L., and Zhang, Z. (2014), Seismologic applications of GRACE time-variable gravity measurements, Earthquake Science, 27, p. 229245, doi:10.1007/s11589-014-0072-1.Google Scholar
Luthcke, S. B., Zwally, J. H., Abdalati, W., Rowlands, D. D., Ray, R. D., Nerem, R. S., Lemoine, F., McCarthy, J. J., and Chinn, D. S. (2006), Recent Greenland ice mass loss by drainage system from satellite gravity observations, Science, 314, p. 12861289, doi:10.1126/science.1130776.Google Scholar
Luthcke, S. B., Arendt, A. A., Rowlands, D. D., McCarthy, J. J., and Larsen, C. F. (2008), Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, Journal of Glaciology, 54, p. 767777, doi:10.3189/002214308787779933.Google Scholar
Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J. J., and Camp, J. (2013), Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution, Journal of Glaciology, 59, p. 613631, doi:10.3189/2013JoG12J147.Google Scholar
Munk, W. H. and MacDonald, G. J. F. (1960), The rotation of the Earth: a geophysical discussion, Cambridge University Press, Cambridge.Google Scholar
Nakada, M. and Okuno, J. (2003), Perturbations of the Earth’s rotation and their implications for the present-day mass balance of both polar ice caps, Geophys. J. Int. 152, p. 124138.Google Scholar
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K. (2012), The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research (Solid Earth), 117 (B16), p. 4406, doi:10.1029/2011JB008916.Google Scholar
Peltier, W. R. (2004), Global glacial isostasy and the surface of the Ice-Age Earth: the ICE-5G (VM2) model and GRACE, Annual Review of Earth and Planetary Sciences, 32, p. 111149, doi: 10.1146/annurev.earth.32.082503.144359.Google Scholar
Pearlman, M. R., Degnan, J. J., and Bosworth, J. M. (2002), The International Laser Ranging Service, Advances in Space Research, 30(2), p. 135143.Google Scholar
Räisänen, J. (2003), CO2-Induced changes in atmospheric angular momentum in CMIP2 experiments, J. Climate 16 (1), p. 132143.Google Scholar
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D. (2004), The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85(3), p. 381394.Google Scholar
Rodell, M., Velicogna, I., and Famiglietti, J. S. (2009) Satellite-based estimates of groundwater depletion in India, Nature, 460, p. 9991002, doi:10.1038/nature08238.Google Scholar
Rosen, R. D. and Gutowski, W. J. Jr., (1992), Response of zonal winds andatmospheric angular momentum to a doubling Of C02, J. Climate, 5(12), p. 13911404.Google Scholar
Roy, K., and Peltier, W. R. (2011), GRACE era secular trends in Earth rotation parameters: A global scale impact of the global warming process?, Geophys. Res. Lett., 38(10).Google Scholar
Save, H., Bettadpur, S., and Tapley, B. D. (2016), High resolution CSR GRACE RL05 mascons, J. Geophys. Res. Solid Earth, 121, p. 75477569, doi:10.1002/2016JB013007.Google Scholar
Schindelegger, M., Böhm, S., Böhm, J., and Schuh, H. (2013), Atmospheric effects on Earth rotation, In Atmospheric Effects in Space Geodesy, p. 181231, Springer Berlin.Google Scholar
Seitz, F. and Schuh, H. (2010), Earth rotation. In Xu, G., editor, Science of Geodesy. I. Advances and Future Directions, p. 185227, Springer Berlin.Google Scholar
Swenson, S., Chambers, D., and Wahr, J. (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, Journal of Geophysical Research (Solid Earth), 113, doi:10.1029/2007JB005338.Google Scholar
Tamisiea, M. E., Mitrovica, J. X., and Davis, J. L. (2007), GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia, Science, 316, p. 881883, doi:10.1126/science.1137157.Google Scholar
Tapley, B. D., Bettadpur, S., Watkins, M. M.,and Reigber, C. (2004), The Gravity Recovery and Climate Experiment: mission overview and early results, Geophys. Res. Lett., 31 (9), 10.1029/2004GL019920.Google Scholar
Trupin, A. S. (1993) Effects of polar ice on the Earth’s rotation and gravitational potential, Geophys. J. Int. 113, p. 273283.Google Scholar
Trupin, A. S., Meier, M. F., and Wahr, J. M. (1992), Effect of melting glaciers on the Earth’s rotation and gravitational field: 1965–1984, Geophys. J. Int. 108, p. 115.Google Scholar
van Dam, T. and Wahr, J. (1987), Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements, J. Geophys. Res., 92, doi: 10.1029/JB092iB02p01281.Google Scholar
van Dam, T., Milly, P. C. D., Shamakin, A. B., Blewitt, G., Lavalee, D., and Larson, K. M. (2001), Crustal displacements due to continental water loading, Geophys. Res. Lett., 28, p. 651654.Google Scholar
Velicogna, I. and Wahr, J. (2006), Measurements of time-variable gravity show mass loss in Antarctica. Science, 311, p. 17541756, doi:10.1126/science.1123785.Google Scholar
Velicogna, I. and Wahr, J., (2013), Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data, Geophys. Res. Lett., 40, p. 30553063, doi:10.1002/grl.50527.Google Scholar
Wahr, J. M. (1982), The effects of the atmosphere and oceans on the Earth’s wobble. I. Theory, Geophys. J. R. Astr. Soc., 70, p. 349372.Google Scholar
Wahr, J. M. (1983), The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day. II. Results, Geophys. J. R. astr. Soc., 74, p. 451487.Google Scholar
Wahr, J., Molenaar, M., and Bryan, F. (1998), Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103, p. 3020530230, doi:10.1029/98JB02844.Google Scholar
Wahr, J., Swenson, S., Zlotnicki, V., and Velicogna, I. (2004) Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31, L11501, doi:10.1029/2004GL019779.Google Scholar
Wahr, J., Swenson, S., and Velicogna, I. (2006), Accuracy of GRACE mass estimates, Geophys. Res. Lett., 33: L6401, doi:10.1029/2005GL025305.Google Scholar
Wouters, B., Chambers, D., and Schrama, E. J. O., (2008), GRACE observes small-scale mass loss in Greenland, Geophys. Res. Lett., 35: L20501, doi:10.1029/2008GL034816.Google Scholar
Wu, X., Heflin, M. B., Ivins, E. R., Argus, D. F., and Webb, F. H. (2003), Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation, Geophys. Res. Lett., 30(14), p. 1742, doi:10.1029/2003GL017546.Google Scholar
Yamamoto, K., Fukuda, Y., and Doi, K. (2011), Interpretation of GIA and ice-sheet mass trends over Antarctica using GRACE and ICESat data as a constraint to GIA models, Tectonophysics, 511, p. 6978.Google Scholar
Yoder, C. F., Williams, J. G., Dickey, J. O., Schutz, B. E., Eanes, R. J., and Tapley, B. D. (1983), Secular variation of earth’s gravitational harmonic J2 coefficient from LAGEOS and nontidal acceleration of earth rotation, Nature, 303, p. 757762.Google Scholar
Zotov, L, Bizouard, C. and Shum, C. K. (2016), A possible interrelation between Earth rotation and climatic variability at decadal timescale, Geodesy and Geodynamics, 7 (3), p. 216222.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×