Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 17
  • Print publication year: 2006
  • Online publication date: December 2009

15 - Lichen biogeochemistry

Summary

Introduction

This volume focuses primarily on the influence of free-living fungi in biogeochemistry. Lichens, fungi that exist in facultative or obligate symbiosis with one or more photosynthesizing partners, also play an important role in many biogeochemical processes. Pioneer colonizers of fresh rock outcrops, lichens were possibly one of the first life forms to occupy Earth's land surfaces. The unique lichen symbiosis formed between the fungal partner (mycobiont) and the photosynthesizing partner, an alga or cyanobacterium (photobiont), enables lichens to grow in all surface terrestrial environments. These include extreme environments where no other multicellular vegetation can survive, such as the dry Antarctic valleys (Nash, 1996). An estimated 6% of the Earth's land surface is covered by lichen-dominated vegetation.

Globally, lichens play an important biogeochemical role in the retention and distribution of nutrient (e.g. C, N) and trace elements (e.g. Knops et al., 1991; Garty et al., 1995), in soil formation processes (Ascaso et al., 1976; Jones, 1988) and in rock weathering (Hallbauer & Jahns, 1977; Wilson et al., 1981; Wessels & Schoeman, 1988; McCarroll & Viles, 1995; Barker et al., 1997; Lee & Parsons, 1999). Lichens tend to accumulate trace elements such as lead, copper and other heavy metals of environmental concern (see below), including radionuclides (Yliruokanen, 1975; Nieboer & Richardson, 1981; Beckett et al., 1982; Boileau et al., 1982, 1985a, b; Richardson et al., 1985; Fahselt et al., 1995; Haas et al., 1998; McLean et al., 1998; Jacquiot & Daillant, 1999; Purvis et al., 2004).

Related content

Powered by UNSILO
References
Adamo, P. & Violante, P. (2000). Weathering of rocks and neogenesis of minerals associated with lichen activity. Applied Clay Science, 16, 229–56.
Adamo, P., Colombo, C. & Violante, P. (1997). Iron oxides and hydroxides in the weathering interface between Stereocaulon vesuvianum and volcanic rock. Clay Minerals, 32, 453–61.
Andres, Y., MacCordick, J. J. & Hubert, J. C. (1993). Adsorption of several actinide (Th, U) and lanthanide (La, Eu, Yb) ions by Mycobacterium smegmatis. Applied Microbiology and Biotechnology, 39, 413–17.
Antonelli, M. L., Ercole, P. & Campanella, L. (1998). Studies about the adsorption on lichen Evernia prunastri by enthalpimetric measurements. Talanta, 45, 1039–47.
Ascaso, C. & Wierzchos, J. (1995). Study of the biodeterioration zone between the lichen thallus and the substrate. Cryptogamic Botany, 5, 270–81.
Ascaso, C., Galvan, J. & Ortega, C. (1976). The pedogenic action of Parmelia conspersa, Rhizocarpon geographicum and Umbilicaria pustulata. Lichenologist, 8, 151–71.
Asta, J., Orry, F., Toutain, F., Souchier, B. & Villemin, G. (2001). Micromorphological and ultrastructural investigations of the lichen-soil interface. Soil Biology and Biochemistry, 33, 323–37.
Bargagli, R. & Mikhailova, I. (2002). Accumulation of inorganic contaminants. In Monitoring with Lichens-Monitoring Lichens Vol. 7, ed. Nimis, P. L., Scheidegger, C. & Wolseley, P. A.. Dordrecht: Kluwer Academic Publishers, pp. 65–84.
Barker, W. W. & Banfield, J. F. (1996). Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chemical Geology, 132, 55–69.
Barker, W. W., Welch, S. A. & Banfield, J. F. (1997). Biogeochemical weathering of silicate minerals. In Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Chelsea, Michigan: Mineralogical Society of America, pp. 391–428.
Beckett, P. J., Boileau, L. J. R., Padovan, D. & Richardson, D. H. S. (1982). Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada – Part 2: Distance dependent uranium and lead accumulation patterns. Environmental Pollution (Series B), 4, 91–107.
Bengtsson, L., Johansson, B., Hackett, T. J., McHale, L. & McHale, A. P. (1995). Studies on the biosorption of uranium by Talaromyces emersonii CBS 814.70 biomass. Applications in Microbiology and Biotechnology, 42, 807–11.
Bennett, P. C., Melcer, M. E., Siegel, D. I. & Hassett, J. P. (1988). The dissolution of quartz in dilute aqueous solutions of organic acids at 25 °C. Geochimica et Cosmochimica Acta, 52, 1521–30.
Berner, R. A. & Cochran, M. F. (1998). Plant-induced weathering of Hawaiian basalts. Journal of Sedimentary Research, 68, 723–6.
Boileau, L. J. R., Beckett, P. J., Lavoie, P. & Richardson, D. H. S. (1982). Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada – Part 1: Field procedures, chemical analysis and interspecies comparisons. Environmental Pollution (Series B), 4, 69–84.
Boileau, L. J. R., Nieboer, E. & Richardson, D. H. S. (1985a). Uranium accumulation in the lichen Cladonia rangiferina (L.) Wigg. Part I. Uptake of cationic, neutral, and anionic forms of the uranyl ion. Canadian Journal of Botany, 63, 384–9.
Boileau, L. J. R., Nieboer, E. & Richardson, D. H. S. (1985b). Uranium accumulation in the lichen Cladonia rangiferina (L.) Wigg. Part II. Toxic effects of cationic, neutral and anionic forms of the uranyl ion. Canadian Journal of Botany, 63, 390–7.
Brady, D., Stoll, A. & Duncan, J. R. (1994). Biosorption of heavy metal cations by non-viable yeast biomass. Environmental Technology, 15, 429–38.
Branquinho, C. (2001). Lichens. In Metals in the Environment: Analysis by Biodiversity, ed. Prasad, M. N. V.. New York: Marcel Dekker, pp. 117–57.
Brightman, F. H. & Seaward, M. R. D. (1977). Lichens of man-made substrates. In Lichen Ecology, ed. Seaward, M. R. D.. London: Academic Press, pp. 253–93.
Brown, D. H. (1991). Lichen mineral studies – Currently clarified or confused?Symbiosis, 11, 207–23.
Brown, G. E., Jr, Parks, G. A. & O'Day, P. A. (1995). Sorption at mineral-water interfaces: macroscopic and microscopic perspectives. In Mineral Surfaces, The Mineralogical Society Series, Vol. 5, ed. Vaughan, D. J. & Pattrick, R. A. D.. Cambridge, UK: Chapman & Hall, pp. 129–84.
Casey, W. H. & Ludwig, C. (1995). Silicate mineral dissolution as a ligand-exchange reaction. In Chemical Weathering Rates of Silicate Minerals, Reviews in Mineralogy, Vol. 31, ed. White, A. E. & Brantley, S. L.. Chelsea, Michigan: Mineralogical Society of America, pp. 87–118.
Chen, J., Blume, H. P. & Beyer, L. (2000). Weathering of rocks induced by lichen colonization – a review. Catena, 39, 121–46.
Chisholm, J. E., Jones, G. C. & Purvis, O. W. (1987). Hydrated copper oxalate, moolooite, in lichens. Mineralogical Magazine, 51, 715–18.
Cicek, A. & Koparal, A. S. (2003). The assessment of air quality and identification of pollutant sources in the Eskisehir region Turkey using Xanthoria parietina (L.) Th.Fr. (1860). Fresenius Environmental Bulletin, 12, 24–8.
Cox, J. S., Smith, D. S., Warren, L. A. & Ferris, F. G. (1999). Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environmental Science and Technology, 33, 4514–21.
Czehura, S. J. (1977). A lichen indicator of copper mineralization, Lights Creek District, Plumas County, California. Economic Geology, 72, 796–803.
Daughney, C. J., Fein, J. B. & Yee, N. (1998). A comparison of the thermodynamics of metal adsorption onto two common bacteria. Chemical Geology, 144, 161–76.
Davis, J. A. & Kent, D. B. (1990). Surface complexation modelling in aqueous geochemistry. In Mineral-Water Interface Geochemistry, Reviews in Mineralogy, Vol. 23, ed. Hochella, J. M. F. & White, A. F.. Chelsea, Michigan: Mineralogical Society of America, pp. 177–260.
Dawson, H. J., Hrutfiord, B. F. & Ugolini, F. C. (1984). Mobility of lichen compounds from Cladonia mitis in arctic soils. Soil Science, 138, 40–5.
Dzombak, D. A. & Morel, F. M. M. (1990). Surface Complexation Modelling: Hydrous Ferric Oxide. Place: Wiley Interscience.
Easton, E. M. (1994). Lichens and rocks – a review. Geoscience Canada, 21, 59–76.
Edwards, H. G. H., Farwell, D. W. & Lewis, I. R. (1993). FT Raman microscopy and lichen biodeterioration. Bruker Report, 139, 8–11.
Fahselt, D., Wu, T. W. & Mott, B. (1995). Trace element patterns in lichens following uranium mine closures. The Bryologist, 98, 228–34.
Fein, J. B. (2000). Quantifying the effects of bacteria on adsorption reactions in water-rock systems. Chemical Geology, 169, 265–80.
Fein, J. B., Daughney, C. J., Yee, N. & Davis, T. A. (1997). A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochimica et Cosmochimica Acta, 61, 3319–28.
Fein, J. B., Boily, J. F., Guclu, K. & Kaulbach, E. (1999). Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces. Chemical Geology, 162, 33–45.
Fortin, D., Ferris, F. G. & Beveridge, T. J. (1997). Surface-mediated mineral development by bacteria. In Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Chelsea, Michigan: Mineralogical Society of America, pp. 161–80.
Fowle, D. A. & Fein, J. B. (1999). Competitive adsorption of metals onto bacterial surfaces. Geochimica et Cosmochimica Acta, 63, 3059–67.
Fowle, D. A. & Fein, J. B. (2000). Experimental measurements of the reversibility of metal-bacteria adsorption reactions. Chemical Geology, 168, 27–36.
Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.
Galun, M., Keller, P., Malki, D.et al. (1983). Removal of uranium (VI) from solution by fungal biomass and fungal wall-related biopolymers. Science, 219, 285–6.
Galun, M., Galun, E., Siegel, B. Z.et al. (1987). Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water, Air, and Soil Pollution, 33, 359–71.
Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences, 20, 309–71.
Garty, J. & Delarea, J. (1991). Localization of iron and other elements in the lichen Nephroma arcticum (L.) Torss. Environmental and Experimental Botany, 31, 367–75.
Garty, J. & Galun, M. (1979). Localization of heavy metals and other elements accumulated in the lichen thallus. New Phytologist, 82, 159–68.
Garty, J. & Theiss, H. B. (1990). The localization of lead in the lichen Ramalina duriaei (De Not.)Bagl. Botanica Acta, 103, 311–14.
Garty, J., Harel, Y. & Steinberger, Y. (1995). The role of lichens in the cycling of metals in the Negev desert. Archives of Environmental Contamination and Toxicology, 29, 247–53.
Gilbert, O. L. (1990). The lichen flora of urban wasteland. Lichenologist, 22, 87–101.
Goyal, R. & Seaward, M. R. D. (1981). Metal uptake in terricolous lichens I. Metal localization within the thallus. New Phytologist, 89, 631–45.
Goyal, R. & Seaward, M. R. D. (1982). Metal uptake in terricolous lichens III. Translocation in the thallus of Peltigera canina. New Phytologist, 90, 85–90.
Grandstaff, D. E. (1986). The dissolution rate of forsteritic olivine from Hawaiian beach sand. In Rates of Chemical Weathering of Rocks and Minerals, ed. Colman, S. M. & Dethier, D. P.. Orlando, Florida: Academic Press, pp. 41–59.
Guibal, E., Milot, C. & Tobin, J. M. (1998). Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Industrial Engineering and Chemical Research, 37, 1454–63.
Haas, J. R., Shock, E. L. & Sassani, D. C. (1995). Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59, 4329–50.
Haas, J. R., Bailey, E. H. & Purvis, O. W. (1998). Bioaccumulation of metals by lichens: Uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. American Mineralogist, 83, 1494–502.
Haas, J. R., DiChristina, T. J. & Wade, R. Jr. (2001). Thermodynamics of U(VI) sorption onto Shewanella putrefaciens. Chemical Geology, 180, 33–54.
Hallbauer, D. K. & Jahns, H. M. (1977). Attack of lichens on quartzitic rock surfaces. Lichenologist, 9, 119–22.
Helgeson, H. C. (1985). Some thermodynamic aspects of geochemistry. Pure and Applied Chemistry, 57, 31–44.
Hickmott, M. (1980). Lichens on lead. Lichenologist, 12, 404–6.
Honegger, R. (1997). Metabolic interactions at the mycobiont-photobiont interface in lichens. In The Mycota, Vol. 5A, Plant Relationships. Part A. ed. Carroll, G. C. & Tudzynski, P.. New York: Springer-Verlag, pp. 209–21.
Iskandar, I. K. & Syers, J. K. (1972). Metal-complex formation by lichen compounds. Journal of Soil Science, 23, 255–65.
Jacquiot, L. & Daillant, O. (1997). Bio-accumulation des métaux lourds et d'autres eléments traces par les lichens. Revue bibliographique. Bulletin de l'Observatoire Mycologique, 12, 2–31.
Jacquiot, L. & Daillant, O. (1999). Bio-accumulation des radioéléments par les lichens. Revue bibliographique. Bulletin de l'Observatoire Mycologique, 16, 2–23.
Johnston, C. G. & Vestal, J. R. (1993). Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microbial Ecology, 25, 305–19.
Jones, D. (1988). Lichens and pedogenesis. In CRC Handbook of Lichenology, vol. III, ed. Galun, M.: Boca Raton: CRC Press, pp. 109–24.
Jones, D., Wilson, M. J. & Laundon, J. R. (1982). Observations on the location and form of lead in Stereocaulon vesuvianum. Lichenologist, 14, 281–6.
Kasama, T., Murakami, T., Ohnuki, T. & Purvis, O. W. (2001). Effects of lichens on uranium migration. In Scientific Basis for Nuclear Waste Management XXIV, ed. Hart, K. P. & Lumpkin, G. R.. Pittsburgh, PA: Materials Research Society, pp. 683–90.
Kelly, S. D., Boyanov, M. I., Bunker, B. A.et al. (2001). XAFS determination of the bacterial cell wall functional groups responsible for complexation of Cd and U as a function of pH. Journal of Synchrotron Radiation, 8, 946–8.
Knops, J. M. H., III, Nash, T. H. N., Boucher, V. L. & Schlesinger, W. H. (1991). Mineral cycling and epiphytic lichens: implications at the ecosystem level. Lichenologist, 23, 309–21.
Koretsky, C. (2000). The significance of surface complexation reactions in hydrologic systems: a geochemist's perspective. Journal of Hydrology, 230, 127–71.
Lee, M. R. & Parsons, I. (1999). Biomechanical and biochemical weathering of lichen-encrusted granite: textural controls on organic-mineral interactions and deposition of silica-rich layers. Chemical Geology, 161, 385–97.
Loppi, S. & Corsini, A. (2003). Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia, Italy. Environmental Monitoring and Assessment, 86, 289–301.
Loppi, S. & Pirintsos, S. A. (2003). Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution, 121, 327–32.
Loppi, S., Frati, L., Paoli, L.et al. (2004). Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Science of the Total Environment, 326, 113–22.
Ludwig, C., Casey, W. H. & Rock, P. A. (1995). Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature, 375, 44–7.
McCarroll, D. & Viles, H. (1995). Rock-weathering by the lichen Lecidea auriculata in an Arctic alpine environment. Earth Surface Processes and Landforms, 20, 199–206.
McLean, J., Purvis, O. W., Williamson, B. J. & Bailey, E. H. (1998). Role for lichen melanins in uranium remediation. Nature, 391, 649–50.
Modenesi, P., Piana, M. & Pinna, D. (1998). Surface features in Parmelia sulcata (Lichenes) thalli growing in shaded or exposed habitats. Nova Hedwigia, 66, 535–47.
Muraleedharan, T. R. & Venkobachar, L. I. (1994). Further insight into the mechanism of biosorption of heavy metals by Ganoderma lucidum. Environmental Technology, 15, 1015–27.
Nash, T. H. (1996). Nutrients, elemental accumulation and mineral cycling. In Lichen Biology, ed. Nash, T. H.. Cambridge, UK: Cambridge University Press, pp. 136–53.
Nash, T. H., Gries, C., Zschau, T.et al. (2003). Historical patterns of metal atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona, USA. Journal de Physique IV, 107, 921–4.
Nieboer, E. & Richardson, D. H. S. (1981). Lichens as monitors of atmospheric deposition. In Atmospheric Pollutants in Natural Waters, ed. Eisenreich, S. J.. Ann Arbor: Ann Arbor Science, pp. 339–88.
Nieboer, E., Richardson, D. H. S. & Tomassini, F. D. (1978). Mineral uptake and release by lichens: an overview. The Bryologist, 81, 226–46.
Nimis, P. L. & Purvis, O. W. (2002). Monitoring lichens as indicators of pollution. An introduction. In Monitoring with Lichens – Monitoring Lichens, ed. Nimis, P. L., Scheidegger, C. & Wolseley, P. A.. Dordrecht: Kluwer Academic Publishers, pp. 1–4.
Olafsdottir, E. S. & Ingolfsdottir, K. (2001). Polysaccharides from lichens: structural characteristics and biological activity. Planta Medica, 67, 199–208.
Paul, A., Hauck, M. & Fritz, E. (2003). Effects of manganese on element distribution and structure in thalli of the epiphytic lichens Hypogymnia physodes and Lecanora conizaeoides. Environmental and Experimental Botany, 50, 113–24.
Pawlik-Skowronska, B., di Toppi, L. S., Favali, M. A.et al. (2002). Lichens respond to heavy metals by phytochelatin synthesis. New Phytologist, 156, 95–102.
Peberdy, J. F. (1990). Fungal cell walls – a review. In Biochemistry of Cell Walls and Membranes in Fungi, ed. Kuhn, P. J., Trinci, A. P. J., Jung, M. J., Goosey, M. W. & Copping, L. E.. Berlin; New York: Springer-Verlag, pp. 5–30.
Poelt, J. & Huneck, S. (1968). Lecanora vinetorum nova spec., ihre Vergesellschaftung, ihre Ökologie und ihre Chemie. Österreichische botanische Zeitschrift, 115, 411–22.
Prapaipong, P. & Shock, E. L. (2001). Estimation of standard-state entropies of association for aqueous metal-organic complexes and chelates at 25 °C and 1 bar. Geochimica et Cosmochimica Acta, 62, 3931–53.
Prapaipong, P., Shock, E. L. & Koretsky, C. M. (1999). Metal-organic complexes in geochemical processes: temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochimica et Cosmochimica Acta, 63, 2547–77.
Puckett, K. J., Nieboer, E., Gorzynski, M. J. & Richardson, D. H. S. (1973). The uptake of metal ions by lichens: a modified ion-exchange process. New Phytologist, 72, 329–42.
Purvis, O. W. (1984). The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist, 16, 197–204.
Purvis, O. W. (1996). Interactions of lichens with metals. Science Progress, 79, 283–309.
Purvis, O. W. (2000). Lichens. The Natural History Museum.
Purvis, O. W. & Halls, C. (1996). A review of lichens in metal-enriched environments. Lichenologist, 28, 571–601.
Purvis, O. W. & James, P. W. (1985). Lichens of the Coniston copper mines. Lichenologist, 17, 221–37.
Purvis, O. W., Gilbert, O. L. & James, P. W. (1985). The influence of copper mineralization on Acarospora smaragdula. Lichenologist, 17, 111–14.
Purvis, O. W., Elix, J. A., Broomhead, J. A. & Jones, G. C. (1987). The occurrence of copper-norstictic acid in lichens from cupriferous substrata. Lichenologist, 19, 193–203.
Purvis, O. W., Elix, J. A. & Gaul, K. L. (1990). The occurrence of copper-psoromic acid from cupriferous substrata. Lichenologist, 22, 345–54.
Purvis, O. W., Williamson, B., Bartok, K. & Zoltani, N. (2000). Bioaccumulation of lead by the lichen Acarospora smaragdula from smelter emissions. New Phytologist, 147, 591–9.
Purvis, O. W., Bailey, E. H., McLean, J., Kasama, T. & Williamson, B. J. (2004). Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21, 159–67.
Richardson, D. H. S. (1995). Metal uptake in lichens. Symbiosis, 18, 119–27.
Richardson, D. H. S. & Nieboer, E. (1981). Lichens and pollution monitoring. Endeavour, 5, 127–33.
Richardson, D. H. S. & Nieboer, E. (1983). The uptake of nickel ions by lichen thalli of the genera Umbilicaria and Peltigera. Lichenologist, 15, 81–8.
Richardson, D. H. S., Kiang, S., Ahmadjian, V. & Nieboer, E. (1985). Lead and uranium uptake in lichens. In Lichen Physiology and Cell Biology, ed. Brown, D. H.. New York: Plenum Press, pp. 227–46.
Saeki, M., Kunii, K., Seki, T.et al. (1977). Metal burdens in urban lichens. Environmental Research, 13, 256–66.
Sandau, E., Sandau, P., Pulz, O. & Zimmermann, M. (1996). Heavy metal sorption by marine algae and algal by-products. Acta Biotechnology, 16, 103–19.
Sarret, G., Manceau, A., Cuny, D.et al. (1998). Mechanisms of lichen resistance to metallic pollution. Environmental Science and Technology, 32, 3325–30.
Schatz, A. (1963). Soil microorganisms and soil chelation. The pedogenic action of lichens and lichen acids. Agricultural and Food Chemistry, 11, pp. 112–18.
Schlekat, C. E., Decho, A. W. & Chandler, G. T. (1998). Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environmental Toxicology and Chemistry, 17, 1867–74.
Sensen, M. & Richardson, D. H. S. (2002). Mercury levels in lichens from different host trees around a chlor-alkali plant in New Brunswick, Canada. Science of the Total Environment, 293, 31–45.
Shock, E. L. & Koretsky, C. M. (1993). Metal-organic complexes in geochemical processes: calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochimica et Cosmochimica Acta, 57, 4899–922.
Shock, E. L. & Koretsky, C. M. (1995). Metal-organic complexes in geochemical processes: estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high temperatures and pressures. Geochimica et Cosmochimica Acta, 59, 1497–532.
Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A. & Helgeson, H. C. (1992). Calculation of the thermodynamic behavior of aqueous species at high pressures and temperatures: effective electrostatic radii, dissociation constants, and standard partial molal properties to 1000 °C and 5 kb. Journal of the Chemical Society (London) Faraday Transactions, 88, 803–26.
Shock, E. L., Sassani, D. C., Willis, M. & Sverjensky, D. A. (1997). Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta, 61, 907–50.
Small, T. D., Warren, L. A., Roden, E. E. & Ferris, F. G. (1999). Sorption of strontium by bacteria, Fe(III) oxide, and bacteria–Fe(III) oxide composites. Environmental Science and Technology, 33, 4465–70.
Stone, A. T. (1997). Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces. In Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy, Vol. 35, ed. Banfield, J. F. & Nealson, K. H.. Chelsea, Michigan: Mineralogical Society of America, pp. 309–44.
Strandberg, G. W., Shumate, S. E. & Parrott, J. R. (1981). Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Applied and Environmental Microbiology, 41, 237–45.
Stumm, W. & Morgan, J. J. (1996). Aquatic Chemistry. New York: John Wiley & Sons.
Suzuki, Y. & Banfield, J. F. (1999). Geomicrobiology of uranium. In Uranium: Mineralogy, Geochemistry and the Environment, Reviews in Mineralogy, Vol. 38, ed. Burns, P. C. & Finch, R.. Chelsea, Michigan: Mineralogical Society of America, pp. 393–432.
Syers, J. K. (1969). Chelating ability of fumarprotocetraric acid and Parmelia conspersa. Plant and Soil, 31, 205–8.
Takani, M., Yajima, T., Masuda, H. & Yamauchi, O. (2002). Spectroscopic and structural characterization of copper(II) and palladium(II) complexes of a lichen substance usnic acid and its derivatives. Possible forms of environmental metals retained in lichens. Journal of Inorganic Biochemistry, 91, 139–50.
Texier, A. C., Andres, Y. & Cloirec, P. L. (1997). Selective biosorption of lanthanide (La, Eu) ions by Mycobacterium smegmatis. Environmental Toxicology, 18, 835–41.
Tsezos, M. (1985). The selective extraction of metals from solution by micro-organisms. A brief review. Canadian Metallurgical Quarterly, 24, 141–4.
Tsezos, M. & Volesky, B. (1982). The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnology and Bioengineering, 24, 955–69.
Tuominen, Y. (1967). Studies of the strontium uptake of the Cladonia alpestris thallus. Annales Botanici Fennici, 4, 1–28.
Tyler, G. (1989). Uptake, retention and toxicity of heavy metals in lichens. Water, Air, and Soil Pollution, 47, 321–33.
Urrutia, M. M. & Beveridge, T. J. (1994). Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chemical Geology, 116, 261–80.
Lee, J. & Windt, L. D. (1999). CHESS Tutorial and Cookbook. Fontainebleau, France: CIG-Ecole des Mines de Paris.
Veith, J. A. & Sposito, G. (1977). On the use of the Langmuir equation in the interpretation of “adsorption” phenomena. Soil Science Society of America Journal, 41, 697–702.
Wessels, D. C. J. & Schoeman, P. (1988). Mechanism and rate of weathering of Clarens sandstone by an endolithic lichen. South African Journal of Science, 84, 274–7.
Westall, J. C. (1982). FITEQL, A computer program for determination of chemical equilibrium constants from experimental data. Version 2.0. Department of Chemistry, Oregon State University.
Wild, H. (1968). Geobotanical anomalies in Rhodesia. 1. The vegetation of copper-bearing rocks. Kirkia, 7, 1–72.
Williams, M. E. & Rudolf, E. D. (1974). The role of lichens and associated fungi in the chemical weathering of rock. Mycologia, 66, 648–60.
Wilson, M. J. (1995). Interactions between lichens and rocks: a review. Cryptogamic Botany, 5, 299–305.
Wilson, M. J. & Jones, D. (1984). The occurrence and significance of manganese oxalate in Pertusaria corallina (lichenes). Pedobiologia, 26, 373–9.
Wilson, M. J., Jones, D. & McHardy, W. J. (1981). The weathering of serpentinite by Lecanora atra. Lichenologist, 13, 167–76.
Yee, N. & Fein, J. B. (2002). Does metal adsorption onto bacterial surfaces inhibit or enhance aqueous metal transport? Column and batch reactor experiments on Cd-Bacillus subtilis-quartz systems. Chemical Geology, 185, 303–19.
Yee, N., Fein, J. B. & Daughney, C. J. (2000). Experimental study of the pH, ionic strength and reversibility behavior of bacteria-mineral adsorption. Geochimica et Cosmochimica Acta, 64, 609–17.
Yliruokanen, I. (1975). Uranium, thorium, lead, lanthanoids and yttrium in some plants growing on granitic and radioactive rocks. Bulletin of the Geologic Society of Finland, 47, 71–8.