Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Print publication year: 2006
  • Online publication date: December 2009

10 - Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility

    • By Marina Fomina, Division of Environmental and Applied Biology, Biological Sciences Institute School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK, Euan P. Burford, Division of Environmental and Applied Biology, Biological Sciences Institute School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK, Geoffrey M. Gadd, Division of Environmental and Applied Biology, Biological Sciences Institute School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, UK
  • Edited by Geoffrey Michael Gadd, University of Dundee
  • Publisher: Cambridge University Press
  • DOI:
  • pp 236-266



Fungi are chemoheterotrophic organisms, ubiquitous in subaerial and subsoil environments, and important as decomposers, animal and plant symbionts and pathogens, and spoilage organisms of natural and man-made materials (Gadd, 1993, 1999; Burford et al., 2003a). A fungal role in biogeochemical cycling of the elements (e.g. C, N, P, S, metals) is obvious and interlinked with the ability to adopt a variety of growth, metabolic and morphological strategies, their adaptive capabilities to environmental extremes and their symbiotic associations with animals, plants, algae and cyanobacteria (Burford et al., 2003a; Braissant et al., 2004; Gadd, 2004). Fungal polymorphism and reproduction by spores underpin successful colonization of different environments. Most fungi exhibit a filamentous growth habit, which provides an ability for adoption of either explorative or exploitative growth strategies, and the formation of linear organs of aggregated hyphae for protected fungal translocation (see Fomina et al., 2005b). Some fungi are polymorphic, occurring as both filamentous mycelium and unicellular yeasts or yeast-like cells, e.g. black meristematic or microcolonial fungi colonizing rocks (Sterflinger, 2000; Gorbushina et al., 2002, 2003). Fungi can also grow inside their own parental hyphae utilizing dead parts of the colony under the protection of parental cell walls (Gorbushina et al., 2003). The ability of fungi to translocate nutrients through the mycelial network is another important feature for exploring heterogeneous environments (Jacobs et al., 2002, 2004; Lindahl & Olsson, 2004).

The earliest fossil record of fungi in terrestrial ecosystems occurred during the Ordovician period (480 to 460 MYBP) (Heckman et al., 2001).

Related content

Powered by UNSILO
Adriaensen, K., Leile, D., Laere, A., Vangronsveld, J. & Colpaert, J. V. (2003). A zinc-adapted fungus protects pines from zinc stress. New Phytologist, 161, 549–55.
Ahonen-Jonnarth, U., Hees, P. A. W., Lundström, U. S. & Finlay, R. D. (2000). Production of organic acids by mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings exposed to elevated concentrations of aluminium and heavy metals. New Phytologist, 146, 557–67.
Arnott, H. J. (1995). Calcium oxalate in fungi. In Calcium Oxalate in Biological Systems, ed. Khan, S. R.. Boca Raton: CRC Press, pp. 73–111.
Arocena, J. M., Glowa, K. R., Massicotte, H. B. & Lavkulich, L. (1999). Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the AE horizon of a Luvisol. Canadian Journal of Soil Sciences, 79, 25–35.
Arocena, J. M., Zhu, L. P. & Hall, K. (2003). Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau, China. Earth Surface Processes and Landforms, 28, 1429–37.
Arvieu, J. C., Leprince, F., & Plassard, C. (2003). Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Annals of Forest Sciences, 60, 815–21.
Babich, H. & Stotzky, G. (1977). Reduction in the toxicity of cadmium to microorganisms by clay minerals. Applied and Environmental Microbiology, 33, 696–705.
Baldrian, P. (2003). Interaction of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32, 78–91.
Banfield, J. F. & Nealson, K. H. (eds.) (1997). Geomicrobiology: Interactions between Microbes and Minerals. Washington, DC: Mineralogical Society of America.
Banfield, J. F., Barker, W. W., Welch, S. A. & Taunton, A. (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America, 96, 3404–11.
Barker, W. W. & Banfield, J. F. (1996). Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chemical Geology, 132, 55–69.
Barker, W. W. & Banfield, J. F. (1998). Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiology Journal, 15, 223–44.
Bennett, P. C., Rogers, J. R. & Choi, W. J. (2001). Silicates, silicate weathering, and microbial ecology. Geomicrobiology Journal, 18, 3–19.
Blaudez, D., Botton, B. & Chalot, M. (2000). Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology, 146, 1109–17.
Braissant, O., Cailleau, G., Aragno, M. & Verrecchia, E. P. (2004). Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology, 2, 59–66.
Brandl, H. (2001). Heterotrophic leaching. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 383–423.
Bruand, A. & Duval, O. (1999). Calcified fungal filaments in the petrocalcic horizon of Eutrochrepts in Beauce, France. Soil Science Society of America Journal, 63, 164–9.
Burford, E. P., Fomina, M. & Gadd, G. M. (2003a). Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine, 67, 1127–55.
Burford, E. P., Kierans, M. & Gadd, G. M. (2003b). Geomycology: fungi in mineral substrata. Mycologist, 17, 98–107.
Burgstaller, W. & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology, 27, 91–116.
Callot, G., Guyon, A. & Mousain, D. (1985a). Inter-relation entre aiguilles de calcite et hyphes mycéliens. Agronomie, 5, 209–16.
Callot, G., Mousain, D. & Plassard, C. (1985b). Concentration of calcium carbonate on the walls of fungal hyphae. Agronomie, 5, 143–50.
Callot, G., Maurette, M., Pottier, L. & Dubois, A. (1987). Biogenic etching of microfractures in amorphous and crystalline silicates. Nature, 328, 147–9.
Calvet, F. (1982). Constructive micrite envelope developed in vadose continental environment in pleistocene eoliantes of Mallorca (Spain). Acta Geologica Hispanica, 17, 169–78.
Casarin, V., Plassard, C., Souche, G. & Arvieu, J.-C. (2003). Quantification of oxalate ions and protons released by ectomycorrhizal fungi in rhizosphere soil. Agronomie, 23, 461–9.
Castro, I. M., Fietto, J. L. R., Vieira, R. al. (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57, 39–49.
Chander, K., Dyckmans, J., Joergensen, R. G., Meyer, B. & Raubuch, M. (2001). Different sources of heavy metals and their long-term effects on soil microbial properties. Biology and Fertility of Soils, 34, 241–7.
Chantigny, M. H., Angers, D. A., Prevost, D., Vezina, L. P. & Chalifour, F. P. (1997). Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Science Society of America Journal, 61, 262–7.
Clausen, C. A. & Green, F. (2003). Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives. International Biodeterioration and Biodegradation, 51, 139–44.
Colpaert, J. V. & Assche, J. A. (1992). Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant and Soil, 143, 201–11.
Colpaert, J. V. & Assche, J. A. (1993). The effect of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytologist, 123, 325–33.
Cromack, K. Jr, Solkins, P., Grausten, W. al. (1979). Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biology and Biochemistry, 11, 463–8.
Torre, M. A., Gomez-Alarcon, G.Vizcaino, C. & Garcia, M. T. (1993) Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochemistry, 19, 129–47.
Denny, H. J. & Wilkins, D. A. (1987). Zinc tolerance in Betula ssp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytologist, 106, 545–53.
Devevre, O., Garbaye, J. & Botton, B. (1996). Release of complexing organic acids by rhizosphere fungi as a factor in Norway Spruce yellowing in acidic soils. Mycological Research, 100, 1367–74.
Diercks, M., Sand, W. & Bock, E. (1991). Microbial corrosion of concrete. Experientia, 47, 514–16.
Dutton, M. V. & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–95.
Easton, R. M. (1997). Lichen-rock-mineral interactions: an overview. In Biological–Mineralogical Interactions, Vol. 21, eds. McIntosh, J. M. & Groat, L. A.. Mineralogical Association of Canada Short Course Series, Ottawa, Ontario, Canada, pp. 209–39.
Eckhardt, F. E. W. (1985). Solubilisation, transport, and deposition of mineral cations by microorganisms – efficient rock-weathering agents. In The Chemistry of Weathering, ed. J. Drever, Nato Asi Ser C, 149, 161–73.
Ehrlich, H. L. (1996). Geomicrobiology. New York: Marcel Dekker.
Ehrlich, H. L. (1998). Geomicrobiology: its significance for geology. Earth-Science Reviews, 45, 45–60.
Etienne, S. & Dupont, J. (2002). Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observationsEarth Surface Processes and Landforms, 27, 737–48.
Fletcher, M. (1987). How do bacteria attach to solid surfaces? Microbiological Sciences, 4, 133–6.
Folk, R. L. & Chafetz, H. S. (2000). Bacterially induced microscale and nanoscale carbonate precipitates. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 41–9.
Fomina, M. & Gadd, G. M. (2002a). Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 106, 107–17.
Fomina, M. & Gadd, G. M. (2002b). Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. Journal of Chemical Technology and Biotechnology, 78, 23–34.
Fomina, M. A., Alexander, I. J., Hillier, S. & Gadd, G. M. (2004). Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiological Journal, 21, 351–66.
Fomina, M. A., Alexander, I. J., Colpaert, J. V. & Gadd, G. M. (2005a). Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biology and Biochemistry, 37, 851–66.
Fomina, M., Burford, E. P. & Gadd, G. M. (2005b) Toxic metals and fungal communities. In The Fungal Community. Its Organization and Role in the Ecosystem, ed. Dighton, J., White, J. F. & Oudemans, P.. Boca Raton: CRC Press, pp. 733–58.
Fomina, M., Hillier, S., Charnock, J. al. (2005c). Role of oxalic acid overexcretion in toxic metal mineral transformations by Beauveria caledonica. Applied and Environmental Microbiology, 71, 371–81.
Fomina, M. A., Olishevskaya, S. V., Kadoshnikov, V. M., Zlobenko, B. P. & Podgorsky, V. S. (2005d). Concrete colonization and destruction by mitosporic fungi in model experiment. Mikrobiologichny Zhurnal, 67, 97–106 (in Russian with English summary).
Fujita, Y., Ferris, F. G., Lawson, D. R., Colswell, F. S. & Smith, R. W. (2000). Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal, 17, 305–18.
Gadd, G. M. (1984). Effect of copper on Aureobasidium pullulans in solid medium: adaptation not necessary for tolerant behaviour. Transactions of the British Mycological Society, 82, 546–9.
Gadd, G. M. (1990). Fungi and yeasts for metal accumulation. In Microbial Mineral Recovery, ed. Ehrlich, H. L. & Brierley, C.. New York: McGraw-Hill, pp. 249–275.
Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.
Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology, 41, 47–92.
Gadd, G. M. (2000). Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 11, 271–9.
Gadd, G. M. (2001). Metal transformations. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 359–82.
Gadd, G. M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist, 18, 60–70.
Gadd, G. M. & Mowll, J. L. (1985). Copper uptake by yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans. Experimental Mycology, 9, 230–40.
Gadd, G. M. & Sayer, J. A. (2000). Fungal transformations of metals and metalloids. In Environmental Microbe-Metal Interactions, ed. Lovley, D. R.. Washington, DC: American Society for Microbiology, pp. 237–56.
Gadd, G. M., Burford, E. P. & Fomina, M. (2003). Biogeochemical activities of microorganisms in mineral transformations: consequences for metal and nutrient mobility. Journal of Microbiology and Biotechnology, 13, 323–31.
Galli, U., Schuepp, H. & Brunold, C. (1994). Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum, 92, 364–8.
Gaylarde, C. C. & Morton, L. H. G. (1999). Deteriogenic biofilms on buildings and their control: a review. Biofouling, 14, 59–74.
Geesey, G. (1993). A Review of the Potential for Microbially Influenced Corrosion of High-Level Nuclear Waste Containers. San Antonio, TX: Nuclear Regulatory Commission.
Gerrath, J. F., Gerrath, J. A. & Larson, D. W. (1995). A preliminary account of endolithic algae of limestone cliffs of the Niagara Escarpment. Canadian Journal of Botany, 73, 788–93.
Gharieb, M. M. & Gadd, G. M. (1999). Influence of nitrogen source on the solubilization of natural gypsum. Mycological Research, 103, 473–81.
Gharieb, M. M., Kierans, M. & Gadd, G. M. (1999). Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycological Research, 103, 299–305.
Gomes-Alarcon, G., Munor, M. L. & Flores, M. (1994). Excretion of organic acids by fungal strains isolated from decayed sandstones. International Biodeterioration and Biodegradation, 34, 169–80.
Gorbushina, A. A. & Krumbein, W. E. (2000). Subaerial microbial mats and their effects on soil and rock. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 161–9.
Gorbushina, A. A., Krumbein, W. E., Hamann, al. (1993). On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiology Journal, 11, 205–21.
Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein, W. E. & Vendrell-Saz, M. (2001). Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiology Journal, 18, 117–32.
Gorbushina, A. A., Krumbein, W. E. & Volkmann, M. (2002). Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. Astrobiology, 2, 203–13.
Gorbushina, A. A., Whitehead, K., Dornieden, al. (2003). Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Canadian Journal of Botany, 81, 131–8.
Grote, G. & Krumbein, W. E. (1992). Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiology Journal, 10, 49–57.
Gu, J. D., Ford, T. E., Berke, N. S. & Mitchell, R. (1998). Biodeterioration of concrete by the fungus Fusarium. International Biodeterioration and Biodegradation, 41, 101–9.
Hagerberg, D., Thelin, G. & Wallander, H. (2003). The production of ectomycorrhizal mycelium in forests: relation between forest nutrient status and local mineral sources. Plant and Soil, 252, 279–90.
Hammes, F. & Verstraete, W. (2002). Key roles of pH, and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1, 3–7.
Heckman, D. S., Geiser, D. M., Eidell, B. al. (2001). Molecular evidence for the early colonisation of land by fungi and plants. Science, 293, 1129–33.
Henderson, M. E. K. & Duff, R. B. (1963). The release of metallic and silicate ions from minerals, rocks and soils by fungal activity. Journal of Soil Science, 14, 236–46.
Hirsch, P., Eckhardt, F. E. W. & Palmer, R. J. Jr. (1995). Fungi active in weathering rock and stone monuments. Canadian Journal of Botany, 73, 1384–90.
Hochella, M. F. (2002). Sustaining Earth: thoughts on the present and future roles in mineralogy in environmental science. Mineralogical Magazine, 66, 627–52.
Hoffland, E., Giesler, R., Jongmans, T. & Breemen, N. (2002). Increasing feldspar tunneling by fungi across a north Sweden podzol chronosequence. Ecosystems, 5, 11–22.
Howlett, N. G. & Avery, S. V. (1997). Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 48, 539–45.
Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A. & Gadd, G. M. (2002). Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiology Ecology, 40, 65–71.
Jacobs, H., Boswell, G. P., Scrimgeour, C. al. (2004). Translocation of carbon by Rhizoctonia solani in nutritionally-heterogeneous environments. Mycological Research, 108, 453–62.
Jones, M. D. & Hutchinson, T. C. (1988). Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. II Uptake of nickel, calcium, magnesium, phosphorus and iron. New Phytologist, 108, 461–70.
Jongmans, A. G., Breemen, N., Lungstrom, al. (1997). Rock-eating fungi. Nature, 389, 682–3.
Kahle, C. F. (1977). Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicristisation. Sedimentology, 24, 413–35.
Khan, M. & Scullion, J. (2000). Effect of soil on microbial responses to metal contamination. Environmental Pollution, 110, 115–25.
Kikuchi, Y. & Sreekumari, K. R. (2002). Microbially influenced corrosion and biodeterioration of structural metals. Journal of the Iron and Steel Institute of Japan, 88, 620–8.
Klappa, C. F. (1979). Calcified filaments in quaternary calcretes: organo-mineral interactions in the subaerial vadose environment. Journal of Sedimentary Petrology, 49, 955–68.
Kumar, R. & Kumar, A. V. (1999). Biodeterioration of Stone in Tropical Environments: An Overview. The J. Paul Getty Trust, USA.
Lapeyrie, F., Chilvers, G. A. & Bhem, C. A. (1987). Oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch.ex fr.). New Phytologist, 106, 139–46.
Lapeyrie, F., Picatto, C., Gerard, J. & Dexheimer, J. (1990). TEM study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis, 9, 163–6.
Lapeyrie, F., Ranger, J. & Vairelles, D. (1991). Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Canadian Journal of Botany, 69, 342–6.
Lee, G.-H. & Stotzky, G. (1999). Transformation and survival of donor, recipient, and transformants of Bacillus subtilis in vitro and in soil. Soil Biology and Biochemistry, 31, 1499–508.
Leyval, C. & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In Trace Elements in the Rhizosphere, ed. Gobran, G. R., Wenzel, W. W. & Lombi, E.. Boca Raton: CRC Press, pp. 165–85.
Lindahl, B. D. & Olsson, S. (2004). Fungal translocation – creating and responding to environmental heterogeneity. Mycologist, 18, 79–88.
Little, B. & Staehle, R. (2001). Fungal influenced corrosion in post-tension structures. The Electrochemical Society Interface, Winter 2001, 44–8.
Lotareva, O. V. & Prozorov, A. A. (2000). Effect of the clay minerals montmorillonite and kaolinite on the generic transformation of competent Bacillus subtilis cells. Microbiology, 69, 571–4.
Lunsdorf, H., Erb, R. W., Abraham, W. R. & Timmis, K. N. (2000). ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environmental Microbiology, 2, 161–8.
McEldowney, S. & Fletcher, M. (1986). Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces. Journal of General Microbiology, 132, 513–23.
Magyarosy, A., Laidlaw, R. D., Kilaas, al. (2002). Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology, 59, 382–8.
Mandal, S. K., Roy, A. & Banerjee, P. C. (2002). Iron leaching from china clay by fungal strains. Transactions of the Indian Institute of Metals, 55, 1–7.
Manley, E. & Evans, L. (1986). Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Science, 141, 106–12.
Manoli, F., Koutsopoulos, E. & Dalas, E. (1997). Crystallization of calcite on chitin. Journal of Crystal Growth, 182, 116–24.
Marshall, K. C. (1988). Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Canadian Journal of Microbiology, 34, 593–606.
Martin, J. P., Filip, Z. & Haider, K. (1976). Effect of montmorillonite and humate on growth and metabolic activity of some actinomyces. Soil Biology and Biochemistry, 8, 409–13.
Martino, E., Perotto, S., Parsons, R. & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133–41.
Meharg, A. A. (2003). The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycological Research, 107, 1253–65.
Merz-Preiβ, M. (2000). Calcification in cyanobacteria. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 51–5.
Mironenko, N. V., Alekhina, I. A., Zhdanova, N. N. & Bulat, S. A. (2000). Intraspecific variation in gamma-radiation resistance and genomic structure in the filamentous fungus Alternaria alternata: a case study of strains inhabiting Chernobyl Reactor No. 4. Ecotoxicology and Environmental Safety, 45, 177–87.
Money, N. P. (2004). The fungal dining habit – a biomechanical perspective. Mycologist, 18, 71–6.
Money, N. P. & Howard, R. J. (1996). Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genetics and Biology, 20, 217–27.
Monger, C. H. & Adams, H. P. (1996). Micromorphology of calcite-silica deposits, Yucca Mountain, Nevada. Soil Science Society of America Journal, 60, 519–30.
Muller, B., Burgstaller, W., Strasser, H., Zanella, A. & Schinner, F. (1995). Leaching of zinc from an industrial filter dust with Penicillium, Pseudomonas and Corynebacterium: citric acid is the leaching agent rather than amino acids. Journal of Industrial Microbiology, 14, 208–12.
Nica, D., Davis, J. L., Kirby, L., Zuo, G. & Roberts, D. J. (2000). Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. International Biodeterioration and Biodegradation, 46, 61–8.
Olsson, P. A. & Wallander, H. (1998). Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiology Ecology, 27, 195–205.
Paris, F., Bonnaud, P., Ranger, J. & Lapeyrie, F. (1995). In vitro weathering of phlogopite by ectomycorrhizal fungi I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution. Plant Soil, 177, 191–201.
Pereira, M. O., Vieira, M. J. & Melo, L. F. (2000). The effect of clay particles on the efficacy of a biocide. Water Science and Technology, 41, 61–4.
Perfettini, J. V., Revertegat, E. & Langomazino, N. (1991). Evaluation of cement degradation by the metabolic activities of two fungal strains. Experientia, 47, 527–33.
Perotto, S. & Martino, E. (2001). Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotechnologica, 13, 55–63.
Puget, P., Angers, D. A. & Chenu, C. (1999). Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology and Biochemistry, 31, 55–63.
Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.
Ritz, K. & Young, I. M. (2004). Interaction between soil structure and fungi. Mycologist, 18, 52–9.
Rivadeneyra, M. A., Delgado, R., Delgado, al. (1993). Precipitation of carbonates by Bacillus sp. isolated from saline soils. Geomicrobiology Journal, 11, 175–84.
Roberts, D. J., Nica, D., Zuo, G. & Davis, J. L. (2002). Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration and Biodegradation, 49, 227–34.
Rodriguez Navarro, , Sebastian, C., , E. & Rodriguez Gallego, M. (1997). An urban model for dolomite precipitation: authigenic dolomite on weathered building stones. Sedimentary Geology, 109, 1–11.
Sand, W. & Bock, E. (1991a). Biodeterioration of mineral materials by microorganisms – Biogenic sulphuric and nitric-acid corrosion of concrete and natural stone. Geomicrobiology Journal, 9, 129–38.
Sand, W. & Bock, E. (1991b). Biodeterioration of ceramic materials by biogenic acids. International Biodeterioration, 27, 175–83.
Sarret, G., Manceau, A., Cuny, al. (1998). Mechanisms of lichen resistance to metallic pollution. Environmental Science and Technology, 32, 3325–30.
Sarret, G., Saumitou-Laprade, P., Bert, al. (2002). Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiology, 130, 1815–26.
Sayer, J. A. & Gadd, G. M. (2001). Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycological Research, 105, 1261–7.
Sayer, J. A., Kierans, M. & Gadd, G. M. (1997). Solubilization of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiology Letters, 154, 29–35.
Sayer, J. A., Cotter-Howells, J. D., Watson, C., Hillier, S. & Gadd, G. M. (1999). Lead mineral transformation by fungi. Current Biology, 9, 691–4.
Staley, J. T., Palmer, F. & Adams, J. B. (1982). Microcolonial fungi: common inhabitants on desert rocks. Science, 215, 1093–5.
Sterflinger, K. (2000). Fungi as geologic agents. Geomicrobiology Journal, 17, 97–124.
Stotzky, G. (1966). Influence of clay minerals on microorganisms-II. Effect of various clay species, homoionic clays, and other particles on bacteria. Canadian Journal of Microbiology, 12, 831–48.
Stotzky, G. (2000). Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality, 29, 691–705.
Styriakova, I. & Styriak, I. (2000). Iron removal from kaolins by bacterial leaching. Ceramics-Silikaty, 44, 135–41.
Thompson, J. B. & Ferris, F. G. (1990). Cyanobacterial precipitation of gypsum, calcite and magnesite from natural alkaline lake water. Geology, 18, 995–8.
Thomson-Eagle, E. T. & Frankenberger, W. T. (1992). Bioremediation of soils contaminated with selenium. In Advances in Soil Science, ed. Lal, R. & Stewart, B. A.. New York: Springer-Verlag, pp. 261–309.
Tisdall, J. M., Smith, S. E. & Rengasamy, P. (1997). Aggregation of soil by fungal hyphae. Australian Journal of Soil Research, 35, 55–60.
Turnau, K., Kottke, I. & Dexheimer, J. (1996). Toxic element filtering in Rhizopogon roseolus/Pinus sylvestris mycorrhizas collected from calamine dumps. Mycological Research, 100, 16–22.
Urzi, C., Garcia-Valles, M. T., Vendrell, M. & Pernice, A. (1999). Biomineralization processes of the rock surfaces observed in field and in laboratory. Geomicrobiology Journal, 16, 39–54.
Lelie, D., Schwitzguebel, J. P., Glass, D. J., Vangronsveld, J. & Baker, A. (2001). Assessing phytoremediation's progress in the United States and Europe. Environmental Science and Technology, 35, 446A–52A.
Hees, P. A. V., Goldbold, D. L., Jentschke, G. & Jones, D. L. (2003). Impact of ectomycorrhizas on the concentration and biodegradation of simple organic acids in a forest soil. European Journal of Soil Science, 54, 697–706.
Leerdam, D. M., Williams, P. A. & Cairney, J. W. G. (2001). Phosphate-solubilizing abilities of ericoid mycorrhizal endophytes of Woollsia pungens (Epacridaceae). Australian Journal of Botany, 49, 75–80.
Tichelen, K. K., Colpaert, J. V. & Vangronsveld, J. (2001). Ectomycorrhizal protection of Pinus sylvestris against copper toxicity. New Phytologist, 150, 203–13.
Verrecchia, E. P. (2000). Fungi and sediments. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 69–75.
Verrecchia, E. P., Dumont, J. L. & Rolko, K. E. (1990). Do fungi building limestones exist in semi-arid regions? Naturwissenschaften, 77, 584–6.
Vettori, C., Gallori, E. & Stotzky, G. (2000). Clay minerals protect bacteriophage PBS1 of Bacillus subtilis against inactivation and loss of transducing ability by UV radiation. Canadian Journal of Microbiology, 46, 770–3.
Vodnik, D., Byrne, A. R. & Gogala, N. (1998). The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycological Research, 102, 953–8.
Volkmann, M., Whitehead, K., Rutters, H., Rullkotter, J. & Gorbushina, A. A. (2003). Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Communications in Mass Spectrometry, 17, 897–902.
von Knorre, H. & Krumbein, W. E. (2000). Bacterial calcification. In Microbial Sediments, ed. Riding, R. E. & Awramik, S. M.. Berlin: Springer-Verlag, pp. 25–31.
Wainwright, M., Tasnee, A. A. & Barakah, F. (1993). A review of the role of oligotrophic microorganisms in biodeterioration. International Biodeterioration and Biodegradation, 31, 1–13.
Warren, L. A., Maurice, P. A., Parmer, N. & Ferris, F. G. (2001). Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal, 18, 93–115.
Warscheid, T. & Krumbein, W. E. (1994). Biodeterioration processes on inorganic materials and means of countermeasures. Materials and Corrosion, 45, 105–13.
Watts, H. J., Very, A. A., Perera, T. H. S., Davies, J. M. & Gow, N. A. R. (1998). Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology, 144, 689–95.
Webley, D. M., Henderson, M. E. F. & Taylor, I. F. (1963). The microbiology of rocks and weathered stones. Journal of Soil Science, 14, 102–12.
Wenzel, C. L., Ashford, A. E. & Summerell, B. A. (1994). Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of warratah [Telopea speciosissima (Sm.) R. Br.]. New Phytologist, 128, 487–96.
Whitelaw, M. A., Harden, T. J. & Helyar, K. R. (1999). Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 31, 655–65.
Wollenzien, U., Hoog, G. S., Krumbein, W. E. & Urzi, C. (1995). On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Science of the Total Environment, 167, 287–94.
Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya, L. T. (2000). Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104, 1421–26.