Skip to main content Accessibility help
×
Home
  • Print publication year: 2016
  • Online publication date: January 2017

6 - Structures and Properties Characterization

from Part One - Fundamentals, Processing, and Characterization

Related content

Powered by UNSILO
1.Wang, Z. L. (Ed.) (2000). Characterization of Nanophase Materials. Weinheim, Germany: Wiley VCH, pp. 37–80.
2.Yan, N. and Wang, Z. L (Eds.) (2005). Handbook of Microscopy for Nanotechnology. Boston, MA: Kluwer Academic Publishers.
3.Wang, Z. L. (Ed.) (2000). Characterization of Nanophase Materials. Weinheim, Germany: Wiley VCH, pp. 13–36
4.Cao, G. (2004). Nanostructures and Nanomaterials: Synthesis. London: Properties & Applications, Imperial College Press, pp. 329–390.
5.Hornyak, G. L., Tibbals, H. F., Dutta, J., and Moore, J. J. (2009). Introduction of Nanoscience & Nanotechnology. Baca Raton, FL: CRC Press, pp. 107–175.
6.Crewe, A. V. (1970). The current state of high resolution scanning electron microscopy. Quarterly Review of Biophysics 3(1), 137175.
7.Buseck, P., Cowley, J. M., and Eyring, L. (Eds.) (1988). High Resolution Transmission Electron Microscopy and Associated Techniques. New York: Oxford University Press.
8.Browing, N. D., Chisholm, M. F., and Pennycook, S. J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.
9.Hobbs, S. Y. and Watkins, V. H. (2000). Morphology Characterization by Microscopy Techniques. In Polymer Blends, vol. 1: Formulation. Paul, D. R. and Bucknall, C. B. (Eds.). New York: John Wiley & Sons, pp. 239289.
10.Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructure, and Performance. AIAA-2004-1996 paper, 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, April 19–22.
11.Guinier, A. and Fournet, G. (1955). Small-Angle Scattering of X-Rays. New York: Wiley.
12.Glatter, O. and Kratky, O. (1982). Small-Angle X-Ray Scattering. London: Academic Press.
13.Levine, A. (1991). Quantum Chemistry, 4th ed. Upper Saddle River, NJ: Prentice Hall.
14.Jalili, N. and Laxminarayana, K. (2004). A review of atomic microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14, 907945.
15.Nakajima, K., Wang, D., and Nishi, T. (2012). AFM Characterization of Polymer Nanocomposites. In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 185228.
16.Garea, S. A., and Iovu, H. (2012). Following the Nanocomposites Synthesis by Raman Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS). In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 115142.
17.Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 17–93.
18.Lao, S. C., Koo, J. H., et al. (2010). Flame-retardant Polyamide 11 and 12 nanocomposites: Processing, morphology, and mechanical properties. Journal of Composite Materials 44(25), 29332951.
19.Vaia, R. A., Teukolsky, R. K., and Giannelis, E. P. (1994). Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials 6(7), 10171033.
20.Osman, M. A., Ploetze, M., and Skrabal, P. (2004). Structure and Properties of Alkylammonium Monolayers Self-Assembled on Montmorillonite Platelets. Journal Physical Chemistry B 108(8), 25802588.
21.Eslami, H., Grmela, M., and Bousmina, M. (2009). A mesoscopic tube model of polymer/layered silicate nanocomposites. Rheological Acta 48(3), 317331.
22.Eslami, H., Grmela, M., and Bousmina, M. (2009). Structure Build-Up at Rest in Polymer Nanocomposites: Flow Reversal Experiments. Journal of Polymers Science Part B 47(17), 17281741.
23.Ray, S. S. (2006). Rheology of Polymer/Layered Silicate Nanocomposites. Journal of Industrial and Engineering Chemistry 12(6), 811842.
24.Song, M. and Jin, J. (2012). Characterization of Rheological Properties of Polymer Nanocomposites. In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 251281.
25.Krishnamoorti, R., Vaia, R. A., and Giannelis, E. P. (1996). Structure and dynamics of polymer-layered silicate nanocomposites. Chemistry of Materials 8(8), 17281734.
26.Standard Test Method for Thermal Diffusivity by the Flash Method (ASTM E1461-11). American Society for Testing and Materials. Philadelphia, PA.
27.Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 94–116.
28.Troitzsch, J. (Ed.) (2004). Plastics Flammability Handbook, 3rd edition. Cincinnati, OH: Hanser.
29.Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 218–250.
30.ASTM Fire Standards and Flammability Standards (https://www.astm.org/Standards/fire-and-flammability-standards.html).
31.Babrauskas, V. (1996). The Cone Calorimeter. In Heat Release in Fires, Babrauskas, V. and Grayson, S. J. (Eds.). London: E & FN Spon, pp. 6191.
32.Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter (ASTM E1354). American Society for Testing and Materials, Philadelphia, PA.
33.Fire Tests – Reaction to Fire – Part 1: Rate of Heat Release from Building Products. ISO DOS 5660. International Organization for Standardization, Geneva, Switzerland.
34.Standard Test Method for Screening Test for Mass Loss and Ignitability of Materials (ASTM E2102). American Society for Testing and Materials, Philadelphia, PA.
35.Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry (ASTM D7309-11). American Society for Testing and Materials, Philadelphia, PA.
36.Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index) (ASTM D2863-12e1). American Society for Testing and Materials, Philadelphia, PA.
37.UL 94, the Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, Underwriters Laboratories, Northbrook, IL.
38.Standard Test Method for Surface Burning Characteristics of Building Materials (ASTM E84-13a). American Society for Testing and Materials, Philadelphia, PA.
39.Schmidt, D. L. and Schwartz, H. S. (1963). Evaluation methods for ablative plastics. SPE Transactions 3, 238–250.
40.Botton, B., Chazot, O, Carbonaro, M, Van Der Haegen, V, and Paris, S. (1999). The VKI Plasmatron characteristics and performance. DTIC Compilation Part Notice ADP010745. Rhode-Saint-Genese, Belgium, October.
41.Koo, J. H., Kneer, M., and Schneider, M., (1992). A cost-effective approach to evaluate high-temperature ablatives for military applications. Naval Engineers Journal 104, 166177.
42.Miller, M. J., Koo, J. H., and Lin, S. (1993). Evaluation of Different Categories of Composites Ablative for Thermal Protection. AIAA-93–0839, 31st AIAA Aerospace Sciences Meeting, Reno, NV, January.
43.Cheung, F., Koo, J. H., et al. (1995). Prediction of Thermo-Mechanical Erosion of High-Temperature Ablatives in the SSRM Facility. AIAA-95–0254, 33rd Aerospace Sciences Meeting, Reno, NV, January.
44.VanMeter, M., Koo, J. H., et al. (1995). Mechanical Properties and Material Behavior of a Glass Silicone Polymer Composite. Proceedings of the 40th International SAMPE Symposium, Covina, CA, SAMPE, pp.1425–1434.
45.Koo, J. H. et al. (1998). Effect of Major Constituents on the Performance of Silicone Polymer Composites. Proceedings of the 30th International SAMPE Technical Conference, Covina, CA: SAMPE.
46.Koo, J. H. et al. (1999). Thermal Protection of a Class of Polymer Composites. Proceedings of the 44th International SAMPE Symposium. Covina, CA: SAMPE, pp.1431–1441.
47.Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Subscale Ablation Test. Proceedings International SAMPE 2004 Symposium on Disc [CD-ROM]. Covina, CA: SAMPE.
48.Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructures, and Performance. AIAA-2004-1996, AIAA, Reston, VA, April.
49.Koo, J. H., Pilato, L., and Wissler, G. (2007). Polymer nanostructured materials for propulsion systems. Journal of Spacecraft and Rockets 44(6), 12501262.
50.Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composite for thermal protection of naval launching system. Journal of Spacecraft and Rockets 48(6), 904919.
51.Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composites for thermal protection system: Fiber reinforcements and microstructures. Journal of Composite Materials 45(13), 13631380.
52.Blanski, R., Koo, J. H., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation-Ablation Performance. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.
53.Koo, J. H., Marchant, D., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation–Processing, Microstructure, and Mechanical Properties. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.
54.Ruth, P., Blanski, R., and Koo, J. H.. (2004). Preparation of Polymer Nanostructured Materials for Solid Rocket Motor Insulation. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.
55.Natali, M, Monti, M., Kenny, J. M., and Torre, L. (2011). A nanostructured ablative bulk moulding compound: Development and characterization. Composites: Part A 42(9), 11971204.
56.Pulci, G, Tirillo, J, Marra, F, Fossati, F, Bartuli, C, and Valente, T. (2010). Carbon-phenolic ablative materials for re-entry space vehicles: manufacturing and properties. Composites: Part A 41(10), 14831490.
57.Allcorn, E, Robinson, S, Tschoepe, D, Koo, J. H., Natali, M. (2011). Development of an experimental apparatus for ablative nanocomposites testing. AIAA-20116050, 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.
58.Gutierrez, L., Koo, J. H., et al. (2015). Design of Small-scale Ablative Testing Apparatus with Sample Position and Velocity Control. AIAA-2015-1584, AIAA SciTech 2015, Kissimmee, FL, January 5–9.
59.Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter (ASTM E457-08). American Society for Testing and Materials, Philadelphia, PA.
60.Lee, J. C. (2010). Characterization of Ablative Properties of Thermoplastic Polyurethane Elastomer Nanocomposites. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, December.
61.Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2011). Thermoplastic Polyurethane Elastomer Nanocomposite Ablatives: Characterization and Performance. AIAA-2011–6051, 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.
62.Lee, J. C., Koo, J. H., et al. (2009). Thermoplastic Polyurethane Elastomer Nanocomposites: Density, Hardness, and Flammability Properties Correlations. AIAA-2009–5273, AIAA Joint Propulsion Conference, Denver, CO, August 2–5.
63.Lee, J. C., Koo, J. H., et al. (2009). Heating Rate and Nanoparticle Loading Effects on Thermoplastic Polyurethane Elastomer Nanocomposite Kinetics. AIAA-2009–4096, AIAA Thermophysics Conference, San Antonio, TX, June 22–25.
64.Allcorn, E., Natali, M., and Koo, J. H. (2011). Ablation Performance and Characterization of Thermoplastic Elastomer Nanocomposites. Proceedings of the SAMPE 2011 ISTC, Fort Worth, TX, October 17–20.
65.Allcorn, E. K., Natali, M., and Koo, J. H. (2013). Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites. Composites: Part A 45, 109118.
66.Wong, D., Koo, J. H., et al. (2013). Thermoplastic Polyurethane Elastomer Nanocomposites: Ablation and Charring Characteristics. Proceedings of the SAMPE 2013 ISSE, Long Beach, CA, May 6–9.
67.Wong, D., Pinero, D., Jaramillo, M., Koo, J. H., Ambuken, P., and Stretz, H. (2013). Ablation and Combustion Characteristics of Thermoplastic Polyurethane Nanocomposites. AIAA-2013–3862, 49th AIAA/ASEM/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17.
68.Donskoy, A. (1996). Elastomeric heat shielding materials for internal surfaces of missile engines. International Journal of Polymer Materials 31(1), 215236.
69.Solid Rocket Motor Internal Insulation, NASA Space Vehicle Design Criteria. NASA-SP-8093, 1976.
70.Bell, M. S. and Tam, W. (1992). ASRM Case Insulation Design and Development. NASA-CR-191947.
71.Bhuvaneswari, C. M., Kakade, S. D., Deuskar, V. D., Dange, A. B., and Gupta, M. (2008). Filled ethylene-propylene dieneterpolymer elastomer as thermal insulator for case-bonded solid rocket motors. Defence Science Journal 58(1), 94102.
72.Bhuvaneswari, C. M., Sureshkumar, M. S., Kakade, S. D., and Gupta, M. (2006). Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Defence Science Journal 56(3), 309320.
73.Redondo, H., Atreya, M., Kan, M., and Koo, J. H.. (2010). Evaluation of Char Strength of Polymer Nanocomposites for Propulsion Systems. Proceedings of the SAMPE 2010 ISSE [CD-ROM]. Covina, CA, May.
74.Reshetnikov, S., Garashenko, A. N., and Strakhov, V. L. (2000). Experimental Investigation into Mechanical Destruction of Intumescent Chars. Polymers for Advanced Technologies 11, 392397.
75.Nguyen, H.. (2012). Air Force Research Laboratory, Edwards AFB, CA, private communication.
76.Jaramillo, M., Koo, J. H., Edd, A., and Wells, D. (2011). An Experimental Investigation of Char Strength of Polymer Nanocomposites for Propulsion Applications. Proceedings of the SAMPE 2011 ISTC [CD-ROM]. Covina, CA, October.
77.Jaramillo, M., Forinash, D., Wong, D., Natali, M., and Koo, J. H. (2013). An Investigation of Compressive and Shear Strength of Char from Polymer Nanocomposites for Propulsion Applications. AIAA-2013–3864, 49th AIAA/ASEM/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17.
78.Jaramillo, M., Koo, J. H., and Natali, M. (2014). Compressive char strength of polyurethane elastomer nanocomposites. Polymers for Advanced Technology 25(77), 742751.
79.Forinash, D. M., Alter, R. J., Clatanoff, S. B., Newman, J. E., Jaramillo, M., and Koo, J. H.. (2012). Development of an Apparatus for Measuring the Shear Strength of Charred Ablatives. Proceedings of the SAMPE TECH 2012 [CD-ROM]. Covina, CA, October.
80.Natali, M., Koo, J. H., Allcorn, E., and Ezekoye, O. A.. (2013). In-situ Ablation Recession Sensor Based on Ultra-Miniature Thermocouples – Part A: 0.25mm Diameter Thermocouples. AIAA-2013–3660, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 15–17.
81.Natali, M., Koo, J. H., Allcorn, E., and Ezekoye, O. A. (2014). An in-situ ablation recession sensor for carbon/carbon ablatives based on commercial ultra-miniature thermocouples. Sensors and Actuators B: Chemical 196, 46–56.
82.Yee, C., Ray, M., Tang, F., Wan, J., Koo, J. H., and Natali, M. (2013). In-situ Ablation Recession Sensor Based on Ultra-Miniature Thermocouples – Part B: 0.50mm Diameter Thermocouples. AIAA-2013–3659, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 15–17.
83.Yee, C., Ray, M., Tang, F., Wan, J., Koo, J. H., and Natali, M. (2014). In-situ ablation recession and thermal sensor based on ultra-fine thermocouples. Journal of Spacecraft and Rockets 51(6), 17891796.
84.Lisco, B., Yao, E., Pinero, D., and Koo, J. H. (2014). In-situ Ablation Recession and Thermal Sensors for Low Density Ablators – Revisited. Proceedings of the CAMX 2014, Orlando, FL, October 13–16.
85.Cameron, S., Astley, A., Leggett, S., Sirgo, G., and Koo, J. H.. (2015). In-situ Ablation Recession and Thermal Sensor Based on Ultra-fine Thermocouples. Proceedings of the SAMPE 2015 ISTC, Baltimore, MD, May 18–21.
86.Koo, J. H., Natali, M., et al. (2015). A Versatile In-situ Ablation Recession and Thermal Sensor Adaptable for Different Ablatives. AIAA-2015-1122, AIAA SciTech 2015, Kissimmee, FL, January 5–9.
87.Grantham, T., Koo, J. H., et al. (2015). Ablation, Thermal, and Morphological Properties of SiC Fibers Reinforced Glass Ceramic Matrix Composites. AIAA-2015-1581, AIAA SciTech 2015, Kissimmee, FL, January 5–9.
88.Koo, J. H. et al. (2015). A Versatile In-situ Ablation Recession and Thermal Sensor Based on Ultra-fine Gage Thermocouples for Ablative TPS Materials. Proceedings of the National Space & Missile Materials Symposium (NSMMS), Chantilly, VA, June 22–25.
89.ASTM D4935 – 10 Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. American Society for Testing and Materials, Philadelphia, PA.
90.Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 157–175.
91.Zhang, J. Z. (2009). Optical Properties and Spectroscopy of Nanomaterials. Singapore: World Scientific Publishing.
92.Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons.