Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: January 2017

7 - Mechanical Properties of Polymer Nanocomposites

from Part Two - Multifunctional Properties and Applications
1.Kord, B. (2012). Studies on mechanical characterization and water resistance of glass fiber/thermoplastic polymer bionanocomposites. Journal of Applied Polymer Science 123(4), 23912396.
2.Aouada, F. A., Luiz, H., and Longo, E. (2011). New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites. Industrial Crops and Products 34(3), 15021508.
3.Majdzadeh-Ardakani, K., Navarchian, A. H., and Sadeghi, F. (2010). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydrate Polymers 79(3), 547554.
4.Ritter, U., Scharff, P., Dmytrenk, O., Kulish, N., Prylutsky, Y., Grabovskiy, Y., et al. (2010). Strength improvement of iPP/MWCNT nanocomposites. Polymer Composites 31(1), 179184.
5.Fernandez-d’Arlas, B., Khan, U., Rueda, L., Martin, L., Ramos, J. A., et al. (2012). Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Composites Science and Technology 72(2), 235242.
6.Eswaraiah, V., Balasubramania, K., and Ramaprabh, S. (2011). Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. Journal of Materials Chemistry 21(34), 1262612628.
7.Zhang, X., Chen, Y., Yu, J., and Guo, Z. (2011). Thermoplastic polyurethane/silica nanocomposite fibers by electrospinning. Journal of Polymer Science Part B 49(23), 16831689.
8.Karbushev, V., Semakov, A., and Kulichikhin, V. (2011). Structure and mechanical properties of thermoplastics modified with nanodiamonds. Polymer Science Series A 53(9), 765774.
9.Lach, R., Michler, G. H., and Grellman, W. (2010). Microstructure and indentation behaviour of polyhedral oligomeric silsesquioxanes modified thermoplastic polyurethane nanocomposites. Macromolecular Materials and Engineering 295(5), 484491.
10.Liff, S. M., Kumar, N., and McKinley, G. H. (2007). High-performance elastomeric nanocomposites via solvent-exchange processing. Natural Materials 6(1), 7683.
11.Chavarria, F. and Paul, D. R. (2006). Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure. Polymer 47(22), 77607773.
12.Mishra, A., Purkayastha, B. P. D., Roy, J. K., Aswal, V. K., and Maiti, P. (2010). Tunable properties of self-assembled polyurethane using two-dimensional nanoparticles: Potential nano-biohybrid. Macromolecules 43(23), 99289936.
13.Puskas, J. E., Foreman-Orlowski, E. A., Lim, G. T., Porosky, S. E., Evancho-Chapman, M. M., et al. (2010). A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials 31(9), 24772488.
14.Chen, W., Tao, X., and Liu, Y. (2006). Carbon nanotube-reinforced polyurethane composite fibers. Composites Science and Technology 66(15), 30293034.
15.Cantournet, S., Boyce, M. C., and Tsou, A. H. (2007). Micromechanics and macromechanics of carbon nanotube-enhanced elastomers. Journal of the Mechanics and Physics of Solids 55(6), 13211339.
16.Li, Y., and Shimizu, H. (2007). High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48(8), 22032207.
17.Liao, C. Z., and Tjong, S. C. (2010). Mechanical and fracture behaviors of elastomer-rich thermoplastic polyolefin/SiC nanocomposites. Journal of Nanomaterials 2010, article ID 327973, 9 pages.
18.Aso, O., Eguiazábal, J. I., and Nazábal, J. (2007). The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Composites Science and Technology 67(13), 28542863.
19.Zhou, R.-J. and Burkhart, T. (2011). Thermal and mechanical properties of poly(ether ester)-based thermoplastic elastomer composites filled with TiO nanoparticles. Journal of Materials Science 46(7), 22812287.
20.Kinloch, A. J. and Taylor, A. C. (2006). The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. Journal of Materials Science 41, 32713297.
21.Gojny, F. H., et al. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology 65, 23002313.
22.Zheng, Y., et al. (2006). Functionalized effect on carbon nanotube/epoxy nano-composites. Materials Science and Engineering A 435–436, 145149.
23.Rafiee, M. A. and Rafiee, J. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 38843890.
24.Blackman, B. R. K., et al. (2007). The fracture and fatigue behavior of nano-modified epoxy polymers. Journal of Materials Science 42, 70497051.
25.Al-Turaif, H. A. (2010). Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Organic Coatings 69, 241246.
26.Cheema, T. A., et al. (2011). Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. Journal of Materials Science 47, 26652674.
27.Zeng, J. (2009). An Experimental Study on Tensile Properties of Cellulose Nanocrystal Reinforced Epoxy Nanocomposite Material. MS thesis. Oregon State University, Corvallis, OR.
28.Beheshty, M. H., Vafayan, M., and Poorabdollah, M. (2008). Low profile unsaturated polyester resin-clay nanocomposite properties. Polymer Composites 30(5), 629638.
29.Irwin, P. C., Cao, Y., and Schadler, L. S. (2003). Thermal and mechanical properties of polyimide nanocomposites. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 120–123.
30.Chou, T.-W., Gao, L., Thostenson, E. T., Zhang, Z., and Byun, J.-H. (2010). An assessment of the science and technology of carbon nanotube-based fibers and composites. Composites Science and Technology 70, 119.
31.Garcia, E. J., Wardle, B. L., and Hart, A. J. (2008). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites: Part A 39(6), 10651070.
32.Garcia, E. J., Wardle, B. L., Hart, A. J., and Yamamoto, N. (2008). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Composites Science and Technology 68, 20342041.
33.Garcia, E. J., Hart, A. J., and Wardle, B. L. (2008). Long carbon nanotubes grown on the surface of fibers for hybrid composites. AIAA Journal 46(6), 14051412.
34.Blanco, J., Garcia, E. J., Guzman, R., Villoria, D., and Wardle, B. L. (2009). Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. Journal of Composite Materials 43(8), 825841.
35.Yamamoto, N., Hart, A. J., Garcia, E. J., Wicks, S. S., Duong, H. M., et al. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon 47, 551560.
36.Ray, M. C., Guzman de Villoria, R., and Wardle, B. L. (2009). Load transfer analysis in short carbon fibers with radially-aligned carbon nanotubes embedded in a polymer matrix. Journal of Advanced Materials 41(4), 8294.
37.Wicks, S. S., Guzman de Villoria, R., and Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology 70, 2028.
38.Lachman, N., Wiesel, E., Guzman de Villoria, R., Wardle, B. L., and Wagner, H. D. (2012). Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology 72, 14161422.
39.Yamamoto, N., Garcia, E. J., Wardle, B. L., and Hart, A. J. (2008). Thermal and electrical properties of hybrid woven composites reinforced with aligned carbon nanotubes. Proceedings of the 49th AIAA Structures, Dynamics, and Materials Conference, Schaumburg, IL, April 7–10.
40.Vaddiraju, S., Cebeci, H., Gleason, K. K., and Wardle, B. L. (2009). Hierachical multifunction composites by conformally coating aligned carbon nanotube arrays with conducting polymer. Applied Materials & Interfaces 1(11), 25652572.
41.Marconnet, A. M., Yamamoto, H., Panzer, M. A., Wardle, B. L., and Goodson, K. E. (2011). Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6), 48184825.
42.Bello, D. B., et al. (2009). Exposures to nanoscale particles and fibers during handling, processing, and machining of nanocomposites and nano-engineering composites reinforced with aligned carbon nanotubes. In 17th International Conference on Composite Materials (ICCM) proceedings, Edinburgh, Scotland, July 27–31.
43.Bello, D., Hart, A. J., Ahn, K., Hallock, M., Yamamoto, N., et al. (2008). Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 46(6), 974977.
44.Bello, D., Wardle, B. L., Yamamoto, N., Guzman de Villoria, R., Garcia, E. J., et al. (2009). Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticles Research 11(1), 231249.