Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-06T16:01:21.674Z Has data issue: false hasContentIssue false

5 - Nonconvexities in Quantitative General Equilibrium Studies of Business Cycles

Published online by Cambridge University Press:  14 January 2010

Timothy J. Kehoe
Affiliation:
University of Minnesota
T. N. Srinivasan
Affiliation:
Yale University, Connecticut
John Whalley
Affiliation:
University of Western Ontario
Get access

Summary

ABSTRACT: This paper reviews the role of micro nonconvexities in the study of business cycles. One important nonconvexity arises because an individual can work only one workweek in a given week. The implication of this nonconvexity is that the aggregate intertemporal elasticity of labor supply is large and the principal margin of adjustment is in the number employed – not in the hours per person employed – as observed. The paper also reviews a business cycle model with an occasionally binding capacity constraint. This model better mimics business cycle fluctuations than the standard real business cycle model. Aggregation in the presence of micro nonconvexities is key in the model.

INTRODUCTION

The tool now used to study business cycles is the discipline of quantitative dynamic general equilibrium. In this discipline, given the question or issue at hand, an explicit model economy is written down and the answer to the question determined for that model economy. Theory, the question, and the available statistics dictate the choice of model economy used in the application. The pioneers in applying the discipline of quantitative general equilibrium are Herbert E. Scarf's students Shoven and Whalley (1972). They applied these tools to problems in public finance. Their models are rich in sector detail, but not truly dynamic. Subsequently Auerbach and Kotlikoff (1987), Jorgenson and Yun (1990), and others have made these public finance models dynamic.

A convenient feature of these early structures is a parametric set of excess demand functions that can be easily calibrated using input–output tables and the equilibrium computed using Scarf's algorithm or other solution methods.

Type
Chapter
Information
Frontiers in Applied General Equilibrium Modeling
In Honor of Herbert Scarf
, pp. 95 - 118
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×