Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T02:12:10.906Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Bill Shipley
Affiliation:
Université de Sherbrooke, Canada
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
From Plant Traits to Vegetation Structure
Chance and Selection in the Assembly of Ecological Communities
, pp. 260 - 274
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D., and Cornwell, W. K.. (2007). A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10:135–145.CrossRefGoogle ScholarPubMed
Ackerly, D. D., Dudley, S. A., Sultan, S. E.et al. (2000). The evolution of plant ecophysiological traits: Recent advances and future directions. BioScience 50:979–995.CrossRefGoogle Scholar
Ackerly, D. D., Knight, C. A., Weiss, S. B., Barton, K., and Starmer, K. P.. (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130:449–457.CrossRefGoogle ScholarPubMed
Aerts, R. (1990). Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397.CrossRefGoogle ScholarPubMed
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. InPetrov, B. N., and Csaki, F., editors. Proceedings of the 2nd International Symposium on Information Theory. Akademiai Kiado, Budapest.Google Scholar
Allen, A. P., Li, B., and Charnov, E. L.. (2001). Population fluctuations, power laws and mixtures of lognormal distributions. Ecology Letters 4:1–3.CrossRefGoogle Scholar
Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist 23:347–361.CrossRefGoogle Scholar
Austin, M. P. (1985). Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics 16:39–61.CrossRefGoogle Scholar
Austin, M. P., and Smith, T. M.. (1989). A new model for the continuum concept. Vegetatio 83:35–47.CrossRefGoogle Scholar
Austin, M. P., Cunningham, R. B., and Fleming, P. M.. (1984). New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55:11–27.CrossRefGoogle Scholar
Baker, R., and Christakos, G.. (2007). Revisiting prior distributions, Part I: Priors based on a physical invariance principle. Stochastic Environmental Research and Risk Assessment. 21:427–434.CrossRefGoogle Scholar
Baraloto, C., Goldberg, D. E., and Bonal, D.. (2005). Performance trade-offs among tropical tree seedlings in contrasting microhabitats. Ecology 86:2461–2472.CrossRefGoogle Scholar
Bazzaz, F. A. (1979). The physiological ecology of plant succession. Annual Review of Ecology and Systematics 10:351–371.CrossRefGoogle Scholar
Bazzaz, F. A., and Sipe, T. W.. (1987). Physiological ecology, disturbance, and ecosystem recovery. Ecological Studies 61:203–227.CrossRefGoogle Scholar
Becks, L., Hilker, F. M., Malchow, H., Jurgens, K., and Arndt, H.. (2005). Experimental demonstration of chaos in a microbial food web. Nature 435:1226–1229.CrossRefGoogle Scholar
Bell, G. (1996). The Basics of Selection. Chapman and Hall, New York.Google Scholar
Bell, G. (2000). The distribution of abundance in neutral communities. American Naturalist 155:606–617.CrossRefGoogle ScholarPubMed
Bell, G., and Lechowicz, M. J.. (1994). The flip side: manifestations of how plants perceive patchiness at different scales. InCaldwell, M. M., and Pearcy, R. W., editors. Exploitation of Environmental Heterogeneity by Plants. Ecophysiological processes above and below ground. Academic Press, New York, pp. 391–414.Google Scholar
Bell, G., Lechowicz, M. J., and Waterway, M. J.. (2006). The comparative evidence relating to functional and neutral interpretations of biological communities. Ecology 87:1378–1386.CrossRefGoogle ScholarPubMed
Beninca, E., Huisman, J., Heerkloss, R.et al. (2008). Chaos in a long-term experiment with a plankton community. Nature 451:822–827.CrossRefGoogle Scholar
Beveridge, W. I. B. (1957). The Art of Scientific Investigation, 3rd edition. Random House, New York.CrossRefGoogle Scholar
Blackman, G. E., and Wilson, G. L.. (1951). Physiological and ecological studies in the analysis of plant environment. VII. An analysis of the differential effects of light intensity on the net assimilation rate, leaf-area ratio, and relative growth rate of different species. Annals of Botany 15:373–408.CrossRefGoogle Scholar
Booth, B. D., and Larson, D. W.. (1999). Impact of language, history, and choice of system on the study of assembly rules. InWeiher, E., and Keddy, P., editors. Ecological Assembly Rules. Perspectives, advances, retreats. Cambridge University Press, Cambridge, pp. 206–229.Google Scholar
Borcard, D., Legendre, P., and Drapeau, P.. (1992). Partialling out the spatial component of ecological variation. Ecology 73:1045–1055.CrossRefGoogle Scholar
Bouma, J. (1989). Using soil survey data for quantitative land evaluation. InStewart, B. A., editor. Advances in Soil Science. Springer-Verlag, New York, pp. 225–239.Google Scholar
Box, E. O. (1981). Macroclimate and Plant Forms: An introduction to predictive modelling in phytogeography. Kluwer, The Hague.CrossRefGoogle Scholar
Box, E. O. (1995). Factors determining distributions of tree species and plant functional types. Vegetatio 121:101–116.CrossRefGoogle Scholar
Box, E. O. (1996). Plant functional types and climate at the global scale. Journal of Vegetation Science 7:309–320.CrossRefGoogle Scholar
Braak, C. J. F. t. (1994). Canonical community ordination. Part I: basic theory and linear methods. Ecoscience 1:127–140.CrossRefGoogle Scholar
Bradshaw, A. D. (1987). Functional ecology = comparative ecology?Functional Ecology 1:71–72.Google Scholar
Braun-Blanquet, J. (1919). Notions d'élément et de territoire phytogéographiques. Archives des Sciences Physiques et Naturelles 1:497–512.Google Scholar
Burnham, K. P., and Anderson, D. R.. (2004). Multimodel inference – understanding AIC and BIC in model selection. Sociological Methods & Research 33:261–304.CrossRefGoogle Scholar
Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R. M., and Cerabolini, B.. (2006). The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20.CrossRefGoogle Scholar
Calow, P. (1987). Towards a definition of functional ecology. Functional Ecology 1:57–61.CrossRefGoogle Scholar
Cerabolini, B., Ceriani, R. M., Caccianiga, M., Andreis, R. D., and Raimondi, B.. (2003). Seed size, shape and persistence in soil: a test on Italian flora from Alps to Mediterranean coasts. Seed Science Research 13:75–85.CrossRefGoogle Scholar
Chapman, R. (1931). Animal Ecology. McGraw-Hill, New York.Google Scholar
Cingolani, A. M., Cabido, M., Gurvich, D. E., Renison, D., and Diaz, S.. (2007). Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits?Journal of Vegetation Science 18:911–920.CrossRefGoogle Scholar
Clatworthy, J. N., and Harper, J. L.. (1962). The comparative biology of closely related species living in the same area. V. Inter- and intraspecific interference within cultures of Lemna spp. and Salvinia natans. Journal of Experimental Botany 13:307–324.CrossRefGoogle Scholar
Clements, F. E. (1916). Plant Succession: An analysis of the development of vegetation. Carnegie Institution of Washington, Washington.CrossRefGoogle Scholar
Clements, F. E. (1936). Nature and structure of the climax. Journal of Ecology 24:252–284.CrossRefGoogle Scholar
Conner, E. F., and Simberloff, D.. (1979). The assembly of species communities: chance or competition? Ecology:1132–1140.
Cooper, W. S. (1926). The fundamentals of vegetational change. Ecology 7:391–413.CrossRefGoogle Scholar
Corbet, A. S. (1941). The distribution of butterflies in the Malay Peninsula (Lepid.). Proceedings of the Royal Entomological Society, Series A 16:101–116.CrossRefGoogle Scholar
Cornelissen, J. H. C. (1996). An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. Journal of Ecology 84:573–582.CrossRefGoogle Scholar
Cornelissen, J. H. C., and Thompson, K.. (1997). Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytologist 135:109–114.CrossRefGoogle Scholar
Cornelissen, J. H. C., Quested, H. M., Gwynn-Jones, D.et al. (2004). Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Functional Ecology 18:779–786.CrossRefGoogle Scholar
Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A., and During, H. J.. (2007). Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeography. Annals of Botany 99:987–1001.CrossRefGoogle Scholar
Cornwell, W. K., Schwilk, D. W., and Ackerly, D. D.. (2006). A trait-based test for habitat filtering: Convex hull volume. Ecology 87:1465–1471.CrossRefGoogle Scholar
Costantino, R. F., Desharnais, R. A., Cushing, J. M.et al. (2005). Nonlinear stochastic population dynamics: The Flour Beetle Tribolium as an effective tool of discovery. In Advances in Ecological Research, Vol. 37: Population Dynamics and Laboratory Ecology. Academic Press, London, pp. 101–141.Google Scholar
Craine, J. M., Tilman, D., Wedin, D., Reich, P., and Tjoelker, M.. (2002). Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology 16:563–574.CrossRefGoogle Scholar
Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton.Google Scholar
Dale, M. R. T., and Fortin, M. J.. (2002). Spatial autocorrelation and statistical tests in ecology. Ecoscience 9:162–167.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species. John Murray, London.Google Scholar
Darwin, C., and Wallace, A. R.. (1858). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Proceedings of the Linnean Society London, Zoology 3:45–62.CrossRefGoogle Scholar
Bello, F., Leps, J., and Sebastia, M. T.. (2005). Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. Journal of Applied Ecology 42:824–833.CrossRefGoogle Scholar
Dear, P. (2007). The Intelligibility of Nature. How science makes sense of the world. University of Chicago Press, Chicago.Google Scholar
Debussche, M., Lepart, J., and Dervieux, A.. (1999). Mediterranean landscape changes: evidence from old postcards. Global Ecology and Biogeography 8:3–15.CrossRefGoogle Scholar
Della Pietra, S., Pietra, V. Della, and Lafferty, J.. (1997). Inducing features of random fields. IEEE Transactions Pattern Analysis and Machine Intelligence 19:1–13.CrossRefGoogle Scholar
Dennett, D. C. (1995). Darwin's Dangerous Idea: Evolution and the meanings of life. Simon and Schuster.
Dewar, R. (2003). Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. Journal of Physics A – Mathematical and General 36:631–641.CrossRefGoogle Scholar
Dewar, R. (2004). Maximum entropy production and non-equilibrium statistical mechanics. InKliedon, A., and Lorenz, R. D., editors. Non-equilibrium Thermodynamics and the Production of Entropy: Life, earth and beyond. Springer-Verlag, Berlin, pp. 41–56.Google Scholar
Dewar, R. (2005). Maximum entropy production and the fluctuation theorem. Journal of Physics A – Mathematical and General 38:L371–L381.CrossRefGoogle Scholar
Dewar, R. C., and Porté, A.. (2008). Statistical mechanics unifies different ecological patterns. Journal of Theoretical Biology 251:389–403.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1975). Assembly of species communities. InCody, M. L., and Diamond, J. M., editors. Ecology and Evolution of Communities. Belknap Press, Cambridge, pp. 342–444.Google Scholar
Diaz, S., and Cabido, M.. (2001). Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16:646–655.CrossRefGoogle Scholar
Diaz, S., Cabido, M., and Casanoves, F.. (1998). Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9:113–122.CrossRefGoogle Scholar
Diaz, S., Hodgson, J. G., Thompson, K.et al. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science 15:295–304.CrossRefGoogle Scholar
Diekmann, M. (2003). Species indicator values as an important tool in applied plant ecology – a review. Basic and Applied Ecology 4:493–506.CrossRefGoogle Scholar
Diemer, M. (1998). Life span and dynamics of leaves of herbaceous perennials in high-elevation environments: ‘news from the elephant's leg’. Functional Ecology 12:413–425.CrossRefGoogle Scholar
Dormann, C. F., and Roxburgh, S. H.. (2005). Experimental evidence rejects pairwise modelling approach to coexistence in plant communities. Proceedings of the Royal Society of London B, 272:1279–1285.CrossRefGoogle ScholarPubMed
DuRietz, G. E. (1931). Life-forms of terrestrial flowering plants I. Acta Phytogeog. Suecica 3:1–95.Google Scholar
Dybzinski, R., and Tilman, D.. (2007). Resource use patterns predict long-term outcomes of plant competition for nutrients and light. American Naturalist 170:305–318.Google ScholarPubMed
Dykserhuis, E. J. (1949). Condition and management of range land, based on quantitative ecology. Journal of Range Management 2:104–115.CrossRefGoogle Scholar
Egolf, D. A. (2001). Equilibrium regained: from nonequilibrium chaos to statistical mechanics. Science 287:101–104.CrossRefGoogle Scholar
Elger, A., and Willby, N. J.. (2003). Leaf dry matter content as an integrative expression of plant palatability: the case of freshwater macrophytes. Functional Ecology 17:58–65.CrossRefGoogle Scholar
Ellenberg, H. (1978). Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Verlag.Google Scholar
Escarré, J., Houssard, C., Debussche, M., and Lepart, J.. (1983). Évolution de la végétation et du sol après abandon cultural en région méditerranéene: étude de succession dans les garrigues du Montpelliérais (France). Acta Oecologica 4:221–239.Google Scholar
Etienne, R. S. (2005). A new sampling formula for neutral biodiversity. Ecology Letters 8:253–260.CrossRefGoogle Scholar
Etienne, R. S. (2007). A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecology Letters 10:608–618.CrossRefGoogle ScholarPubMed
Falconer, D. S., and Mackay, T. F. C.. (1996). Introduction to Quantitative Genetics. Prentice Hall, London.Google Scholar
Fenner, M., and Kitajima, K.. (1999). Seed and seedling ecology. In Pugnaire, F., and F. Valladares, editors. Handbook of Functional Plant Ecology. Marcel Dekker, New York, pp. 589–621.Google Scholar
Fenner, M., and Lee, T.. (1989). Growth of seedlings of pasture grasses and legumes deprived of single mineral nutrients. Journal of Applied Ecology 26:223–232.CrossRefGoogle Scholar
Fisher, R. A. (1925). Statistical Methods for Research Workers, first edition. Oliver & Boyd, Edinburgh.Google Scholar
Fisher, R. A. (1928a). The general sampling distribution of the multiple correlation coefficient. Proceedings of the Royal Society of London A, 121:654–673.CrossRefGoogle Scholar
Fisher, R. A. (1928b). Moments and product moments of sampling distributions. Proceedings of the London Mathematical Society 30:199–238.Google Scholar
Fisher, R. A., Corbet, A. S., and Williams, C. B.. (1943). The relation between the number of species and the number of individuals in a random sample from an animal population. Journal of Animal Ecology 12:42–58.CrossRefGoogle Scholar
Fonseca, C. R., Overton, J. M., Collins, B., and Westoby, M.. (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88:964–977.CrossRefGoogle Scholar
Foster, S. A. (1986). On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. The Botanical Review 52:260–297.CrossRefGoogle Scholar
Fougere, P. F. (1988). Maximum entropy calculations on a discrete probability space. InErickson, G. J., and Smith, C. R., editors. Maximum-Entropy and Bayesian Methods in Science and Engineering. Kluwer, Dordrecht, pp. 205–234.Google Scholar
Franzaring, J., Fangmeier, A., and Hunt, R.. (2007). On the consistencies between CSR plant strategies and Ellenberg ecological indicator values. Journal of Applied Botany and Food Quality-Angewandte Botanik 81:86–94.Google Scholar
Fukami, T., Bezemer, T. M., Mortimer, S. R., and Putten, W. H. (2005). Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8:1283–1290.CrossRefGoogle Scholar
Garnier, E. (1991). Resource capture, biomass allocation and growth in herbaceous plants. Trends in Ecology & Evolution 6:126–131.CrossRefGoogle ScholarPubMed
Garnier, E., Laurent, G., Bellmann, A.et al. (2001). Consistency of species ranking based on functional leaf traits. New Phytologist 152:69–83.CrossRefGoogle Scholar
Garnier, E., Cortez, J., Billes, G.et al. (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637.CrossRefGoogle Scholar
Garnier, E., Lavorel, S., Ansquer, P.et al. (2007). Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99:967–985.CrossRefGoogle ScholarPubMed
Gassmann, F., Klotzli, F., and Walther, G. R.. (2005). Vegetation change shows generic features of non-linear dynamics. Journal of Vegetation Science 16:703–712.CrossRefGoogle Scholar
Gaucherand, S., and Lavorel, S.. (2007). New method for rapid assessment of the functional composition of herbaceous plant communities. Austral Ecology 32:927–936.CrossRefGoogle Scholar
Gaudet, C. L., and Keddy, P. A.. (1988). A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243.CrossRefGoogle Scholar
Gause, G. F. (1934). The Struggle for Existence. Williams and Wilkins, Baltimore.CrossRefGoogle ScholarPubMed
Gilpin, M. E. (1979). Spiral chaos in a predator-prey model. American Naturalist 113:306–308.CrossRefGoogle Scholar
Gilpin, M. E., Carpenter, M. P., and Pomerantz, M. J.. (1986). The assembly of a laboratory community: multispecies competition in Drosophila. InDiamond, J. M., and Case, T., editors. Community Ecology. Harper & Row, Cambridge.Google Scholar
Givnish, T. J. (2002). Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica 36:703–743.CrossRefGoogle Scholar
Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torry Club. 53:7–26.CrossRefGoogle Scholar
Gleick, J. (1987). Chaos: Making a new science. Penguin, New York.Google Scholar
Goldsmith, F. B. (1978). Interaction (competition) studies as a step towards the synthesis of sea-cliff vegetation. Journal of Ecology 66:921–931.CrossRefGoogle Scholar
Grace, J. B. (1999). The factors controlling species density on herbaceous plant communities: an assessment. Perspectives in Plant Ecology, Evolution and Systematics. 2:1–28.CrossRefGoogle Scholar
Grace, J. B., and Pugesek, B. H.. (1997). A structural equation model of plant species richness and its application to coastal wetland. American Naturalist 149:436–460.CrossRefGoogle Scholar
Grace, J. B., and Pugesek, B. H.. (1998). On the use of path analysis and related procedures for the investigation of ecological problems. American Naturalist 152:151–159.CrossRefGoogle ScholarPubMed
Grace, J. B., Allain, L., and Allen, C.. (1999). Plant species density in a coastal tallgrass prairie: the importance of environmental effects. In review.
Grime, J. P. (1974). Vegetation classification by reference to strategies. Nature 250:26–31.CrossRefGoogle Scholar
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevence to ecological and evolutionary theory. American Naturalist 111:1169–1194.CrossRefGoogle Scholar
Grime, J. P. (1979). Plant Strategies and Vegetation Processes. John Wiley & Sons, New York.Google Scholar
Grime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86:902–910.CrossRefGoogle Scholar
Grime, J. P. (2001). Plant Strategies, Vegetation Processes, and Ecosystem Properties, 2nd edition. John Wiley & Sons, New York.Google Scholar
Grime, J. P. (2007). Comparative Plant Ecology. Castlepoint Press, Colvend.Google Scholar
Grime, J. P., and Hunt, R.. (1975). Relative growth rate: its range and adaptive significance in a local flora. Journal of Ecology 63:393–422.CrossRefGoogle Scholar
Haegeman, B., and Loreau, M.. (2008). Limitations of entropy maximization in ecology. Oikos 117:1700–1710.CrossRefGoogle Scholar
Halloy, S. R. P., and Mark, A. F.. (1996). Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. Journal of the Royal Society of New Zealand 26:41–78.CrossRefGoogle Scholar
Harper, J. L. (1982). After description. InNewman, E. I., editor. The Plant Community as a Working Mechanism. Blackwell Scientific, Oxford, pp. 11–25.Google Scholar
Hasti, T. J., and Tibshirani, R. J.. 1990. Generalized Additive Models. Chapman and Hall, London.Google Scholar
Hastings, A., and Powell, T.. (1991). Chaos in a 3-Species Food-Chain. Ecology 72:896–903.CrossRefGoogle Scholar
Hempel, C. G. (1965). Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. Free Press., New York.Google Scholar
Hendry, G. A. F., and Grime, J. P.. (1993). Methods in Comparative Plant Ecology. Chapman & Hall, London.CrossRefGoogle Scholar
Herschel, J. F. W. (1872). Physical Geography of the Globe. A. and C. Black, London.Google Scholar
Hewitt, N. (1998). Seed size and shade-tolerance – A comparative analysis of North American temperate trees. Oecologia 114:432–440.CrossRefGoogle ScholarPubMed
Hodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P., and Thompson, K.. (1999). Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294.CrossRefGoogle Scholar
Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science 105:367–368.CrossRefGoogle ScholarPubMed
Hox, J. J. (2002). Multilevel Analysis: Techniques and Applications. Lawrence Erlbaum, Mahwah, NJ.Google Scholar
Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.Google Scholar
Hubbell, S. P. (2006). Neutral theory and the evolution of ecological equivalence. Ecology 87:1387–1398.CrossRefGoogle ScholarPubMed
Huisman, J., Thi, N. N. P., Karl, D. M., and Sommeijer, B.. (2006). Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439:322–325.CrossRefGoogle ScholarPubMed
Huisman, J., and Weissing, F. J.. (1999). Biodiversity of plankton by species oscillations and chaos. Nature 402:407–410.CrossRefGoogle Scholar
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals?American Naturalist 53:145–159.CrossRefGoogle Scholar
Hutchinson, G. E. (1978). An Introduction to Population Ecology. Yale University Press, New Haven.Google Scholar
Jain, R., and Ramakumar, S.. (1999). Stochastic dynamics modeling of the protein sequence length distribution in genomes: implications for microbial evolution. Physica A 273:476–485.CrossRefGoogle Scholar
Jaynes, E. T. (1957a). Information theory and statistical mechanics I. The Physical Review 106:620–630.CrossRefGoogle Scholar
Jaynes, E. T. (1957b). Information theory and statistical mechanics II. The Physical Review 108:171–190.CrossRefGoogle Scholar
Jaynes, E. T. (1971). Violations of Boltzmann's H theorem in real gases. Physical Reviews A4:747–751.CrossRefGoogle Scholar
Jaynes, E. T. (1983). Papers on Probability, Statistics, and Statistical Physics. D. Reidel, Dordrecht.Google Scholar
Jaynes, E. T. (2003). Probability Theory. The Logic of Science. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Jeffreys, H. (1939). Theory of Probability. Clarendon Press, Oxford.Google Scholar
Kazakou, E., Vile, D., Shipley, B., Gallet, C., and Garnier, E.. (2006). Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20:21–30.CrossRefGoogle Scholar
Keddy, P. A. (1982). Population ecology on an environmental gradient.: Cakile edentula on a sand dune. Oecologia 52:348–355.CrossRefGoogle ScholarPubMed
Keddy, P. A. (1984). Plant zonation on lakeshores in Nova Scotia: a test of the resource specialization hypthesis. Journal of Ecology 72:797–808.CrossRefGoogle Scholar
Keddy, P. A. (1990). The use of functional as opposed to phylogenetic systematics: a first step in predictive community ecology. InKawano, S., editor. Biological Approaches and Evolutionary Trends in Plants. Harcourt Brace Jovanovich, London, pp. 387–406.Google Scholar
Keddy, P. A. (1992). Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157–164.CrossRefGoogle Scholar
Keddy, P. A. (2001). Competition, second edition. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Keddy, P. A., and Shipley, B.. (1989). Competitive hierarchies in herbaceous plant communities. Oikos 54:234–241.CrossRefGoogle Scholar
Kenkel, N. C., Juhasz-Nagy, P., and Podani, J.. (1989). On sampling procedures in population and community ecology. Vegetatio 83:195–207.CrossRefGoogle Scholar
Khurana, E., and Singh, J. S.. (2000). Influence of seed size on seedling growth of Albizia procera under different soil water levels. Annals of Botany 86:1185–1192.CrossRefGoogle Scholar
Kikuzawa, K. (1991). A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. American Naturalist 138:1250–1260.CrossRefGoogle Scholar
Kikuzawa, K. (1995). The basis for variation in leaf longevity of plants. Vegetatio 121:89–100.CrossRefGoogle Scholar
Klebanoff, A., and Hastings, A.. (1994). Chaos in 3 species food-chains. Journal of Mathematical Biology 32:427–451.CrossRefGoogle Scholar
Kleyer, M. (1995). Biological Traits of Vascular Plants. A database. Albeitsberichte Inst. f. Landschaftsplanung u. Okologie. University of Stuttgart, Stuttgart.Google Scholar
Knevel, I. C., Bekker, R. M., Bakker, J. P., and Kleyer, M.. (2003). Life-history traits of the northwest European flora: The LEDA database. Journal of Vegetation Science 14:611–614.CrossRefGoogle Scholar
Knight, D. H. (1965). A gradient analysis of Wisconsin prairie vegetation on the basis of plant structure and function. Ecology 46:744–747.CrossRefGoogle Scholar
Kolmogoroff, A. N. (1956). Foundations of the Theory of Probability, second edition. Chelsea, New York.Google Scholar
Kuhn, I., Durka, W., and Klotz, S.. (2004). BiolFlor – a new plant-trait database as a tool for plant invasion ecology. Diversity and Distributions 10:363–365.Google Scholar
Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.Google Scholar
Kullback, S., and Leibler, R. A.. (1951). On information and sufficiency. Annals of Mathematical Statistics 22:79–86.CrossRefGoogle Scholar
Lambers, H., and Poorter, H.. (1992). Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23:187–261.CrossRefGoogle Scholar
Lambers, H., Chapin, F. S., and Pons, T. L.. (1998). Plant Physiological Ecology. Springer, New York.CrossRefGoogle Scholar
Lande, R., and Arnold, S. J.. (1983). The measurement of selection on correlated characters. Evolution 37:1210–1226.CrossRefGoogle ScholarPubMed
Lange, O. L., Nobel, P. S., Osmond, C. B., and Zeigler, H.. (1983). Physiological Plant Ecology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Larcher, W. (2001). Physiological Plant Ecology, fourth edition. Springer, Berlin.Google Scholar
Larson, D. W. (2000). Cliff Ecology: Pattern and process in cliff ecosystems. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lavorel, S., and Garnier, E.. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545–556.CrossRefGoogle Scholar
Lechowicz, M. J., and Blais, P. A.. (1988). Assessing the contributions of multiple interacting traits to plant reproductive success: environmental dependence. Journal of Evolutionary Biology 1:255–273.CrossRefGoogle Scholar
Legendre, P., and Anderson, M. J.. (1999). Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69:1–24.CrossRefGoogle Scholar
Legendre, P., and Legendre, L.. (1998). Numerical Ecology, second edition. Elsevier, Amsterdam.Google Scholar
Leps, J., and Smilauer, P.. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Levins, R. (1966). The strategy of model building in population biology. American Scientist 54:421–431.Google Scholar
Li, W. (1996). Random texts exhibit Zipf's-law-like word frequency distribution. IEEE Transactions on Information Theory 38:1842–1845.CrossRefGoogle Scholar
Limpert, E., Stahel, W. A., and Abbt, M.. (2001). Log-normal distributions across the sciences: keys and clues. BioScience 51:341–352.CrossRefGoogle Scholar
Lososova, Z., Chytry, M., Kuhn, I.et al. (2006). Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspectives in Plant Ecology Evolution and Systematics 8:69–81.CrossRefGoogle Scholar
Lotka, A. J. (1925). Elements of Physical Biology. Williams & Wilkins, Baltimore.Google Scholar
MacArthur, R. H. (1972). Geographical Ecology: Patterns in the Distribution of Species. Harper and Row, New York.Google Scholar
MacArthur, R. H., and Levins, R.. (1967). The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101:377–385.CrossRefGoogle Scholar
MacLeod, J. (1894). Over de bevruchting der bloemen in het Kempisch gedeelte van Vlaanderen. Deel II. Botanische Jaarboek 6:119–511.Google Scholar
Mandelbrot, B. (1997). Fractals and Scaling in Finance. Springer-Verlag, New York.CrossRefGoogle Scholar
Manly, B. F. J. (1997). Randomization, Bootstrap and Monte Carlo Methods in Biology, second edition. Chapman and Hall, London.Google Scholar
Marks, C. O., and Lechowicz, M. J.. (2006a). Alternative designs and the evolution of functional diversity. American Naturalist 167:55–66.CrossRefGoogle ScholarPubMed
Marks, C. O., and Lechowicz, M. J.. (2006b). A holistic tree seedling model for the investigation of functional trait diversity. Ecological Modelling 193:141–181.CrossRefGoogle Scholar
Marks, C. O., and Muller-Landau, H. C.. (2007). Comment on “From plant traits to plant communities: A statistical mechanistic approach to biodiversity”. Science 316:1425.CrossRefGoogle Scholar
May, R. A. (1974). Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186:645–647.CrossRefGoogle ScholarPubMed
May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature 261:459–467.CrossRefGoogle ScholarPubMed
McGill, B. J., Maurer, B. A., and Weiser, M. D.. (2006). Empirical evaluation of neutral theory. Ecology 87:1411–1423.CrossRefGoogle ScholarPubMed
McGill, B. J., Etienne, R. S., Gray, J. S.et al. (2007). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10:995–1015.CrossRefGoogle ScholarPubMed
Meziane, D. (1998). Étude de la variation interspécifique de la vitesse spécifique de croissance et modélisation de l'effet des attributs morphologiques, physiologiques et d'allocation de biomasse. Ph.D. Université de Sherbrooke, Sherbrooke.Google Scholar
Meziane, D., and Shipley, B.. (1999). Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell and Environment 22:447–459.CrossRefGoogle Scholar
Miller, T. E., Burns, J. H., Munguia, P.et al. (2005). A critical review of twenty years' use of the resource-ratio theory. American Naturalist 165:439–448.Google ScholarPubMed
Minchin, P. R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107.CrossRefGoogle Scholar
Mitzenmacher, M. (2004). A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1:226–251.CrossRefGoogle Scholar
Moles, A. T., Ackerly, D. D., Webb, C. O.et al. (2005). Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences of the United States of America 102:10 540–10 544.CrossRefGoogle ScholarPubMed
Monod, J. (1950). La technique de culture continue: théorie et applications. Annales de l'Institut Pasteur 79:390–410.Google Scholar
Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B 281:277–294.CrossRefGoogle Scholar
Mosekilde, E. (1996). Topics in Nonlinear Dynamics. Applications to physics, biology and economic systems. World Scientific, Singapore.Google Scholar
Motomura, I. (1932). A statistical treatment of associations [in Japanese]. Japanese Journal of Zoology 44:379–383.Google Scholar
Mulaik, S. A. (2001). The curve-fitting problem: An objectivist view. Philosophy of Science 68 :218–241.CrossRefGoogle Scholar
Munakata, T. (1998). Fundamentals of the New Artificial Intelligence: Beyond traditional paradigms. Springer, New York.Google Scholar
Nakajima, T., and Higurashi, A.. (1998). A use of two-channel radiances for an aeresol characterization from space. Geophysical Research Letters 25:3815–3818.CrossRefGoogle Scholar
Nekola, J. C., and Brown, J. H.. (2007). The wealth of species: ecological communities, complex systems and the legacy of Frank Preston. Ecology Letters 10:188–196.CrossRefGoogle ScholarPubMed
Niinemets, U. (1999). Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytologist 144:35–47.CrossRefGoogle Scholar
Nowak, M. A. (2006). Evolutionary Dynamics. Belknap Press, Cambridge.Google Scholar
Odenbaugh, J. (2005). Idealized, inaccurate but successful: A pragmatic approach to evaluating models in theoretical ecology. Biology and Philosophy 20:231–255.CrossRefGoogle Scholar
Ozinga, W. A., Bekker, R. M., Schaminee, J. H. J., and Groenendael, J. M.. (2004). Dispersal potential in plant communities depends on environmental conditions. Journal of Ecology 92:767–777.CrossRefGoogle Scholar
Pachepsky, Y., and Rawls, W. J.. (2004). Development of Pedotransfer Functions in Soil Hydrology, 30. Elsevier, Amsterdam.Google Scholar
Pearcy, R. W., Ehleringer, J., Mooney, H. A., and Rundel, P. W., editors. (1991). Plant Physiological Ecology. Chapman and Hall, London.
Pearson, K. (1903). Mathematical contributions to the theory of evolution. XI. On the influence of natural selection on the variability and correlation of organs. Philosophical Transactions of the Royal Society of London A203:1–66.Google Scholar
Perline, R. (1996). Zipf's law, the central limit theorem, and the random division of the unit interval. Physical Review E 54:220–223.CrossRefGoogle ScholarPubMed
Peters, R. H. (1991). A Critique for Ecology. Cambridge University Press, Cambridge.Google Scholar
Pinheiro, J. C., and Bates, D. M.. (2000). Mixed-effects Models in S and S-PLUS. Springer, New York.CrossRefGoogle Scholar
Poorter, H., and Remkes, C.. (1990). Leaf area ratio and net assimilation rate of 24 species differing in relative growth rate. Oecologia 83:553–559.CrossRefGoogle ScholarPubMed
Popper, K. (1980). The Logic of Scientific Discovery, tenth edition. Hutchinson, London.Google Scholar
Preston, F. W. (1948). The commonness, and rarity, of species. Ecology 29:254–283.CrossRefGoogle Scholar
Preston, F. W. (1950). Gas laws and wealth laws. The Scientific Monthly 71:309–311.Google Scholar
Preston, F. W. (1962). The canonical distribution of commonness and rarity. Ecology 43:185–215.CrossRefGoogle Scholar
Preston, F. W. (1981). Pseudo-lognormal distributions. Ecology 62:355–364.CrossRefGoogle Scholar
Pueyo, S., He, F., and Zillio, T.. (2007). The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecology Letters 10:1017–1028.CrossRefGoogle ScholarPubMed
Pywell, R. F., Bullock, J. M., Roy, D. B.et al. (2003). Plant traits as predictors of performance in ecological restoration. Journal of Applied Ecology 40:65–77.CrossRefGoogle Scholar
Raunkiaer, C. (1934). The Life Forms of Plants and Statistical Plant Geography, Being the Collected Papers of C. Raunkiaer. Clarendon Press, Oxford.Google Scholar
Reich, P. B., Walters, M. B., and Ellsworth, D. S.. (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs 62:365–392.CrossRefGoogle Scholar
Reich, P. B., Walters, M. B., and Ellsworth, D. S.. (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences 94:13 730–13 734.CrossRefGoogle ScholarPubMed
Reich, P. B., Walters, M. B., Ellsworth, D. S.et al. (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482.CrossRefGoogle ScholarPubMed
Ribichich, A. M. (2005). From null community to non-randomly structured actual plant assemblages: parsimony analysis of species co-occurrences. Ecography 28:88–98.CrossRefGoogle Scholar
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. Annals of Statistics 11:416–431.CrossRefGoogle Scholar
Roche, P., Diaz-Burlinson, N., and Gachet, S.. (2004). Congruency analysis of species ranking based on leaf traits: which traits are more reliable?Plant Ecology 174:37–48.CrossRefGoogle Scholar
Roxburgh, S. H., and Mokany, K.. (2007). Comment on “From plant traits to plant communities: A statistical mechanistic approach to biodiversity”. Science 316:1425b.CrossRefGoogle Scholar
Roxburgh, S. H., and Wilson, J. B.. (2000a). Stability and coexistence in a lawn community: experimental assessment of the stability of the actual community. Oikos 88:409–423.CrossRefGoogle Scholar
Roxburgh, S. H., and Wilson, J. B.. (2000b). Stability and coexistence in a lawn community: mathematical prediction of stability using a community matrix with parameters derived from competition experiments. Oikos 88:395–408.CrossRefGoogle Scholar
Schaffers, A. P., and Sykora, K. V.. (2000). Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11:225–244.CrossRefGoogle Scholar
Shannon, C. E., and Weaver, W.. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana.Google Scholar
Shipley, B. (1987a). The relationship between dynamic game theory and the Lotka–Volterra competition equations. Journal of Theoretical Biology 125:121–123.CrossRefGoogle Scholar
Shipley, J. W. (1987b). Pattern and mechanism in the emergent macrophyte communities along the Ottawa River (Canada). Ph.D. University of Ottawa, Ottawa.Google Scholar
Shipley, B. (1993). A null model for competitive hierarchies in competition matrices. Ecology 74:1693–1699.CrossRefGoogle Scholar
Shipley, B. (2000a). Cause and Correlation in Biology: A user's guide to path analysis, structural equations, and causal inference. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Shipley, B. (2000b). Plasticity in relative growth rate and its components following a change in irradiance. Plant, Cell and Environment 23:1207–1216.CrossRefGoogle Scholar
Shipley, B. (2006). Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Functional Ecology 20:565–574.CrossRefGoogle Scholar
Shipley, B. (2007). Comparative plant ecology as a tool for integrating across scales. Annals of Botany 99:965–966.CrossRefGoogle Scholar
Shipley, B. (2009). Limitations of entropy maximization in ecology: a reply to Haegeman and Loreau. Oikos 118:152–159.CrossRefGoogle Scholar
Shipley, B., and Dion, J.. (1992). The allometry of seed production in herbaceous angiosperms. American Naturalist 139:467–483.CrossRefGoogle Scholar
Shipley, B., and Hunt, R.. (1996). Regression smoothers for estimating parameters of growth analyses. Annals of Botany 76:569–576.CrossRefGoogle Scholar
Shipley, B., and Keddy, P. A.. (1987). The individualistic and community-unit concepts as falsifiable hypotheses. Vegetatio 69:47–55.CrossRefGoogle Scholar
Shipley, B., Keddy, P. A., Moore, D. R. J., and Lemky, K.. (1989). Regeneration and establishment strategies of emergent macrophytes. Journal of Ecology 77:1093–1110.CrossRefGoogle Scholar
Shipley, B., Keddy, P. A., and Lefkovitch, L. P.. (1991). Mechanisms producing plant zonation along a water depth gradient – a comparison with the exposure gradient. Canadian Journal of Botany 69:1420–1424.CrossRefGoogle Scholar
Shipley, B., and Peters, R. H.. (1990). A test of the Tilman model of plant strategies: relative growth rate and biomass partitioning. American Naturalist 136:139–153.CrossRefGoogle Scholar
Shipley, B., and Peters, R. H.. (1991). The Seduction by Mechanism – a Reply to Tilman. American Naturalist 138:1276–1282.CrossRefGoogle Scholar
Shipley, B., Lechowicz, M. J., Wright, I., and Reich, P. B.. (2006a). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535–541.CrossRefGoogle ScholarPubMed
Shipley, B., Vile, D., and Garnier, E.. (2006b). From plant traits to plant communities: A statistical mechanistic approach to biodiversity. Science 314:812–814.CrossRefGoogle ScholarPubMed
Shipley, B., Vile, D., and Garnier, E.. (2007). Response to comments on “From plant traits to plant communities: A statistical mechanistic approach to biodiversity”. Science 316:1425d.CrossRefGoogle Scholar
Sole, D., Alonso, D., and McKane, A.. (1987). Connectivity and scaling in S-species model ecosystems. Physica A 286:337–344.Google Scholar
Southwood, T. R. E. (1977). Habitat, the templet for ecological strategies. Journal of Animal Ecology 46:337–365.CrossRefGoogle Scholar
Steiger, T. L. (1930). Structure of prairie vegetation. Ecology 11:170–238.CrossRefGoogle Scholar
Sugihara, G. (1980). Minimal community structure: An explanation of species abundance distributions. American Naturalist 116:770–787.CrossRefGoogle Scholar
Tansley, A. G. (1920). The classification of vegetation and the concept of development. Journal of Ecology 8:118–149.CrossRefGoogle Scholar
Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology 16:284–307.CrossRefGoogle Scholar
Taylor Pegg Jr, E. (1994). A complete list of fair dice. MSc. University of Colorado, Colorado Springs.Google Scholar
Braak, C. J. F., and Prentice, I. C.. (1988). A theory of gradient analysis. Advances in Ecological Research 18:271–317.CrossRefGoogle Scholar
Thompson, K. (1987). Seeds and seed banks. New Phytologist 106:23–34.CrossRefGoogle Scholar
Thompson, K., Hodgson, J. G., Grime, J. P., et al. (1993a). Ellenberg numbers revisited. Phytocoenologia 23:277–289.CrossRefGoogle Scholar
Thompson, K., Band, S. R., and Hodgson, J. G.. (1993b). Seed size and shape predict persistence in soil. Functional Ecology 7:236–241.CrossRefGoogle Scholar
Thompson, K., Bakker, J. P., Bekker, R. M., and Hodgson, J. G.. (1998). Ecological correlates of seed persistence in soil in the north-west European flora. Journal of Ecology 86:163–169.CrossRefGoogle Scholar
Tilman, D. (1982). Resource Competition and Community Structure. Princeton University Press, Princeton.Google ScholarPubMed
Tilman, D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton.Google Scholar
Tilman, D. (2007). Resource competition and plant traits: a response to Craine et al. 2005. Journal of Ecology 95:231–234.CrossRefGoogle Scholar
Valk, A. G. (1981). Succession in wetlands: a Gleasonian approach. Ecology 62:688–696.CrossRefGoogle Scholar
Valk, A. G. (1988). From community ecology to vegetation management: providing a scientific basis for management. Pages 463–470 in Transactions of the 53rd North American Wildlife & Natural Resource Conference.
Hulst, R. (1992). From population dynamics to community dynamics: modelling succession as a species replacement process. InGlenn-Lewin, D. C., Peet, R. K., Veblen, T. T., editors. Plant Succession. Theory and Prediction. Chapman and Hall, London, pp. 188–214.Google Scholar
Vandermeer, J. H. (1969). The competitive structure of communities: an experimental approach with Protozoa. Ecology 50:362–371.CrossRefGoogle Scholar
Vendramini, F., Diaz, S., Gurvich, D. E.et al. (2002). Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist 154:147–157.CrossRefGoogle Scholar
Vile, D. (2005). Significations fonctionnelle et écologique des traits des espèces végétales: exemple dans une successions post-culturale méditerranéenne et généralisations. Ph.D. Université de Sherbrooke, Sherbrooke.Google Scholar
Vile, D., Shipley, B., and Garnier, E.. (2006a). Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecology Letters 9:1061–1067.CrossRefGoogle ScholarPubMed
Vile, D., Shipley, B., and Garnier, E.. (2006b). A structural equation model to integrate changes in functional strategies during old-field succession. Ecology 87:504–517.CrossRefGoogle ScholarPubMed
Violle, C., Lecoeur, J., and Navas, M. L.. (2007a). How relevant are instantaneous measurements for assessing resource depletion under plant cover? A test on light and soil water availability in 18 herbaceous communities. Functional Ecology 21:185–190.CrossRefGoogle Scholar
Violle, C., Navas, M. L., Vile, D.et al. (2007b). Let the concept of trait be functional!Oikos 116:882–892.CrossRefGoogle Scholar
Volkov, I., Banavar, J. R., Hubbell, S. P., and Maritan, A.. (2003). Neutral theory and relative species abundance in ecology. Nature 424:1035–1037.CrossRefGoogle ScholarPubMed
Volkov, I., Banavar, J. R., He, F. L., Hubbell, S. P., and Maritan, A.. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature 438:658–661.CrossRefGoogle ScholarPubMed
Volterra, V. (1926). Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. R. Acad. dei Lincei (Ser. 6) 2:31–113.Google Scholar
Mises, R. (1957). Probability, Statistics and Truth, second edition. Constable, London.Google Scholar
Warming, E., and Vahl, M.. (1909). Oecology of Plants – an Introduction to the Study of Plant Communities. Clarendon Press, Oxford.Google Scholar
Weiher, E., and Keddy, P. A.. (1995). Assembly rules, null models and trait dispersion. Oikos 74:159–164.CrossRefGoogle Scholar
Weiher, E., Clarke, G. D. P., and Keddy, P. A.. (1998). Community assembly rules, morphological dispersion, and the coexistence of species. Oikos 81:309–322.CrossRefGoogle Scholar
Weiher, E., Werf, A., Thompson, K.et al. (1999). Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science 10:609–620.CrossRefGoogle Scholar
Weiher, E., Forbes, S., Schauwecker, T., and Grace, J. B.. (2004). Multivariate control of plant species richness and community biomass in blackland prairie. Oikos 106:151–157.CrossRefGoogle Scholar
Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant & Soil 199:213–227.CrossRefGoogle Scholar
Wheatland, M. S., and Sturrock, P. A.. (1996). Avalanche models of solar flares and the distribution of active regions. The Astrophysical Journal 471:1044–1048.CrossRefGoogle Scholar
Whittaker, R. H. (1951). A criticism of the plant association and climatic climax concepts. Northwest Science 25:17–31.Google Scholar
Whittaker, R. H. (1956). Vegetation of the Great Smoky Mountains. Ecological Monographs 26:1–80.CrossRefGoogle Scholar
Whittaker, R. H. (1965). Dominance and diversity in land plant communities. Science 147:250–260.CrossRefGoogle ScholarPubMed
Whittaker, R. H. (1967). Gradient analysis of vegetation. Biological Reviews of the Cambridge Philosophical Society 49:207–264.CrossRefGoogle Scholar
Whittaker, R. H. (1970). Communities and Ecosystems. Macmillan, New York.Google Scholar
Woodward, F. I. (1987). Climate and Plant Distribution. Cambridge University Press, Cambridge.Google Scholar
Woodward, F. I. (1990a). Global change: translating plant ecophysiological responses to ecosystems. Trends in Ecology & Evolution 5:308–310.CrossRefGoogle Scholar
Woodward, F. I. (1990b). The impact of low temperatures in controlling the geographical distribution of plants. PhilosophicalTransactions of the Royal Society London B 326:585–593.CrossRefGoogle Scholar
Woodward, F. I., and Diament, A. D.. (1991). Functional approaches to predicting the ecological effects of global change. Functional Ecology 5:202–212.CrossRefGoogle Scholar
Wright, I. J., and Westoby, M.. (2001). Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance. Oecologia 127:21–29.CrossRefGoogle ScholarPubMed
Wright, I. J., Reich, P. B., and Westoby, M.. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology 15:423–434.CrossRefGoogle Scholar
Wright, I. J., Reich, P. B., Westoby, M.et al. (2004). The worldwide leaf economics spectrum. Nature 428:821–827.CrossRefGoogle ScholarPubMed
Wright, S. J. (1967). Comments of the preliminary working papers of Eden and Waddington. InMoorhead, P. S., and Kaplan, M. M., editors. Mathematical Challenges to the Neo-Darwinian Interpretation of Evolution. Wistar Institute Symposium Monograph 5. Wistar Institute Press, Philadelphia, pp. 117–120.Google Scholar
Yee, T. W., and Mitchell, N. D.. (1991). Generalized additive models in plant ecology. Journal of Vegetation Science 2:587–602.CrossRefGoogle Scholar
Zillio, T., and Condit, R.. (2007). The impact of neutrality, niche differentiation and species input on diversity and abundance distributions. Oikos 116:931–940.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Bill Shipley, Université de Sherbrooke, Canada
  • Book: From Plant Traits to Vegetation Structure
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806971.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Bill Shipley, Université de Sherbrooke, Canada
  • Book: From Plant Traits to Vegetation Structure
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806971.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Bill Shipley, Université de Sherbrooke, Canada
  • Book: From Plant Traits to Vegetation Structure
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511806971.010
Available formats
×