References[1] J. M., Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200];
S. S., Gubser, I. R., Klebanov, and A. M., Polyakov, “Gauge theory correlators from non-critical string theory,” Phys. Lett.B 428, 105 (1998) [arXiv:hep-th/9802109];
E., Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].
[2] S. R., Das and A., Jevicki, “String field theory and physical interpretation of D = 1 Strings,” Mod. Phys. Lett.A 5, 1639 (1990).
[3] S., Corley, A., Jevicki, and S., Ramgoolam, “Exact correlators of giant gravitons from dual N = 4 SYM theory,” Adv. Theor. Math. Phys. 5, 809 (2002) [arXiv:hep-th/0111222].
[4] D., Berenstein, “A toy model for the AdS]CFT correspondence,” JHEP 0407, 018 (2004) [arXiv:hep-th/0403110].
[5] H., Lin, O., Lunin, and J.M., Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” JHEP 0410, 025 (2004) [arXiv:hep-th/0409174].
[6] V., Balasubramanian, J., de Boer, V., Jejjala, and J., Simon, “The library of Babel: On the origin of gravitational thermodynamics,” JHEP 0512, 006 (2005) [arXiv:hep-th/0508023];
V., Balasubramanian, V., Jejjala, and J., Simon, “The library of Babel,” Int. J. Mod. Phys.D 14, 2181 (2005) [arXiv:hep-th/0505123].
[7] D., Berenstein, “Large N BPS states and emergent quantum gravity,” JHEP 0601, 125 (2006) [arXiv:hep-th/0507203].
[8] V., Balasubramanian, D., Berenstein, B., Feng, and M. x., Huang, “D-branes in Yang–Mills theory and emergent gauge symmetry,” JHEP 0503, 006 (2005) [arXiv:hep-th/0411205].
[9] S., Ramgoolam, “Schur–Weyl duality as an instrument of gauge–string duality,” arXiv:0804.2764 [hep-th].
[10] D., Berenstein, J. M., Maldacena, and H., Nastase, “Strings in flat space and pp waves from N = 4 super Yang–Mills,” JHEP 0204, 013 (2002) [arXiv:hep-th/0202021].
[11] E., Brezin, C., Itzykson, G., Parisi, and J. B., Zuber, “Planar diagrams,” Commun. Math. Phys. 59, 35 (1978).
[12] R. C., Myers, “Dielectric-branes,” JHEP 9912, 022 (1999) [arXiv:hep-th/9910053].
[13] J., McGreevy, L., Susskind, and N., Toumbas, “Invasion of the giant gravitons from anti-de Sitter space,” JHEP 0006, 008 (2000) [arXiv:hep-th/0003075].
[14] V., Balasubramanian, M., Berkooz, A., Naqvi, and M. J., Strassler, “Giant gravitons in conformal field theory,” JHEP 0204, 034 (2002) [arXiv:hep-th/0107119].
[15] R., de Mello Koch and R., Gwyn, “Giant graviton correlators from dual SU(N) super Yang–Mills theory,” JHEP 0411, 081 (2004) [arXiv:hep-th/0410236];
T. W., Brown, “Half-BPS SU(N) correlators in N = 4 SYM,” arXiv:hep-th/0703202.
[16] T. W., Brown, R., de Mello Koch, S., Ramgoolam, and N., Toumbas, “Correlators, probabilities and topologies in N = 4 SYM,” JHEP 0703, 072 (2007) [arXiv:hep-th/0611290].
[17] S., Corley and S., Ramgoolam, “Finite factorization equations and sumrules for BPS correlators in N = 4 SYM theory,” Nucl. Phys.B 641, 131 (2002) [arXiv:hep-th/0205221].
[18] T. W., Brown, P. J., Heslop, and S., Ramgoolam, “Diagonal multi-matrix correlators and BPS operators in N = 4 SYM,” arXiv:0711.0176 [hep-th];
T. W., Brown, “Permutations and the loop,” JHEP 0806, 008 (2008) [arXiv:0801.2094 [hep-th]];
T.W., Brown, P. J., Heslop, and S., Ramgoolam, “Diagonal free field matrix correlators, global symmetries and giant gravitons,” JHEP 0904, 089 (2009) [arXiv:0806.1911 [hep-th]].
[19] Y., Kimura and S., Ramgoolam, “Branes, anti-branes and Brauer algebras in gauge–gravity duality,” arXiv:0709.2158 [hep-th];
Y., Kimura, “Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra,” arXiv:0910.2170 [hep-th].
[20] R., Bhattacharyya, S., Collins, and R., de Mello Koch, “Exact multi-matrix correlators,” arXiv:0801.2061 [hep-th];
R., Bhattacharyya, R., de Mello Koch, and M., Stephanou, “Exact multi-restricted Schur polynomial correlators,” JHEP 0806, 101 (2008) [arXiv:0805.3025 [hep-th]];
S., Collins, “Restricted Schur polynomials and finite N counting,” Phys. Rev.D 79, 026002 (2009) [arXiv:0810.4217 [hep-th]].
[21] Y., Kimura and S., Ramgoolam, “Enhanced symmetries of gauge theory and resolving the spectrum of local operators,” Phys. Rev.D 78, 126003 (2008) [arXiv:0807.3696 [hep-th]].
[22] M., Bianchi, D. Z., Freedman, and K., Skenderis, “How to go with an RG flow,” JHEP 0108, 041 (2001) [arXiv:hep-th/0105276];
M., Bianchi, D. Z., Freedman, and K., Skenderis, “Holographic renormalization,” Nucl. Phys.B 631, 159 (2002) [arXiv:hep-th/0112119];
K., Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19, 5849 (2002) [arXiv:hep-th/0209067].
[23] K., Skenderis and M., Taylor, “Kaluza–Klein holography,” JHEP 0605, 057 (2006) [arXiv:hep-th/0603016];
K., Skenderis and M., Taylor, “Anatomy of bubbling solutions,” JHEP 0709, 019 (2007) [arXiv:0706.0216 [hep-th]].
[24] S., Lee, S., Minwalla, M., Rangamani, and N., Seiberg, “Three-point functions of chiral operators in D =4, N = 4 SYM at large N,” Adv. Theor. Math. Phys. 2, 697 (1998) [arXiv:hep-th/9806074];
K. A., Intriligator, “Bonus symmetries of N = 4 super-Yang–Mills correlation functions via AdS duality,” Nucl. Phys.B 551, 575 (1999) [arXiv:hep-th/9811047];
B. U., Eden, P. S., Howe, A., Pickering, E., Sokatchev and P. C., West, “Four-point functions in N = 2 superconformal field theories,” Nucl. Phys.B 581, 523 (2000) [arXiv:hep-th/0001138];
B. U., Eden, P. S., Howe, E., Sokatchev and P. C., West, “Extremal and next-to-extremal n-point correlators in four-dimensional SCFT,” Phys. Lett.B 494, 141 (2000) [arXiv:hep-th/0004102].
[25] C., Kristjansen, J., Plefka, G. W., Semenoff and M., Staudacher, “A new double-scaling limit of N = 4 super Yang–Mills theory and PP-wave strings,” Nucl. Phys.B 643, 3 (2002) [arXiv:hep-th/0205033];
N. R., Constable, D. Z., Freedman, M., Headrick, S., Minwalla, L., Motl, A., Postnikov and W., Skiba, “PP-wave string interactions from perturbative Yang–Mills theory,” JHEP 0207, 017 (2002) [arXiv:hep-th/0205089].
[26] J.A., Minahan and K., Zarembo, “The Bethe-ansatz for N =4 super Yang–Mills,” JHEP 0303, 013 (2003) [arXiv:hep-th/0212208].
[27] N., Beisert and M., Staudacher, “The N =4 SYM Integrable Super Spin Chain,” Nucl. Phys.B 670, 439 (2003) [arXiv:hep-th/0307042].
[28] N., Beisert, C., Kristjansen and M., Staudacher, “The dilatation operator of N =4 super Yang–Mills theory,” Nucl. Phys.B 664, 131 (2003) [arXiv:hep-th/0303060].
[29] M., Kruczenski, “Spin chains and string theory,” Phys. Rev. Lett. 93, 161602 (2004) [arXiv:hep-th/0311203].
M., Kruczenski, A. V., Ryzhov and A.A., Tseytlin, “Large spin limit of AdS(5) × S**5 string theory and low energy expansion of ferromagnetic spin chains,” Nucl. Phys.B 692, 3 (2004) [arXiv:hep-th/0403120].
[30] M. T., Grisaru, R. C., Myers and O., Tafjord, “SUSY and Goliath,” JHEP 0008, 040 (2000) [arXiv:hep-th/0008015].
[31] A., Hashimoto, S., Hirano and N., Itzhaki, “Large branes in AdS and their field theory dual,” JHEP 0008, 051 (2000) [arXiv:hep-th/0008016].
[32] R., de Mello Koch, J., Smolic and M., Smolic, “Giant Gravitons - with Strings Attached (I),” JHEP 0706, 074 (2007), arXiv:hep-th/0701066.
[33] D., Berenstein, D. H., Correa and S. E., Vazquez, “A study of open strings ending on giant gravitons, spin chains and integrability,” [arXiv:hep-th/0604123];
D., Berenstein, D. H., Correa and S. E., Vazquez, “Quantizing open spin chains with variable length: An example from giant gravitons,” Phys. Rev. Lett. 95, 191601 (2005) [arXiv:hep-th/0502172];
D. H., Correa and G. A., Silva, “Dilatation operator and the super Yang–Mills duals of open strings on AdS giant gravitons,” JHEP 0611, 059 (2006) [arXiv:hep-th/0608128].
[34] R., de Mello Koch, J., Smolic and M., Smolic, “Giant gravitons – with strings attached (II),” JHEP 0709 049 (2007) [arXiv:hep-th/0701067];
D., Bekker, R., de Mello Koch and M., Stephanou, “Giant gravitons – with strings attached (III),” JHEP 0802, 029 (2008) [arXiv:0710.5372 [hep-th]].
[35] A., Hamilton and J., Murugan, “On the shoulders of giants – quantum gravity and braneworld stability,” [arXiv:0806.3273 [gr-qc]]
[36] L., Grant, L., Maoz, J., Marsano, K., Papadodimas and V. S., Rychkov, “Minisuperspace quantization of ‘bubbling AdS’ and free fermion droplets,” JHEP 0508, 025 (2005) [arXiv:hep-th/0505079];
L., Maoz and V. S., Rychkov, “Geometry quantization from supergravity: The case of ‘bubbling AdS’,” JHEP 0508, 096 (2005) [arXiv:hep-th/0508059].
[37] R., de Mello Koch, “Geometries from Young diagrams,” JHEP 0811, 061 (2008) [arXiv:0806.0685 [hep-th]].
[38] R., de Mello Koch, N., Ives, and M., Stephanou, “Correlators in nontrivial backgrounds,” Phys. Rev.D 79, 026004 (2009) [arXiv:0810.4041 [hep-th]].
[39] K., Skenderis and M., Taylor, “Anatomy of bubbling solutions,” JHEP 0709, 019 (2007) [arXiv:0706.0216 [hep-th]].
[40] R., de Mello Koch, T. K., Dey, N., Ives, and M., Stephanou, “Correlators of operators with a large R-charge,” arXiv:0905.2273 [hep-th].
[41] S. E., Vazquez, “Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains,” Phys. Rev.D 75, 125012 (2007) [arXiv:hep-th/0612014].
[42] H.Y., Chen, D. H., Correa, and G.A., Silva, “Geometry and topology of bubble solutions from gauge theory,” Phys. Rev.D 76, 026003 (2007) [arXiv:hep-th/0703068].
[43] G., Mandal, “Fermions from half-BPS supergravity,” JHEP 0508, 052 (2005) [arXiv:hep-th/0502104].
[44] M., Masuku and J. P., Rodrigues, “Laplacians in polar matrix coordinates and radial fermionization in higher dimensions,” arXiv:0911.2846 [hep-th];
Y., Kimura, S., Ramgoolam, and D., Turton, “Free particles from Brauer algebras in complexmatrix models,” arXiv:0911.4408 [hep-th].
[45] D., Berenstein, “A strong coupling expansion for N = 4 SYM theory and other SCFT's,” arXiv:0804.0383 [hep-th];
D. E., Berenstein and S. A., Hartnoll, “Strings on conifolds from strong coupling dynamics: quantitative results,” JHEP 0803 (2008) 072 [arXiv:0711.3026 [hep-th]];
D., Berenstein, “Strings on conifolds from strong coupling dynamics, part I,” JHEP 0804 (2008) 002 [arXiv:0710.2086 [hep-th]];
D. E., Berenstein, M., Hanada, and S.A., Hartnoll, “Multi-matrix models and emergent geometry,” JHEP 0902, 010 (2009) [arXiv:0805.4658 [hep-th]].
[46] A., Jevicki and B., Sakita, “The quantum collective field method and its application to the planar limit,” Nucl. Phys.B 165, 511 (1980);
A., Jevicki and B., Sakita, “Collective field approach to the large N limit: Euclidean field theories,” Nucl. Phys.B 185, 89 (1981).
[47] J. P., Rodrigues, “Large N spectrum of two matrices in a harmonic potential and BMN energies,” JHEP 0512, 043 (2005) [arXiv:hep-th/0510244];
A., Donos, A., Jevicki, and J. P., Rodrigues, “Matrix model maps in AdS/CFT,” Phys. Rev.D 72, 125009 (2005) [arXiv:hep-th/0507124];
R., de Mello Koch, A., Jevicki, and J. P., Rodrigues, “Instantons in c=0 CSFT,” JHEP 0504, 011 (2005) [arXiv:hep-th/0412319];
R., de Mello Koch, A., Donos, A., Jevicki, and J. P., Rodrigues, “Derivation of string field theory from the large N BMN limit,” Phys. Rev.D 68, 065012 (2003) [arXiv:hep-th/0305042];
R., de Mello Koch, A., Jevicki, and J. P., Rodrigues, “Collective string field theory of matrix models in the BMN limit,” Int. J. Mod. Phys.A 19, 1747 (2004) [arXiv:hep-th/0209155].
[48] A., Donos, “A description of 1/4 BPS configurations in minimal type IIB SUGRA,” Phys. Rev.D 75, 025010 (2007) [arXiv:hep-th/0606199/;
B., Chen et al., “Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity,” JHEP 0710, 003 (2007) [arXiv:0704.2233 [hep-th]];
O., Lunin, “Brane webs and 1/4-BPS geometries,” arXiv:0802.0735 [hep-th].