Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2007
  • Online publication date: October 2013

16 - A novel understanding of the three-way interaction between Trichoderma spp., the colonized plant and fungal pathogens

from V - Fungal biocontrol of pests
    • By S. L. Woo, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, M. Ruocco, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, R. Ciliento, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, P. Ambrosino, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, R. Marra, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, F. Vinale, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, S. Lanzuise, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, D. Turrà, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, S. Ferraioli, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, I. Soriente, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, S. Gigante, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, F. Scala, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy, M. Lorito, Dipartimento di Arboricoltura Botanica e Patologia Vegetale Sezione Patologia Vegetale Universita degli Studi di Napoli Federico II Via Universita 100–80055 Portici (NA) Italy
  • Edited by G. D. Robson, University of Manchester, Pieter van West, University of Aberdeen, Geoffrey Gadd, University of Dundee
  • Publisher: Cambridge University Press
  • DOI: https://doi.org/10.1017/CBO9780511902451.017
  • pp 291-309

Summary

Abstract

Trichoderma-based biofungicides are a reality in agriculture, with more than 50 formulations available today as registered products worldwide. Several strategies have been applied to identify the main genes and compounds involved in this complex cross-talk between the fungal antagonist and the microbial pathogen, as mediated by the plant. Proteome and genome analysis have greatly enhanced our ability to conduct holistic and genome-based functional studies. We have identified and determined the role of a variety of novel genes and gene-products, including ABC transporters, enzymes and other proteins that produce or act as novel elicitors of induced systemic resistance, proteins recognized by the plant as avirulence factors, as well as molecules that generally activate the antagonistic activity in Trichoderma spp. We have cloned mycoparasitism-related promoters and used them in combination with GFP and other markers to study the interaction in vivo and in situ between Trichoderma and the fungal pathogen or the plant. Finally, we have transgenically improved the ability of the antagonist to kill other microbes and to activate plant defence mechanisms.

Introduction

Plant diseases caused by pathogenic fungi infections represent a major limiting factor for the cultivation and the conservation of agricultural plants of interest. The consequences of parasite attack result in both quantitative and qualitative reduction of crop production, large economic losses and represent a risk for human and animal health due to the accumulation of residues in the environment and mycotoxin contaminants in food products.

References
Altomare, C., Norvell, W. A., Björkman, T. & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai strain 1295–22. Applied and Environmental Microbiology, 65, 2926–33.
Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P. & Mach, R. L. (2005). Genetic improvement of a fungal biocontrol agent to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 71, 3959–65.
Calderon, A. A., Zapata, J. M., Munoz, R., Pedreno, M. A. & Barcelo, A. R. (1993). Resveratrol production as a part of the hypersensitive-like response of grapevine cells to an elicitor from Trichoderma viride. New Phytologist, 124, 455–63.
Chang, P.-F. L., Xu, Y., Narasimhan, M. L., Cheah, K. T., D'Urzo, M. P., Damsz, B., Kononowicz, A. K., Abad, L., Hasegawa, P. M. & Bressan, R. A. (1997). Induction of pathogen resistance and pathogenesis-related genes in tobacco by a heat-stable Trichoderma mycelial extract and plant signal messengers. Physiologia Plantarum, 100, 341–52.
Dai, G. H., Andary, C., Mondolot-Cosson, L. & Boubals, D. (1995). Involvement of phenolic compounds in the resistance of grapevine callus to downy mildew (Plasmopara viticola). European Journal of Plant Pathology, 101, 541–7.
Dangl, J. L. & Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–33.
Meyer, G., Bigirimana, J., Elad, Y. & Hofte, M. (1998). Induced systemic resistance in Trichoderma harzianum T 39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 104, 279–86.
Fogliano, V., Ballio, A., Gallo, M., Woo, S. L., Scala, F. & Lorito, M. (2002). Pseudomonas lipodepsipeptides and fungal cell wall degrading enzymes act synergistically in biocontrol. Molecular Plant Microbe Interactions, 15, 323–33.
Gullino, M. L. (1992). Control of Botrytis rot of grapes and vegetables with Trichoderma spp. In Biological Control of Plant Diseases, Progress and Challenges for the Future, eds. Tjamos, E. C., Papavizas, G. C. & Cook, R. J.. New York: Plenum Press, pp. 125–32.
Harman, G. E, Lorito, M. & Lynch, J. M. (2004). Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Advances in Applied Microbiology, 56, 313–31.
Harman, G. E. (2000). The dogmas and myths of biocontrol. Changes in perceptions based on research with Trichoderma harzianum T-22. Plant Disease, 84, 377–93.
Harman, G. E. & Kubicek, C. P. (1998). Trichoderma and Gliocladium, Vol. 2, Enzymes, Biological Control and Commercial Applications. London: Taylor and Francis.
Harman, G. E. & Björkman, T. (1998). Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In Trichoderma and Gliocladium, Vol. 2, eds. Harman, G. E. & Kubicek, C. P.. London: Taylor and Francis, pp. 229–65.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species – Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.
Howell, C. R., Hanson, L. E., Stipanovic, R. D. & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90, 248–52.
Inbar, J., Abramsky, M., Coen, D. & Chet, I. (1994). Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. European Journal of Plant Pathology, 337–46.
Keen, N. T. (2000). A century of plant pathology, a retrospective view on understanding host-parasite interactions. Annual Review Phytopathology, 38, 31–48.
Kubicek, C. P. & Harman, G. E. (1998). Trichoderma and Gliocladium Vol. 1, Basic Biology, Taxonomy and Genetics. London: Taylor and Francis.
Kuc, J. (2001). Concepts and direction of induced systemic resistance in plants and its application. European Journal of Plant Pathology, 107, 7–12.
Limón, M. C., Llobel, A., Pintor Toro, J. A. & Benítez, T. (1996). Overexpression of chitinase by Trichoderma harzianum strains used as biocontrol fungi. In Chitin Enzymology, Vol. 2, ed. Muzzarelli, R. A. A.. Ancona, Italy: AtecEdizioni.
Lorito, M. & Scala, F. (1999). Microbial genes expressed in transgenic plants to improve disease resistance. Journal of Plant Pathology, 81, 73–88.
Lorito, M. & Woo, S. L. (1998). Advances in understanding the antifungal mechanism(s) of Trichoderma and new applications for biological control. In Molecular Approaches in Biological Control, eds. Duffy, B., Rosenberger, U. and Défago, G.. Dijon, France: IOBC wprs Bulletin/Bulletin OILB srop, Vol. 21 (9), pp. 73–80.
Lorito, M., Scala., F., Zoina, A. & Woo, S. L. (2001). Enhancing biocontrol of fungal pests by exploiting the Trichoderma genome. In Enhancing Biocontrol Agents and Handling Risks, eds. Vurro, M. & Gressel, J.. Amsterdam: IOS Press, pp. 248–59.
Lorito, M., Woo, S. L., Fernandez, Garcia I., Colucci, G., Harman, G. E., Pintor-Toro, J. A., Filippone, E., Muccifora, S., Lawrence, C. B., Zoina, A., Tuzun, S. & Scala, F. (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National Academy of Sciences of USA, 95, 7860–5.
Lorito, M., Woo, S. L. & Scala, F. (2004). Le biotecnologie utili alla difesa sostenibile delle piante, i funghi. Agroindustria, 3, 181–95.
Lorito, M., Woo, S. L., D'Ambrosio, M., Harman, G. E., Hayes, C. K., Kubicek, C. P. & Scala, F. (1996). Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Molecular Plant-Microbe Interactions, 9, 206–13.
Lotan, T. & Fluhr, R. (1990). Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiology, 93, 811–17.
Lu, Z., Tombolini, R., Woo, S. L., Zeilinger, S., Lorito, M. & Jansson, J. (2004). In vivo study of Trichoderma-pathogen interactions using constitutive and inducible green fluorescent protein reporter systems. Applied and Environmental Microbiology, 70, 3073–81.
Mach, R. L., Peterbauer, C. K., Payer, K., Jaksits, S., Woo, S. L., Zeilinger, S., Kullnig, C. M., Lorito, M. & Kubicek, C. P. (1999). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Applied and Environmental Microbiology, 65, 1858–63.
Pieterse, C. M. J. & Loon, L. C. (1999). Salicylic acid-independent plant defense pathways. Trends in Plant Science, 4, 52–8.
Rey, M., Llobell, A., Monte, E., Scala, F. & Lorito, M. (2004). Genomics of Trichoderma. In Applied Mycology and Biotechnology, Vol. 4, Fungal Genomics, eds. Arora, D. K. & Khachatourians, G. G.. Elsevier Science, pp. 225–48.
Sandermann, H. (2000). Active oxygen species as mediators of plant immunity: three case studies. Biological Chemistry, 381, 649–53.
Schirmböck, M., Lorito, M., Wang, Y.-L., Hayes, C. K., Arisan-Atac, I., Scala, F., Harman, G. E. & Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60, 4364–70.
Ahmed, Sid A., Sánchez, C. P. & Candela, M. E. (2000). Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. European Journal of Plant Pathology, 106, 817–24.
Sivan, A. & Chet, I. (1989). The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology, 79, 198–203.
Sivasithamparam, K. & Ghisalberti, E. L. (1998). Secondary metabolism in Trichoderma and Gliocladium. In Trichoderma and Gliocladium, Vol. 2, eds Harman, G. E. & Kubicek, C. P.. London, UK: Taylor and Francis Ltd., pp. 139–91.
Windham, M. T., Elad, Y. & Baker, R. (1986). A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology, 76, 518–21.
Woo, S. L., Donzelli, B., Scala, F., Mach, R., Harman, G. E., Kubicek, C. P., Del Sorbo, G. & Lorito, M. (1999). Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Molecular Plant-Microbe Interactions, 12, 419–29.
Yedidia, I., Behamou, N., Kapulnik, Y. & Chet, I. (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38, 863–73.