Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 7
  • Print publication year: 2011
  • Online publication date: May 2011

14 - Atmospheric transport and deposition of reactive nitrogen in Europe

from Part III - Nitrogen flows and fate at multiple spatial scales

Summary

Executive summary

Nature of the problem

Observations of atmospheric reactive nitrogen (Nr) deposition are severely restricted in spatial extent and type. The chain of processes leading to atmospheric deposition emissions, atmospheric dispersion, chemical transformation and eventual loss from the atmosphere is extremely complex and therefore currently, observations can only address part of this chain.

Approaches

Modelling provides a way of estimating atmospheric transport and deposition of Nr at the European scale. A description of the different model types is provided.

Current deposition estimates from models are compared with observations from European air chemistry monitoring networks.

The main focus of the chapter is at the European scale; however, both local variability and and intercontinental Nr transfers are also addressed.

Key findings/state of knowledge

Atmospheric deposition is a major input of Nr for European terrestrial and freshwater ecosystems as well as coastal sea areas.

Models are key tools to integrate our understanding of atmospheric chemistry and transport, and are essential for estimating the spatial distribution of deposition, and to support the formulation of air pollution control strategies.

Our knowledge of the reliability of models for deposition estimates is, however, limited, since we have so few observational constraints on many key parameters.

Total Nr deposition estimates cannot be directly assessed because of a lack of measurements, especially of the Nr dry deposition component. Differences among European regional models can be significant, however, e.g. 30% in some areas, and substantially more than this for specific locations.

References
Aas, W. and Hjellbrekke, A.-G. (2005). Data Quality 2003: Quality Assurance and Field Comparisons. EMEP/CCC Report 6/2005, The Norwegian Institute for Air Research (NILU), Kjeller, Norway.
Asman, W. (1998). Factors influencing local dry deposition of gases with special reference to ammonia. Atmos. Environ., 32, 415–421.
Asman, W., Drukker, B. and Janssen, A. (1998). Modeled historical concentrations and depositions of ammonia and ammonium in Europe. Atmos. Environ., 22, 725–735.
Barrie, L. (1992). Scavenging ratios: black magic or a useful scientific tool? In: Proc. of 5th Int. Conf. on Precipitation Scavenging and Atmosphere–Surface Exchange Processes, ed. S. Schwartz and W. Slinn, vol. 1, the Georgii volume; Precipitation scavenging processes, pp. 403–420, Hemisphere Publ. Corp., Washington, DC.
Bartnicki, J. and Fagerli, H. (2008). Airborne load of nitrogen to European seas. Ecol. Chem. Eng. S, 15, 297–313.
Beer, R., Shephard, M. W., Kulawik, S. S.et al. (2008). First satellite observations of lower tropospheric ammonia and methanol. Geophys. Res. Lett., 35.
Berge, E. and Jakobsen, H. A. (1998). A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe. Tellus, 50, 205–223.
Berge, H. and Hjellbrekke, A.-G. (2010). Acidifying and Eutrophying Components: Validation and Combined Maps, supplementary material to emep status report 1/2010, available online at www. emep. int, The Norwegian Meteorological Institute, Oslo, Norway.
Bessagnet, B., Hodzic, A., Vautard, R.et al. (2004). Aerosol modeling with CHIMERE – preliminary evaluation at the continental scale. Atmos. Environ., 38, 2803–2817.
Binkowski, F. and Roselle, S. (2003). Models-3 community multiscale air quality (CMAQ) model aerosol component – 1. Model description. J. Geophys. Res., 108.
Bleeker, A., Reinds, G., Vermeulen, A., Vries, W. and Erisman, J. (2004). Critical Loads and Present Deposition Thresholds of Nitrogen and Acidity and Their Exceedances at the Level II and Level I Monitoring Plots in Europe, ECN Report ECN-C-04–117, Energy Research Centre of the Netherlands (ECN).
Bleeker, A., Sutton, M., Acherman, B.et al. (2009). Linking ammonia emission trends to measured concentrations and deposition of reduced nitrogen at different scales. In: Atmospheric Ammonia. Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 123–180, Springer, New York.
Blond, N., Boersma, K. F., Eskes, H. J.et al. (2007). Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe. J. Geophys. Res., 112, D10 311.
Boersma, K., Eskes, H., Veefkind, J.et al. (2007). Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 7, 2103–2118.
Bovensmann, H., Burrows, J. P., Buchwitz, M.et al. (1999). SCIAMACHY – mission objectives and measurement modes. J. Atmos. Sci., 56, 127–150.
Brown, S., Ryerson, T., Wollny, A.et al. (2006). Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science, 311, 67–70.
Burrows, J. P., Weber, M., Buchwitz, M.et al. (1999). The Global Ozone Monitoring Experiment (GOME) – mission concept and first scientific results, J. Atmos. Sci., 56, 151–175.
Cape, J., Kirika, A., Rowland, A.et al. (2001). Organic nitrogen in precipitation – real problem or sampling artefact?Scientif. World, 1, 230–237.
Carmichael, G., Peters, L. and Saylor, R. (1991). The STEM-II regional scale acid deposition and photochemical oxidant model. 1. Overview of model development and applications. J. Geophys. Res., 25, 2077–2090.
Carruthers, D., Holroy, D.et al. (1994). UK-ADMS – a new approach to modeling dispersion in the Earth's atmospheric boundary layer. J. Wind Eng. Industr. Aerodynam., 52, 139–153.
Chang, J., Brost, A., Isaksen, I.et al. (1987). A three-dimensional Eulerian acid deposition model – physical concepts and formulation. J. Geophys. Res., 92, 14681–14700.
Cimorelli, A. J., Perry, S. G., Venkatram, A.et al. (2005). AERMOD: a dispersion model for industrial source applications. 1: General model formulation and boundary layer characterization. J. Appl. Meteorol., 44, 682–693.
Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D. and Coheur, P.-F. (2009). Global ammonia distribution derived from infrared satellite observations. Nature Geosci., 2, 479–483.
Clarke, J., Edgerton, E. and Martin, B. (1997). Dry deposition calculations for the clean air status and trends network. Atmos. Environ., 31, 3667–3678.
Cofala, J., Amann, M., Kupiainen, K. and Hoglund-Isaksson, L. (2007). Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos. Env., 41, 8486–8499.
Collins, W., Stevenson, D., Johnson, C. and Derwent, R. (1997). Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls. J. Atmos. Chem., 26, 223–274.
Leeuw, G., Cohen, L.Frohn, L.et al. (2001). Atmospheric input of nitrogen into the North Sea – ANICE project overview. Cont. Shelf Res., 21, 2073–2094.
Leeuw, G., Skjoth, C, Hertel, O.et al. (2003). Deposition of nitrogen into the North Sea. Atmos. Environ., 37, S145–S165.
Delle Monache, L. and Stull, R. (2003). An ensemble air-quality forecast over western Europe during an ozone episode. Atmos. Environ., 37, 3469–3474.
Dentener, F., Drevet, J., Lamarque, J. F.et al. (2006). Nitrogen and sulfur deposition on regional and global scales – a multimodel evaluation. Glob. Biogeochem. Cycles, 20.
Dore, A., Choularton, T. and Fowler, D. (1992). An improved wet deposition map of the United Kingdom incorporating the seeder-feeder effect over mountanous terrain. Atmos. Environ., 26A, 1375–1381.
Draaijers, G. and Erisman, J. (1993). Atmospheric sulfur deposition to forest stands – Through-fall estimates compared to estimates from inference. Atmos. Environ., 27A, 43–55.
Duyzer, J., Nijenhuis, B. and Weststrate, H. (2001). Monitoring and modelling of ammonia consequences deposition in agricultural areas of the Netherlands. Water, Air and Soil Pollut. Focus, 1, 131–144.
,EDGAR (2010). v.4, http://edgar.jre.ec.europa.eu
,EIONET (2010). http://air-climate.eionet.europa.eu/databases/MDS/index_html
,EMEP (1996). EMEP Manual for Sampling and Chemical Analysis, EMEP/CCC-Report 1995, last revision in 2001. Norwegian Institute for Air Research, Kjeller, Norway. Online at http://www.nilu.no/proj ects/ccc/manual/index.html
,EMEP http://ebas.nilu.no (2010). www.emep.int
,EPA (US Environmental Protection Agency) (2010). www.epa.gov/scram001/aqmindex. htm
Erisman, J., Draaijers, G., Duyzer, J.et al. (1997). Particle deposition to forests – summary of results and application. Atmos. Environ., 31, 321–322.
Erisman, J. W., Hensen, A., Fowler, D.et al. (2001). Dry Deposition monitoring in Europe, Water, Air Soil Pollut. Focus, 1, 17–27.
Erisman, J., Vermeulen, A., Hensen, A.et al. (2005). Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe. Environ. Pollut., 403–413.
Erisman, J., Grinsven, H., Grizzetti, B.et al. (2011). The European nitrogen problem in a global perspective. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.
Fagerli, H. and Aas, W. (2008). Trends of nitrogen in air and precipitation: model results and observations at EMEP sites in Europe, 1980–2003. Environ. Pollut., 154, 448–461.
Fagerli, H. and Hjellbrekke, A. (2008). Acidification and eutrophication. In: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006, EMEP Status Report 1/2008, pp. 41–56, The Norwegian Meteorological Institute, Oslo, Norway.
Fagerli, H., Wind, P., Gauss, M.et al. (2008). Improved resolution in EMEP models. In: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006, EMEP Status Report 1/2008, pp. 89–104, The Norwegian Meteorological Institute, Oslo, Norway.
Fish, D., Shallcross, D. and Jones, R. (1999). The vertical distribution of NO3 in the atmospheric boundary layer. Atmos. Environ., 33, 687–691.
Flechard, C. R., Fowler, D., Sutton, M. A. and Cape, J. N. (1999). A dynamic chemical model of bi-directional ammonia exchange between semi-natural vegetation and the atmosphere. Q. J. R. Meteorol. Soc, 125, 2611–2641.
Fournier, N., Tang, Y., Dragosits, U., Kluizenaar, Y. and Sutton, M. (2005). Regional atmospheric budgets of reduced nitrogen over the British Isles assessed using a multi-layer atmospheric transport model. Water, Air Soil Pollut., 162, 331–351.
Fowler, D., Cape, J., Leith, I.et al. (1988). The influence of altitude on rainfall composition at Great Dun Fell. Atmos. Environ., 22, 1355–1362.
Fowler, D., Pitcairn, C. E. R., Sutton, M. A.et al. (1998). The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings. Environ. Pollut., 102, 343–348.
Fowler, D., Coyle, M., Flechard, C.et al. (2001). Advances in micrometeorological methods for the measurement and interpretation of gas and particle nitrogen fluxes. Plant and Soil, 228, 117–129.
Fowler, D., Pilegaard, K., Sutton, M.et al. (2009). Atmospheric composition change – ecosystems–atmosphere interactions. Atmos. Environ., 43, 5193–5267.
Frohn, L. M., Christensen, J. H., Brandt, J. and Hertel, O. (2001). Development of a high resolution integrated nested model for studying air pollution in Denmark. Phys. Chem. Earth, B, 26, 769–774.
Gallagher, M. W., Nemitz, E., Dorsey, J. R.et al. (2002). Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest – influence of surface roughness length on deposition, J. Geophys. Res., 107.
Galloway, J., Dentener, F., Capone, D.et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226.
Galmarini, S., Bianconi, R., Addis, R.et al. (2004). Ensemble dispersion forecasting. 2. Application and evaluation. Atmos. Environ., 38, 4619–4632.
Gonzalez Benitez, J. M., Cape, J. N., Heal, M. R., Dijk, N. and Diez, A. V. (2009). Atmospheric nitrogen deposition in south-east Scotland – quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmos. Environ., 43, 4087–4094.
Gonzalez Benitez, J. M., Cape, J. N. and Heal, M. R. (2010). Gaseous and particulate water-soluble organic and inorganic nitrogen in rural air in southern Scotland. Atmos. Environ., 44, 1506–1514.
,HELCOM (2005). Airborne Nitrogen Loads to the Baltic Sea, Helsinki Commission.
Hertel, O., Christensen, J., Runge, E.et al. (1995). Development and testing of a new variable scale air-pollution model – ACDEP. Atmos. Environ., 29, 1267–1290.
Hertel, O., Ambelas Skjoth, C., Frohn, L. M.et al. (2002). Assessment of the atmospheric nitrogen and sulphur inputs into the North Sea using a Lagrangian model. Phys. Chem. Earth, B, 27, 1507–1515.
Hertel, O., Skjoth, C., Brandt, J.et al. (2003). Operational mapping of atmospheric nitrogen deposition to the Baltic Sea. Atmos. Chem. Phys., 3, 2083–2099.
Hertel, O., Skjoth, C. A., Lofstrom, P.et al. (2006). Modelling nitrogen deposition on a local scale – a review of the current state of the art. Environ. Chem., 3, 317–337.
Hertel, O., Reis, S., Ambelas Skjoth, C.et al. (2011). Nitrogen processes in the atmosphere. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.
Holmes, N. and Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles – an overview of different dispersion models available. Atmos. Environ., 40, 5902–5928.
,HTAP (UNECE Hemispheric Task Force on Atmospheric Pollutants) (2010). www. htap.org
,IPCC (2007). Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the International Panel on Climate Change, www.ipcc.ch.
Jenkin, M. E., Saunders, S. M., Wagner, V. and Pilling, M. J. (2003). Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys., 3, 181–193.
Jenkin, M., Utembe, S. and Johnson, D. (2006). The simulated speciation and distribution of oxidized organic nitrogen in the atmospheric boundary layer. In: Understanding and Quantifying the Atmospheric Nitrogen Cycle, ed. Cox, R., Fowler, D., Monks, P. and Borrell, P., pp. 130–136, ACCENT, Keele University, UK.
Johnson, D., Utembe, S. R. and Jenkin, M. E. (2006). Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK. Atmos. Chem. Phys., 6, 419–431.
Kessler, C., Brucher, W., Memmesheimer, M., Kerschgens, M. and Ebel, A. (2001). Simulation of air pollution with nested models in North Rhine-Westphalia. Atmos. Environ., 35, S3–S12.
Konovalov, I., Beekmann, M., Vautard, R.et al. (2005). Comparison and evaluation of modelled and GOME measurement derived tropospheric NO2 columns over Western and Eastern Europe. Atmos. Chem. Phys., 5, 169–190.
Konovalov, I. B., Beekmann, M., Richter, A. and Burrows, J. P. (2006). Inverse modelling of the spatial distribution of NOx emissions on a continental scale using satellite data. Atmos. Chem. and Phys., 6, 1747–1770.
Konovalov, I. B., Beekmann, M., Burrows, J. P. and Richter, A. (2008). Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions. Atmos. Chem. Phys., 8, 2623–2641.
Korhonen, H., Lehtinen, K. E. J. and Kulmala, M. (2004). Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos. Chem. Phys., 4, 757–771.
Laj, P., Klausen, J., Bilde, M.et al. (2009). Measuring atmospheric composition change. Atmos. Environ., 43, 5351–5414.
Langner, J., Andersson, C. and Engardt, M. (2009). Atmospheric input of nitrogen to the Baltic sea basin – present situation, variability due to meteorology and impact of climate change. Boreal Environ. Res., 14, 226–237.
Leue, C., Wenig, M., Wagner, T.et al. (2001). Quantitative analysis of NOx emissions from GOME satellite image sequences. J. Geophys. Res., 106, 5493–5505.
Loubet, B. and Cellier, P. (2001). Experimental assessment of atmospheric ammonia dispersion and short range dry deposition in a maize canopy. Water, Air and Soil Pollution: Focus, 1, 157–166.
Loubet, B., Cellier, P., Milford, C. and Sutton, M. A. (2006). A coupled dispersion and exchange model for short-range dry deposition of atmospheric ammonia. Quarterly Journal of the Royal Meteorological Society, 132, 1733–1763.
Loubet, B., Asman, W. A., Theobald, M. R.et al. (2009). Ammonia deposition near hot spots: processes, models and monitoring methods. In: Atmospheric Ammonia. Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 205–267, Springer, New York.
Ma, J., Richter, A., Burrows, J. P., Nuss, H. and Aardenne, J. A. (2006). Comparison of model-simulated tropospheric NO2 over China with GOME-satellite data. Atmos. Environ., 40, 593–604.
Martin, R V., Jacob, D. J., Chance, K. V.et al. (2003). Global inventory of nitrogen dioxide emissions constrained by space-based observations of NO2 columns. J. Geophys. Res., 108, 4537.
McKeen, S., Chung, S. H., Wilczak, J.et al. (2007). Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res., 112.
Monks, P., Granier, C., Fuzzi, S.et al. (2009). Atmospheric composition change – global and regional air quality. Atmos. Environ., 43, 5268–5350.
Olesen, H., Lofstrem, P., Berkowicz, R. and Jensen, A. (1992). An improved dispersion model for regulatory use – the OML model. In: Air Pollution Modelling and its Application IX, ed. Dop, H. and Kallos, G., Plenum Press, New York.
Olesen, H. R. (1995). The model validation exercise at M01: overview of results. Int. J. Environ. Pollut. 5, 761.
Pagowski, M., Grell, G., McKeen, S.et al. (2005). A simple method to improve ensemble-based ozone forecasts. Geophys. Res. Lett., 32.
Pilegaard, K., Skiba, U., Ambus, P.et al. (2005). Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences, 3, 651–661.
Pryor, S. C., Barthelmie, R. J., Sorensen, L. L.et al. (2008a). Upward fluxes of particles over forests – when, where, why?Tellus, 60, 372–380.
Pryor, S. C., Gallagher, M., Sievering, H.et al. (2008b). A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus, 60, 42–75.
Pryor, S. C., Larsen, S. E., Sorensen, L. L. and Barthelmie, R. J. (2008c). Particle fluxes above forests: Observations, methodological considerations and method comparisons. Environ. Pollut., 152, 667–678.
Rannik, U., Aalto, P., Keronen, P., Vesala, T. and Kulmala, M. (2003). Interpretation of aerosol particle fluxes over pine forest – dry deposition and random errors. J. Geophys. Res., 108, 4544.
Reis, S., Pinder, R. W., Zhang, M., Lijie, G. and Sutton, M. A. (2009). Reactive nitrogen in atmospheric emission inventories. Atmos. Chem. Phys., 9, 7657–7677.
Rendell, A. R., Ottley, C. J., Jickells, T. D. and Harrison, R. M. (1993). The atmospheric input of nitrogen species to the North Sea. Tellus B, 45, 53–63.
Riccio, A., Giunta, G. and Galmarini, S. (2007). Seeking for the rational basis of the Median Model: the optimal combination of multi-model ensemble results. Atmos. Chem. Phys., 7, 6085–6098.
Richter, A., Burrows, J. P., Nuß, H., Granier, C. and Niemeier, U. (2005). Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437, 129–132.
Robertson, L., Langner, J. and Engardt, M. (1999). An Eulerian limited-area atmospheric transport model. J. Appl. Meteorol., 38, 190–210.
Roelofs, G., Kasibhatla, P., Barrie, L.et al. (2001). Analysis of regional budgets of sulfur species modeled for the COSAM exercise. Tellus, 53B, 673–694.
Ruijgrok, W., Tieben, H. and Eisinga, P. (1997). The dry deposition of particles to forest canopy – a comparison of model and experimental results. Atmos. Environ., 31, 399–415.
Sanderson, M., Dentener, R, Fiore, A.et al. (2008). A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophys. Res. Lett., 35, L17 815, doi:10.1029/2008GL035389.
Schaap, M., Timmermans, R. M. A., Roemer, M.et al. (2008). The LOTOS-EUROS model: description, validation and latest developments. Int. J. Environ. Pollut., 32, 270–290.
Schaap, M., Vautard, R., Bergstrom, R.et al. (2010). Evaluation of long-term aerosol simulations from seven air quality models and their ensemble in the EURODELTA study (submitted).
Schlunzen, K. H. and Meyer, E. M. I. (2007). Impacts of meteorological situations and chemical reactions on daily dry deposition of nitrogen into the southern North Sea. Atmos. Environ., 41, 289–302.
Seibert, P., Beyrich, F., Gryning, S.-E.et al. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001–1027.
Seinfeld, J. and Pandis, S. (1998). Atmospheric Chemistry and Physics. From Air Pollution to Climate Change, John Wiley and Sons, New York.
Simpson, D., Tuovinen, J.-P., Emberson, L. and Ashmore, M. (2001). Characteristics of an ozone deposition module. Water, Air Soil Pollut. Focus, 1, 253–262.
Simpson, D., Fagerli, H., Jonson, J.et al. (2003). The EMEP Unified Eulerian Model – Model Description, EMEP MSC-W Report 1/2003, The Norwegian Meteorological Institute, Oslo, Norway.
Simpson, D., Butterbach-Bahl, K., Fagerli, H.et al. (2006a). Deposition and emissions of reactive nitrogen over European forests: a modelling study. Atmos. Environ., 40, 5712–5726.
Simpson, D., Fagerli, H., Hellsten, S., Knulst, J., and Westling, O. (2006b). Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe. Bio-geosciences, 3, 337–355.
Singles, R., Sutton, M. and Weston, K. (1998). A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain. Atmos. Environ., 32, 393–399.
Sliggers, S. and Kakebeeke, W. (eds.) (2004). Clearing the Air: 25 Years of the Convention on Long-Range Transboundary Air Pollution, United Nations, Economic Commission for Europe, Geneva, http://www.unece.org/env/lrtap
Smith, R., Fowler, D., Sutton, M. A., Flechard, C. and Coyle, M. (2000). Regional estimation of pollutant gas dry deposition in the UK – model description, sensitivity analyses and outputs. Atmos. Environ., 34, 3757–3777.
Sommer, S. G., and Jensen, E. S. (1991). Foliar absorption of atmospheric ammonia by ryegrass in the field. Journal of Environmental Quality, 20, 153–156.
Sportisse, B. (2007). A review of current issues in air pollution modeling and simulation. Comp. Geosci., 11, 159–181.
Stern, R., Builtjes, P., Schaap, M.et al. (2008). A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmos. Environ., 42, 4567–4588.
Sutton, M., Nemitz, E., Erisman, J.et al. (2007). Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environ. Poll., 150, 125–139.
Sutton, M. A., Milford, C., Dragosits, U.et al. (1998). Dispersion, deposition and impacts of atmospheric ammonia – quantifying local budgets and spatial variability. Environ. Pollut., 102, 349–361.
Tang, Y., Simmons, I., Dijk, N.et al. (2009). European scale application of atmospheric reactive nitrogen measurements in a low-cost approach to infer dry deposition fluxes. Agricult., Ecosyst. Environ. 133, 183–195.
Theobald, M. R., Millford, C., Hargreaves, K. J.et al. (2001). Potential for ammonia recapture by farm woodlands: design and application of a new experimental facility. 1(S2), 791–801.
Textor, C., Schulz, M., Guibert, S.et al. (2006). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6, 1777–1813.
,UNECE (2009). EMEP Draft revised monitoring strategy, http://www.unece.org/env/ documents/2009/EB/ge1/ece.eb.air.ge.1.2009.15.e.pdf
,UKNAEI (UK National Emission inventory) (2010). www. uknaei.org. uk
Aardenne, J. A., Dentener, F. J., Olivier, J. G. J., Goldewijk, C. G. M. K. and Lelieveld, J. (2001). A 1 degrees × 1 degrees resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob. Biogeochem. Cycles, 15, 909–928.
A, R. J. M., Peters, D. H. M. U., Eskes, H.et al. (2006). Detection of the trend and seasonal variation in tropospheric NO2 over ChinaJ. Geophys. Res., 111, D12317.
Jaarsveld, J. A. (2004). The Operational Priority Substances Model – Description and Validation of OPS-Pro 4.1, RIVM Report 500045001/2004, RIVM, Bilthoven, The Netherlands.
Loon, M., Roemer, M. and Builtjes, P. (2004). Model Intercomparison in the Framework of the Review of the Unified EMEP Model, TNO-report R2004/282, TNO, TNO Environment and Geosciences, Utrecht, The Netherlands, http://www.tno.nl/content.cfm? context=markten&content=publicatie&laagl=186&laag2=l&item_ id=737&Taal=2
Loon, M., Vautard, R., Schaap, M.et al. (2007). Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ., 41, 2083–2097.
Pul, A., Jaarsveld, H. V., Meulen, T. v. d. and Velders, G. (2004). Ammonia concentrations in the Netherlands – spatially detailed measurements and model calculations. Atmos. Environ., 38, 4045–4055.
Pul, A., Hertel, O., Geels, C.et al. (2009). Modelling of the atmospheric transport and deposition of ammonia at a national and regional scale. In: Atmospheric Ammonia: Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 301–358, Springer, New York.
Vautard, R., Builtjes, P., Thunis, P.et al. (2007). Evaluation and intercomparison of ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmos. Environ., 41, 173–188.
Vautard, R., Schaap, M., Bergstrom, R.et al. (2008). Skill and uncertainty of a regional air quality model ensemble. Atmos. Environ. 43, 4822–4832.
Vieno, M., Dore, A. J., Wind, P.et al. (2009). Application of the EMEP Unified Model to the UK with a horizontal resolution of 5 × 5 km2. In: Atmospheric Ammonia. Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 367–372, Springer, New York.
Vieno, M., Dore, A. J., Stevenson, D. S.et al. 2010 Modelling surface ozone during the 2003 heat wave in the UK. Atmospheric Chemistry and Physics, 110, 7963–7978.
Wayne, R., Barnes, I., Biggs, P.et al. (1991). The nitrate radical: physics, chemistry, and the atmosphere. Atmos. Environ. 25A, 1–203.
Zhang, L., Gong, S., Padro, J. and Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ., 35, 549–560.
Zhang, L., Vet, R., O'Brien, J. M.et al. (2009). Dry deposition of individual nitrogen species at eight Canadian rural sites. J. Geophys. Res., 114, D02301.