Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: August 2009

13 - Applications of electrochromic devices

Summary

Introduction

While the applications of electrochromism are ever growing, all devices utilising electrochromic colour modulation fall within two broad, overlapping categories according to the mode of operation: electrochromic devices (ECDs) operating by transmission (see schematic in Figure 13.1) or by reflection (see the schematic representation in Figure 13.2).

Several thousand patents have been filed to describe various electrochromic species and devices deemed worthy of commercial exploitation, so the field is vast. Much duplication is certain in such patents, but it is clear how large scale are the investments directed toward implementing electrochromism as viable in displays or light modulation. In this field, vital details of compositions are often well hidden, as these comprise the valued intellectual property rights on which substantial financial considerations rest.

The most common applications are electrochromic mirrors and windows, as below. These and other applications are reviewed at length by Lampert (1998), who cites all the principal manufacturers of electrochromic goods worldwide, and also several novel applications.

Reflective electrochromic devices: electrochromic car mirrors

Mirrors, which obviously operate in a reflectance mode, illustrate the first application of electrochromism (cf. Figure 13.2). Self-darkening electrochromic mirrors, for automotive use at night, disallow the lights of following vehicles to dazzle by reflection from the driver's or the door mirror. Here an optically absorbing electrochromic colour is evoked over the reflecting surface, reducing reflection intensity and thereby alleviating driver discomfort. However, total opacity is to be avoided as muted reflection must persist in the darkened state.

References
Lampert, C. M.Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells, 52, 1998, 207–21.
Bange, K. and Gambke, T.Electrochromic materials for optical switching devices. Adv. Mater., 2, 1992, 10–16.
Byker, H. J., Gentex Corporation. Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein and uses thereof. US Patent 4,902,108, 1990.
[Online] at www.gentex.com/auto_how_nvs_work.html (accessed 6 September 2005).
Byker, H. J.Commercial developments in electrochromics. Proc. Electrochem. Soc., 94–2, 1994, 1–13.
Schierbeck, K. L., Donnelly Corporation. Digital electrochromic mirror system. US Patent 06089721, 2000.
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Rivista della Staz. Sper. Vetro, 6, 1986, 119–22.
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Sol. Energy Mater, 16, 1987, 67–77.
Baucke, F. G. K.Reflecting electrochromic devices – construction, operation and application. Proc. Electrochem. Soc., 20–4, 1990, 298–311.
Baucke, F. G. K., Bange, K. and Gambke, T.Reflecting electrochromic devices. Displays, 9, 1988, 179–87.
Baucke, F. G. K.Beat the dazzlers. Schott Information, 1, 1983, 11–13.
Gentex announces new Intelligent high-beam headlamp control technology: miniature camera to control vehicle high beams. Machine Vision Online, 2004.
Gesheva, K., Ivanova, T. and Hamelmann, F.Optical coatings of CVD-transition metal oxides as functional layers in ‘smart windows’ and X-ray mirrors. J. Optoelectronics Adv. Mater., 7, 2005, 1243–52.
Svensson, J. S. E. M. and Granqvist, C. G.Electrochromic coatings for ‘smart windows’. Sol. Energy Mater., 12, 1985, 391–402.
[Online] at www.bfrc.org/Technical_Publications-Thermal_definitions.htm (accessed 6 September 2005).
[Online] at home.howstuffworks.com/smart-window.htm and home.howstuffworks.com/smart-window2.htm (accessed 6 September 2005).
Granqvist, C. G., Azens, A., Isidorsson, J., Kharrazi, M., Kullman, L., Lindstrom, T., Niklasson, G. A., Ribbing, C.-G., Rönnow, D., Strømme Mattson, M. and Veszelei, M.Towards the smart window: progress in electrochromics. J. Non-Cryst. Solids, 218, 1997, 273–9.
Rauh, R. D.Electrochromic windows: an overview. Electrochim. Acta, 44, 1999, 3165–76.
Bell, J. M., Skryabin, I. L., Matthews, J. P. and Matthews, J. P. Windows. In Schwartz, M. (ed.), Encyclopedia of Smart Materials, New York, Wiley, 2002, vol. 2, pp. 1134–45.
Azens, A. and Granqvist, C. G.Electrochromic smart windows: energy efficiency. J. Solid State Electrochem., 7, 2003, 64–8.
Mbise, G. W., Bellac, D., Niklasson, G. A. and Granqvist, C. G.Angular selective window coatings: theory and experiments. J. Phys. D., 30, 1997, 2103–22.
Demiryont, H.A review on electrochromic devices for automotive glazing. Proc. SPIE, 1536, 1991, 2–28.
[Online] at eetd.lbl.gov/EA/mills/Lab2Mkt/Windows.html (accessed 6 September 2005).
Lee, E. S. and DiBartolomeo, D. L.Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater. Sol. Cells, 71, 2002, 465–91.
Harary, J. M. Automated window shading, available [online] at www.earthtoys.com/emagazine.php?issue_number = 02.09.01&article = harary (accessed 6 September 2005).
[Online] at www.consumerenergycenter.org/homeandwork/homes/inside/windows/future.html (accessed 6 September 2005).
Griffiths, P., Eames, P., Lo, S. and Norton, B.Energy and environmental life-cycle analysis of advanced windows. Renewable Energy, 8, 1996, 219–22.
Syrrakou, E., Papaefthimiou, S. and Yianoulis, P.Environmental assessment of electrochromic glazing production. Sol. Energy Mater. Sol. Cells, 85, 2005, 205–40.
[Online] at www.nrel.gov/buildings/windows/producers.html (accessed 6 September 2005).
[Online] at www.sage-ec.com/pages/technol.html (accessed 6 September 2005).
[Online] at www.chem.ufl.edu/∼reynolds (accessed 19 June 2007).
[Online] at www.nrel.gov/buildings/windows.html (accessed 6 September 2005).
[Online] at www.rjfalkner.com/page.cfm?pageid=2241 (accessed 2 April 2006).
[Online] at http://windows.lbl.gov/materials/Chromogenics/ec_radiance/ simulations.html (accessed 6 September 2005).
[Online] at www.saint-gobain-recherche.com/anglais/index.htm (accessed 6 September 2005).
[Online] at www.chromogenics.se/index_eng.htm (accessed 5 September 2005).
Azens, A., Gustavsson, G., Karmhag, R. and Granqvist, C. G.Electrochromic devices on polyester foil. Solid State Ionics, 165, 2003, 1–5.
Buyan, M., Brühwiler, P. A., Azens, A., Gustavsson, G., Karmhag, R. and Granqvist, C. G.Facial warming and tinted helmet visors. Int. J. Ind. Ergonomics, 36, 2006, 11–16.
Zinzi, M.Office worker preferences of electrochromic windows: a pilot study. Buildings and Environment, 41, 2005, 1262–73.
Siddle, J., Pilkington PLC, personal communication, 1991.
Munro, B., Kramer, S., Zapp, P., Krug, H. and Schmidt, H.All sol–gel electrochromic system for plate glass. J. Non-Cryst. Solids, 218, 1997, 185–8.
Rottkay, K., Ozer, N., Rubin, M. and Richardson, T.Analysis of binary electrochromic tungsten oxides with effective medium theory. Thin Solid Films, 308–309, 1997, 50–5.
Fang, G. J., Yao, K.-L. and Liu, Z.-L.Fabrication and electrochromic properties of double layer WO3(V)/V2O5(Ti) thin films prepared by pulsed laser ablation technique. Thin Solid Films, 394, 2001, 63–70.
Mathew, J. G. H., Sapers, S. P., Cumbo, M. J., O'Brien, N. A., Sargent, R. B., Raksha, V. P., Lahaderne, R. B. and Hichwa, B. P.Large area electrochromics for architectural applications. J. Non-Cryst. Solids, 218, 1997, 342–6.
Rougier, A., Blyr, A., Garcia, J., Zhang, Q. and Impey, S. A.Electrochromic W–M–O (M = V, Nb) sol–gel thin films: a way to neutral colour. Sol. Energy Mater. Sol. Cells, 71, 2002, 343–57.
Bell, J. M., Barczynska, J., Evans, L. A., MacDonald, K. A., Wang, J., Green, D. C. and Smith, G. B.Electrochromism in sol–gel deposited TiO2 films. Proc. SPIE, 2255, 1994, 324–31.
Gao, W., Lee, S.-H., Benson, D. K. and Branz, H. M.Novel electrochromic projection and writing device incorporating an amorphous silicon carbide photodiode. J. Non-Cryst. Solids, 266–9, 2000, 1233–7.
Impey, S. A., Garcia-Miguel, J. L., Allen, S., Blyr, A., Bouessay, I. and Rougier, A.Colour neutrality for thin oxide films from pulsed laser deposition and sol–gel. Proc. Electrochem. Soc., 2003–17, 2003, 103–18.
Klein, J. D., Yen, A., Rauh, R. D. and Causon, S. L.Near-infrared electrochromism in LixC60 films. Appl. Phys. Lett., 63, 1993, 599–601.
Kulak, A. I., Kokorin, A. I., Meissner, D., Ralchenko, V. G., Vlasou, I. I., Kondratyuk, A. V. and Kulak, T. I.Electrodeposition of nanostructured diamond-like films by oxidation of lithium acetylide. Electrochem. Commun., 5, 2003, 301–5.
Richardson, T. J.New electrochromic mirror systems. Solid State Ionics, 165, 2003, 305–8.
Manevich, R. M. L., Shamritskaya, I. G., Sokolova, L. A. and Kolotyrkin, Y. M.The electroreflection spectra of anodically oxidized iridium and adsorption of water. Russ. J. Electrochem., 32, 1996, 1237–44.
Rönnow, D., Kullman, L. and Granqvist, C. G.Spectroscopic light scattering from electrochromic tungsten-oxide-based films. J. Appl. Phys., 80, 1996, 423–30.
Goldner, R. B., Mendelsohn, D. H., Alexander, J., Henderson, W. R., Fitzpatrick, D., Haas, T. E., Sample, H. H., Rauh, R. D., Parker, M. A. and Rose, T. L.High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films. Appl. Phys. Lett., 43, 1983, 1093–5.
Otero, T. F. and Bengoechea, M.In situ absorption-reflection study of polypyrrole composites – switching stability. Electrochim. Acta, 41, 1996, 1871–6.
Pages, H., Topart, P. and Lemordant, D.Wide band electrochromic displays based on thin conducting polymer films. Electrochim. Acta, 46, 2001, 2137–43.
Schlotter, P.High contrast electrochromic tungsten oxide layers. Sol. Energy Mater. Sol. Cells, 16, 1987, 39–46.
[Online] at www.chemsoc.org/chembytes/ezine/2002/ashton_jun02.htm (accessed 16 March 2006).
[Online] at www.Gentex.com (accessed 29 March 2006).
[Online] at www.ppg.com/gls_ppgglass/aircraft/22779.pdf (accessed 29 March 2006).
[Online] at www.nikon.co.jp/main/eng/portfolio/about/history/ corporate_history.htm (accessed 6 September 2005).
Taylor, D. J., Cronin, J. P., Allard, L. F. and Birnie, D. P.Microstructure of laser-fired, sol–gel-derived tungsten oxide films. Chem, Mater., 8, 1996, 1396–401.
Agnihotry, S. A., Saini, K. K. and Chandra, S.Physics and technology of thin film electrochromic displays, part I: physicochemical properties. Ind. J. Pure Appl. Phys., 24, 1986, 19–33.
Agnihotry, S. A., Saini, K. K. and Chandra, S.Physics and technology of thin film electrochromic displays, part II: device technology. Ind. J. Pure Appl. Phys., 24, 1986, 34–40.
Faughnan, B. W. and Crandall, R. S. Electrochromic devices based on WO3. In Pankove, J. L. (ed.), Display Devices, Berlin, Springer-Verlag, 1980, pp. 181–211.
[Online] at www.elecdesign.com/Articles/ArticleID/15783/15783.html (accessed 19 June 2007).
Byker, H. J.Electrochromics and polymers. Electrochim. Acta, 46, 2001, 2015–22.
[Online] at www.napa.ufl. edu/2001news/colors.htm (accessed 6 September 2005).
Tadashi, N. Cash card having electrochromic indicator. Japanese Patent, JP 59,197,980, 1984.
[Online] at www.mobileread.com/forums/showthread.php?threadid = 3375 (accessed 27 January 2006).
Schoot, C. J., Ponjeé, J. J., Dam, H. T., Doorn, R. A. and Bolwijn, P. J.New electrochromic memory device. Appl. Phys. Lett., 23, 1973, 64–5.
[Online] at www.moonwatch.com/article.html (accessed 6 September 2005. The webpage comprises a journalistic account entitled ‘The Moonwatch story’.).
Ando, E., Kawakami, K., Matsuhiro, K. and Masuda, Y.Performance of amorphous-WO3/LiClO4–PC electrochromic displays. Displays, 6, 1985, 3–10.
Kaneko, N., Tabata, J. and Miyoshi, T.Electrochromic device watch display. SID Int. Symp. Digest, 12, 1981, 74–5.
Schoot, C. J., Bolwijn, P. T., Dam, H. T., Doorn, R. A., Ponjeé, J. J. and Houten, G.Elektrochrome Anzeige mit Speichereigenschaften (Electrochrome displays with storage properties: construction and functioning of storage-type electrochrome cell), Elektronikpraxis, 10, 1975, 11–14 [in German].
Barclay, D. J. and Martin, D. H. Electrochromic displays. in Howells, E. R. (ed.), Technology of Chemicals and Materials for the Electronics Industry, Chichester, Ellis Horwood, 1984, 266–76.
Advanced electrochromic displays find markets. Printed Electronics Review, 2005; available [online] at www.idtechex.com/printelecreview/en/articles/00000149.asp (accessed 14 September 2005).
Freeman, W., Rosseinsky, D., Jiang, H. and Soutar, A., Finisar Corporation. Control systems for electrochromic devices. US Patent 6,940,627 B2, 2005.
Talmay, P. US Patent 2,319,765, 1943; as cited in Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995.
Talmay, P. US Patent 2,281,013, 1942; as cited in Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995.
Mortimer, R. J. and Warren, C. P.Cyclic voltammetric studies of Prussian blue and viologens within a paper matrix for electrochromic printing applications. J. Electroanal. Chem., 460, 1999, 263–6.
Rosseinsky, D. R. and Monk, J. L.Thin layer electrochemistry in a paper matrix: electrochromography of Prussian blue and two bipyridilium systems. J. Electroanal. Chem., 270, 1989, 473–8.
Balanson, R. D., Corker, G. A. and Grant, B. D.IBM Technical Disclosure Bulletin, 26, 1983, 2930, as cited in ref. 75.
Monk, P. M. S., Delage, F. and Costa Vieira, S. M.Electrochromic paper: utility of electrochromes incorporated in paper. Electrochim. Acta, 46, 2001, 2195–202.
Monk, P. M. S., Turner, C. and Akhtar, S. P.Electrochemical behaviour of methyl viologen in a matrix of paper. Electrochim. Acta, 44, 1999, 4817–26.
John, S. A. and Ramaraj, R.Electrochemical, in situ spectrocyclic voltammetric and electrochromic studies of phenosafranine in Nafion® film. J. Electroanal. Chem., 424, 1997, 49–59.
Ganesan, V., John, S. A. and Ramaraj, R.Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion® film. J. Electroanal. Chem., 502, 2001, 167–73.
[Online] at www.ntera.ie/nano.pdf (accessed 27 January 2006).
Shimizu, Y. and Furuta, Y.An opto-electrochemical phosphate-ion sensor using a cobalt-oxide thin-film electrode. Solid State Ionics, 113–15, 1998, 241–5.
Shimizu, Y., Furuta, Y. and Yamashita, T.Optical phosphate-ion sensor based on electrochromism of metal-oxide thin-film electrode. Trans. Inst. Elect. Eng. Jpn., 119, 1999, 285–9.
Talaie, A., Lee, J. Y., Lee, Y. K., Jang, J., Romagnoli, J. A., Taguchi, T. and Maeder, E.Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices. Thin Solid Films, 363, 2000, 163–6.
James, S. A., Ray, A. K., Thorpe, S. C. and Cook, M. J.Thermopower of copper tetra(4-tert-butyl)phthalocyanine Langmuir–Blodgett films. Thin Solid Films, 226, 1993, 3–5.
Wright, J. D., Roisin, P., Rigby, G. R., Nolte, R. J. M., Cook, M. J. and Thorpe, S. C.Crowned and liquid-crystalline phthalocyanines as gas-sensor materials. Sens. Actuators, B13, 1993, 276–80.
Cole, A., McIlroy, R. J., Thorpe, S. C., Cook, M. J., McMurdo, J. and Ray, A. K.Substituted phthalocyanine gas sensors. Sens. Actuators, B13–14, 1993, 416–19.
Ray, A. K., Mukhopadhyay, S. and Cook, M. J.Hopping conduction in Langmuir–Blodgett films of amphiphilic phthalocyanine molecules. Thin Solid Films, 229, 1993, 8–10.
Crouch, D., Thorpe, S. C., Cook, M. J., Chambrier, I. and Ray, A. K.Langmuir–Blodgett films of an asymmetrically substituted phthalocyanine: improved gas-sensing properties. Sens. Actuators, B18–19, 1994, 411–14.
Lukas, B., Silver, J., Lovett, D. R. and Cook, M. J.Electrochromism in the octapentyloxy nickel phthalocyanines and related phthalocyanines. Chem. Phys. Lett., 241, 1995, 351–4.
Baker, P. S., Petty, M. C., Monkman, A. P., McMurdo, J., Cook, M. J. and Pride, R.A hybrid phthalocyanine/silicon field-effect transistor sensor for NO2. Thin Solid Films, 285, 1996, 94–7.
Azens, A., Kullman, L. and Granqvist, C. G.Ozone coloration of Ni and Cr oxide films. Sol. Energy Mater. Sol. Cells, 76, 2003, 147–53.
Yahaya, M. B., Salleh, M. M. and Yusoff, N. Y. N.Electrochromic sensor using porphyrin thin films to detect chlorine. Proc. SPIE, 5276, 2004, 422–7.
Schiffrin, D. J. New Applications of Electrochromism: Displays, Light Modulation and Printing Meeting, Scientific Societies Lecture Hall, London, 3 April 1991, presentation.
Schweiger, D., Georg, A., Graf, W. and Wittwer, V.Examination of the kinetics and performance of a catalytically switching (gasochromic) device. Sol. Energy Mater. Sol. Cells, 54, 1998, 99–108.
Georg, A., Graf, W., Neumann, R. and Wittwer, V.The role of water in gasochromic WO3 films. Thin Solid Films, 384, 2001, 269–75.
Georg, A., Graf, W., Neumann, R. and Wittwer, V.Stability of gasochromic WO3 films. Sol. Energy Mater. Sol. Cells, 63, 2000, 165–76.
Opara Krašovec, U., Orel, B., Georg, A. and Wittwer, V.The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst. Sol. Energy, 68, 2000, 541–51.
Shanak, H., Schmitt, H., Nowoczin, J. and Ziebert, C.Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations. Solid State Ionics, 171, 2004, 99–106.
Georg, A., Graf, W., Neumann, R. and Wittwer, V.Mechanism of the gasochromic coloration of porous WO3 films. Solid State Ionics, 127, 2000, 319–28.
Salinga, C., Weis, H. and Wuttig, M.Gasochromic switching of tungsten oxide films: a correlation between film properties and coloration kinetics. Thin Solid Films, 414, 2002, 288–95.
Wittwer, V., Datz, M., Ell, J., Georg, A., Graf, W. and Walze, G.Gasochromic windows. Sol. Energy Mater. Sol. Cells, 84, 2004, 305–14.
Shaver, P.Activated tungsten oxide gas detectors. Appl. Phys. Lett, 11, 1967, 255–7.
Dwyer, D. G.Surface chemistry of gas sensors: H2S on WO3 films. Sens. Actuators, B5, 1991, 155–9.
Solis, J. L., Saukko, S., Kish, L., Granqvist, C. G. and Lantto, V.Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films, 391, 2001, 255–60.
Solis, J. L., Saukko, S., Kish, L. B., Granqvist, C. G. and Lantto, V.Nanocrystalline tungsten oxide thick-films with high sensitivity to H2S at room temperature. Sens. Actuators, B77, 2001, 316–21.
Heszler, P., Reyes, L. F., Hoel, A., Landstrome, L., Lantto, V. and Granqvist, C. G.Nanoparticle films made by gas phase synthesis: comparison of various techniques and sensor applications. Proc. SPIE, 5055, 2003, 106–19.
Tomchenko, A. A., Emelianov, I. L. and Khatko, V. V.Tungsten trioxide-based thick-film NO sensor: design and investigation. Sens. Actuators, B57, 1999, 166–70.
Tomchenko, A. A., Khatko, V. V. and Emelianov, I. L.WO3 thick-film gas sensors. Sens. Actuators, B46, 1998, 8–14.
Ho, J.-J.Novel nitrogen monoxide (NO) gas sensors integrated with tungsten trioxide (WO3)/pin structure for room temperature operation. Solid State Electronics, 47, 2003, 827–30.
Khatko, V., Guirado, F., Hubalek, J., Llobet, E. and Correig, Z.X-Ray investigation of nanopowder WO3 thick films. Physica Status Solidi, 202, 2005, 1973–9.
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995.
Pantaloni, S., Passerini, S. and Scrosati, B.Solid state thermoelectrochromic device. J. Electrochem. Soc., 134, 1987, 753–75.
Colley, R. A., Budd, P. M., Owen, J. R. and Balderson, S.Poly[oxymethylene-oligo(oxyethylene)] for use in subambient temperature electrochromic devices. Polym. Int., 49, 2000, 371–6.
Bailey, J. C. Eveready Battery Company. Electrochromic thin film state-of-charge detector for on-the-cell application. US Patent 05458992, 1995.
Kojima, K. and Terao, M.Proposal of a multi-information-layer electrically selectable optical disk (ESD) using the same optics as DVD. Proc. SPIE, 5069, 2003, 300–5.
[Online] at www.nttc.edu/resources/funding/awards/dod/1998sbir/982army.asp (accessed 6 September 2005).
Brace, K., Hayden, B. E., Russell, K. E. and Owen, J. R.A parallel optical screen for the rapid combinatorial analysis of electrochemical materials. Adv. Mater., 18, 2006, 3253–70.