Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: March 2016

14 - Determinants of isotopic variation in two sympatric mouse lemur species from northwestern Madagascar

from Part III - Cheirogaleidae: behavior and ecology



Malagasy habitats undergo vast seasonal changes in temperature and rainfall regimes, which in turn strongly influence the biology and life history of their inhabitants (Wright, 1999). The western dry deciduous forests show a yearly alternation between a distinct dry season and a hot and humid rainy season (Jury, 2003). Correspondingly, the phenology of dry forest trees – i.e., the availability of leaves, flowers and fruits – changes substantially over the course of a year (Sorg and Rohner, 1996; Thorén et al., 2011). As a result, plant food resources are not available evenly throughout the yearly cycle, and a relatively resource-poor dry season can be distinguished from a relatively resource-rich rainy season (Hladik et al., 1980).

The length of both seasons varies across Madagascar due to a geographical gradient in minimal temperatures and annual rainfall. Adaptive responses of lemurs to this environmental seasonality include seasonal changes in general activity (Schmid and Kappeler, 1998; Wright, 1999; Dausmann et al., 2004), shelter usage pattern (Ramanankirahina et al., 2012), body mass (Hladik et al., 1980; Schmid and Kappeler, 1998; Atsalis, 1999; Randrianambinina et al., 2003), reproduction (Hladik et al., 1980; Wright, 1999), and feeding regime (Hladik et al., 1980; Thorén et al., 2011). It is known, for example, that diademed sifakas (Propithecus diadema) shift their diet from fruits and seeds to non-fruit foods, such as leaves and flowers, and decrease food ingestion and general feeding time during the dry season (Irwin et al., 2014). This ability to flexibly change behavior or resource usage patterns in view of certain environmental changes is the result of adaptive plasticity (Nussey et al., 2007). Adaptive plasticity in seasonal feeding regimes can be expected to be highest in omnivorous species that can, in principle, switch between different sources of energy and protein by consuming different food plant species or varying the proportion of animal prey in the diet. Moreover, omnivores can consume different parts, such as fruits and gums, of the same food plant species according to the availability of these items.

Mouse lemurs (Microcebus spp.) are a genus of omnivorous, solitary foragers that can be found in all Malagasy forest types. Twenty-one mouse lemur species have been described so far (Mittermeier et al., 2010; Radespiel et al., 2012; Rasoloarison et al., 2013). Coexistence of two species has been recorded in forests across the island.

Related content

Powered by UNSILO
Adams, MA, Grierson, PF. 2001. Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biology 3:299–310.
Ambrose, SH. 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science 18:293–317.
Amundson, R, Austin, AT, Schuur, EAG, et al. 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17:1031.
Atsalis, S. 1999. Seasonal fluctuations in body fat and activity levels in a rain-forest species of mouse lemur, Microcebus rufus. International Journal of Primatology 20:883–910.
Badeck, F-W, Tcherkez, G, Nogués, S, Piel, C, Ghashghaie, J. 2005. Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Communications in Mass Spectrometry 19:1381–1391.
Ben-David, M, Flynn, RW, Schell, DM. 1997. Annual and seasonal changes in diets of martens: evidence from stable isotope analysis. Oecologia 111:280–291.
Caut, S, Angulo, E, Courchamp, F. 2008. Discrimination factors (δ15N and δ13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology 22(2):255–263.
Cerling, TE, Hart, JA, Hart, TB. 2004. Stable isotope ecology in the Ituri Forest. Oecologia 138:5–12.
Cernusak, LA, Tcherkez, G, Keitel, C, et al. 2009. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology 36:199–213.
Chanu, L, Goetze, D, Rajeriarison, C, et al. 2012. Can differences in floristic composition explain variation in the abundance of two sympatric mouse lemur species (Microcebus) in the Ankarafantsika National Park, northwestern Madagascar?Malagasy Nature 6:83–102.
Codron, J, Codron, D, Lee-Thorp, JA, et al. , R. 2005. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science 32:1757–1772.
Crowley, BE, Thorén, S, Rasoazanabary, E, et al. 2011. Explaining geographical variation in the isotope composition of mouse lemurs (Microcebus). Journal of Biogeography 38:2106–2121.
Crowley, BE, McGoogan, KC, Lehman, SM. 2012. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest. PLoS ONE 7(9):e44538.
Crowley, BE, Blanco, MB, Arrigo-Nelson, SJ, Irwin, MT. 2013. Stable isotopes document resource partitioning and effects of forest disturbance on sympatric cheirogaleid lemurs. Naturwissenschaften 100:943–956
Crowley, BE, Rasoazanabary, E, Godfrey, LR. 2014. Stable isotopes complement focal individual observations and confirm dietary variability in reddish–gray mouse lemurs (Microcebus griseorufus) from southwestern Madagascar. American Journal of Physical Anthropology 155:77–90.
Dammhahn, M, Kappeler, PM. 2005. Social system of Microcebus berthae, the world's smallest primate. International Journal of Primatology 26:407–435.
Dammhahn, M, Kappeler, PM. 2008a. Comparative feeding ecology of sympatric Microcebus berthae and M. murinus. International Journal of Primatology 29:1567–1589.
Dammhahn, M, Kappeler, PM. 2008b. Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment. Oecologia 157:473–483.
Dammhahn, M, Kappeler, PM. 2010. Scramble or contest competition over food in solitarily foraging mouse lemurs (Microcebus spp.): New insights from stable isotopes. American Journal of Physical Anthropology 141:181–189.
Dammhahn, M, Kappeler, PM. 2014. Stable isotope analyses reveal dense trophic species packing and clear niche differentiation in a Malagasy primate community. American Journal of Physical Anthropology 153:249–259.
Dausmann, KH, Glos, J, Ganzhorn, JU, Heldmaier, G. 2004. Physiology: hibernation in a tropical primate. Nature 429:825–826.
DeNiro, MJ, Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495–506.
DeNiro, MJ, Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45:341–351.
Donovan, LA, Ehleringer, JR. 1992. Contrasting water-use patterns among size and life history classes of a semiarid shrub. Functional Ecology 6:482–488.
Ehleringer, JR, Lin, ZF, Field, CB, Sun, GC, Kuo, CY. 1987. Leaf carbon isotope ratios of plants from a subtropical monsoon forest. Oecologia 72:109–114
Eichmueller, P, Thorén, S, Radespiel, U. 2013. The lack of female dominance in golden-brown mouse lemurs suggests alternative routes in lemur social evolution. American Journal of Physical Anthropology 150:158–164.
Evans, RD. 2007. Soil nitrogen isotope composition. In Michener, RM, Lajtha, K (eds.), Stable Isotopes in Ecology and Environmental Science (pp. 83–98). Blackwell Publishing Ltd, Oxford.
Génin, F. 2003. Female dominance in competition for gum trees in the grey mouse lemur Microcebus murinus. Revue d'Écologie 58:14.
Génin, F. 2008. Life in unpredictable environments: first investigation of the natural history of Microcebus griseorufus. International Journal of Primatology 29(2):303–321.
Gligor, M, Ganzhorn, JU, Rakotondravony, D, et al. 2009. Hybridization between mouse lemurs in an ecological transition zone in southern Madagascar. Molecular Ecology 18:520–33.
Handley, LL, Austin, AT, Stewart, GR, et al. 1999. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Functional Plant Biology 26:185–199.
Heaton, TH. 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. Journal of Archaeological Science 26:637–649.
Hladik, CM, Charles-Dominique, P, Petter, J-J. 1980. Feeding strategies of five nocturnal prosimians in the dry forest of the west coast of Madagascar. In Charles-Dominique, P, Cooper, HM, Hladik, A, et al. (eds.), Nocturnal Malagasy Primates: Ecology, Physiology, and Behavior (pp. 41–73). Academic Press, New York.
Hobson, KA. 1995. Reconstructing avian diets using stable-carbon and nitrogen isotope analysis of egg components: patterns of isotopic fractionation and turnover. Condor 97:752–762.
Hutchinson, GE. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415–427.
Irwin, MT, Raharison, JL, Raubenheimer, D, Chapman, CA, Rothman, JM. 2014. Nutritional correlates of the “lean season”: effects of seasonality and frugivory on the nutritional ecology of diademed sifakas. American Journal of Physical Anthropology 153:78–91.
Jury, MR. 2003. The climate of Madagascar. In Goodman, SM, Benstead, JP (eds.), The Natural History of Madagascar (pp. 75–87). University of Chicago Press, Chicago.
Kelly, JF. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78:1–27.
Lahann, P. 2006. Feeding ecology and seed dispersal of sympatric cheirogaleid lemurs (Microcebus murinus, Cheirogaleus medius, Cheirogaleus major) in the littoral rainforest of south-east Madagascar. Journal of Zoology 271:88–98.
Marshall, JD, Brooks, JR, Lajtha, K. 2007. Sources of variation in the stable isotopic composition of plants. In Michener, RM, Lajtha, K (eds.), Stable Isotopes in Ecology and Environmental Science (pp. 22–60). Wiley-Blackwell, Boston.
Meusel, C. 2009. Vergleichende Untersuchung zum saisonalen Nahrungsspektrum von zwei sympatrischen und allopatrischen Mausmakiarten (Microcebus murinus, M. ravelobensis) – Ergebnisse von Kotanalysen. BSc dissertation, Gottfried Wilhelm Leibniz Universität, Hannover.
Mittermeier, RA, Louis, EE, Richardson, MS, et al. 2010. Lemurs of Madagascar. Conservation International, Arlington.
Murray, AP, Edwards, D, Hope, JM, et al. 1998. Carbon isotope biogeochemistry of plant resins and derived hydrocarbons. Organic Geochemistry 29:1199–1214.
Muzuka, ANN. 1999. Isotopic compositions of tropical East African flora and their potential as source indicators of organic matter in coastal marine sediments. Journal of African Earth Sciences 28:757–766.
Nussey, DH, Wilson, AJ, Brommer, JE. 2007. The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology 20:831–844.
Nussinovitch, A. 2010. Plant Gum Exudates of the World: Sources, Distribution, Properties, and Applications. CRC Press, Boca Raton.
O'Leary, M. 1981. Carbon isotope fractionation in plants. Phytochemistry 20:553–567.
Popa-Lisseanu, AG, Delgado-Huertas, A, Forero, MG, et al. 2007. Bats' conquest of a formidable foraging niche: the myriads of nocturnally migrating songbirds. PLoS ONE 2:e205.
Porter, LM, Garber, PA, Nacimento, E. 2009. Exudates as a fallback food for Callimico goeldii. American Journal of Primatology 71:120–129.
Radespiel, U, Zimmermann, E. 2001. Female dominance in captive gray mouse lemurs (Microcebus murinus). American Journal of Primatology 54:181–192.
Radespiel, U, Sarikaya, Z, Zimmermann, E, Bruford, MW. 2001. Sociogenetic structure in a free-living nocturnal primate population: sex-specific differences in the grey mouse lemur (Microcebus murinus). Behavioral Ecology and Sociobiology 50:493–502.
Radespiel, U, Lutermann, H, Schmelting, B, Bruford, MW, Zimmermann, E. 2003. Patterns and dynamics of sex-biased dispersal in a nocturnal primate, the grey mouse lemur, Microcebus murinus.Animal Behaviour 65:709–719.
Radespiel, U, Reimann, W, Rahelinirina, M, Zimmermann, E. 2006. Feeding ecology of sympatric mouse lemur species in northwestern Madagascar. International Journal of Primatology 27:311–321.
Radespiel, U, Jurić, M, Zimmerman, E. 2009. Sociogenetic structures, dispersal and the risk of inbreeding in a small nocturnal lemur, the golden-brown mouse lemur (Microcebus ravelobensis). Behaviour 146:607–628.
Radespiel, U, Ratsimbazafy, J, Rasoloharijaona, S, et al. 2012. First indications of a highland specialist among mouse lemurs (Microcebus spp.) and evidence for a new mouse lemur species from eastern Madagascar. Primates 53:157–170.
Rakotondravony, R, Radespiel, U. 2009. Varying patterns of coexistence of two mouse lemur species (Microcebus ravelobensis and M. murinus) in a heterogeneous landscape. American Journal of Primatology 71:928–938.
Rakotondranary, S, Ratovonamana, YR, Ganzhorn, J. 2010. Distributions et caractéristiques des microhabitats de Microcebus griseorufus (Cheirogaleidae) dans le Parc National de Tsimanampetsotsa (Sud-ouest de Madagascar). Malagasy Nature 4:55–64.
Rakotondranary, SJ, Struck, U, Knoblauch, C, Ganzhorn, JU. 2011. Regional, seasonal and interspecific variation in 15N and 13C in sympatric mouse lemurs. Naturwissenschaften 98:909–917.
Ramanankirahina, R, Joly, M, Zimmermann, E. 2012. Seasonal effects on sleeping site ecology in a nocturnal pair-living lemur (Avahi occidentalis). International Journal of Primatology 33:428–439.
Randrianambinina, B, Rakotondravony, D, Radespiel, U, Zimmermann, E. 2003. Seasonal changes in general activity, body mass and reproduction of two small nocturnal primates: a comparison of the golden brown mouse lemur (Microcebus ravelobensis) in Northwestern Madagascar and the brown mouse lemur (Microcebus rufus) in Eastern Madagascar. Primates 44:321–331.
Rasoloarison, RM, Weisrock, DW, Yoder, AD, Rakotondravony, D, Kappeler, PM. 2013. Two new species of mouse lemurs (Cheirogaleidae: Microcebus) from eastern Madagascar. International Journal of Primatology 34:455–469.
Rau, G, Sweeney, R, Kaplan, I, Mearns, A, Young, D. 1981. Differences in animal 13C, 15N and D abundance between a polluted and an unpolluted coastal site: likely indicators of sewage uptake by a marine food web. Estuarine, Coastal and Shelf Science 13:701–707.
Rendigs, A, Radespiel, U, Wrogemann, D, Zimmermann, E. 2003. Relationship between microhabitat structure and distribution of mouse lemurs (Microcebus spp.) in northwestern Madagascar. International Journal of Primatology 24:47–64.
Schmelting, B. 2000. Saisonale Aktivität und Reproduktionsbiologie von Grauen Mausmaki-Männchen (Microcebus murinus, J.F. Miller 1777) in Nordwest-Madagaskar. Dissertation, University of Veterinary Medicine, Hannover.
Schmid, J, Kappeler, PM. 1998. Fluctuating sexual dimorphism and differential hibernation by sex in a primate, the gray mouse lemur (Microcebus murinus). Behavioral Ecology and Sociobiology 43:125–132.
Schmidt, O, Curry, JP, Dyckmans, J, Rota, E, Scrimgeour, CM. 2004. Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia 48:171–180.
Schmidt, S, Stewart, GR. 2003. d15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134: 569–577.
Sehen, L, Goetze, D, Rajeriarison, C, et al. 2010. Structural and floristic traits of habitats with differing relative abundance of the lemurs Microcebus murinus and M. ravelobensis in northwestern Madagascar. Ecotropica 16:15–30.
Sorg, J, Rohner, U. 1996. Climate and tree phenology of the dry deciduous forest of the Kirindy Forest. Primate Report 46:57–80.
Swap, RJ, Aranibar, JN, Dowty, PR, Gilhooly, WP, Macko, SA. 2004. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biology 10:350–358.
Szepanski, MM, Ben-David, M, Ballenberghe, V Van. 1999. Assessment of anadromous salmon resources in the diet of the Alexander Archipelago wolf using stable isotope analysis. Oecologia 120:327–335.
Thorén, S, Quietzsch, F, Radespiel, U. 2010. Leaf nest use and construction in the golden-brown mouse lemur (Microcebus ravelobensis) in the Ankarafantsika National Park. American Journal of Primatology 72:48–55.
Thorén, S, Quietzsch, F, Schwochow, D, et al. 2011. Seasonal changes in feeding ecology and activity patterns of two sympatric mouse lemur species, the gray mouse lemur (Microcebus murinus) and the golden-brown mouse lemur (M. ravelobensis), in northwestern Madagascar. International Journal of Primatology 32:566–586.
Merwe, NJ van der, Medina, E. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochimica et Cosmochimica Acta 53:1091–1094.
Winter, K, Holtum, JAM, Edwards, GE, O'Leary, MH. 1982. Effect of low relative humidity on δ13C value in two C3 grasses and in Panicum milioides, a C3–C4 intermediate species. Journal of Experimental Botany 33:88–91.
Wright, PC. 1999. Lemur traits and Madagascar ecology: coping with an island environment. American Journal of Physical Anthropology 110(S29):31–72.
Zhang, JW, Cregg, BM. 1996. Variation in stable carbon isotope discrimination among and within exotic conifer species grown in eastern Nebraska, USA. Forest Ecology and Management 83:181–187.
Zimmermann, E, Cepok, S, Rakotoarison, N, Radespiel, U. 1998. Sympatric mouse lemurs in North-West Madagascar: a new rufous mouse lemur species (Microcebus ravelobensis). Folia Primatologica 69:106–114.