Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: February 2010

Chapter 9 - The principles of molecular therapies for muscle diseases

from Section 3A - Description of muscle disease – general aspects


1. P. Sicinski, Y. Geng, A. S. Ryder-Cook, E. A. Barnard, M. G. Darlison, P. J. Barnard, The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 30 (1989), 1578–1580.
2. B. A. Valentine, B. J. Cooper, A. De Lahunta, R. O. Quinn, J. T. Blue, Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J. Neurol. Sci. 88 (1988), 69–81.
3. J. S. Chamberlain, Gene therapy of muscular dystrophy. Hum. Mol. Genet. 11 (2002), 2355–2362.
4. K. J. Nowak, K. E.Davies, Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep. 5 (2004), 872–876.
5. J. V. Chakkalakal, J. Thompson, R. J. Parks, B. J. Jasmin, Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB J. 19 (2005), 880–891.
6. K. Foster, H. Foster, J. G. Dickson, Gene therapy progress and prospects: Duchenne muscular dystrophy. Gene Ther. 13 (2006), 1677–1685.
7. S. E. Haecker, H. H. Stedman, R. J. Balice-Gordon, et al., In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes. Hum. Gene Ther. 7 (1996), 1907–1914.
8. C. DelloRusso, J. M. Scott, D. Hartigan-O'Connor, et al., Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc. Natl. Acad. Sci. U. S. A. 99 (2002), 12979–12984.
9. R. Gilbert, R. W. Dudley, A. B. Liu, B. J. Petrof, J. Nalbantoglu, G. Karpati, Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum. Mol. Genet. 12 (2003), 1287–1299.
10. N. Vincent, T. Ragot, H. Gilgenkrantz, et al., Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat. Genet. 5 (1993), 130–134.
11. N. Deconinck, T. Ragot, G. Marechal, M. Perricaudet, J. M. Gillis, Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc. Natl. Acad. Sci. U. S. A. 93 (1996), 3570–3574.
12. G. Acsadi, H. Lochmuller, A. Jani, et al., Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer. Hum. Gene Ther. 7 (1996), 129–140.
13. B. Wang, J. Li, X. Xiao, Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 13714–13719.
14. S. Q. Harper, M. A. Hauser, C. DelloRusso, et al., Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat. Med. 8 (2002), 253–261.
15. P. Gregorevic, M. J. Blankinship, J. M. Allen, et al., Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat. Med. 10 (2004), 828–834.
16. N. Larochelle, W. Oualikene, P. Dunant, et al., The short MCK1350 promoter/enhancer allows for sufficient dystrophin expression in skeletal muscles of mdx mice. Biochem. Biophys. Res. Commun. 292 (2002), 626–631.
17. M. A. Hauser, A. Robinson, D. Hartigan-O'Connor, et al., Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol. Ther. 2 (2000), 16–25.
18. M. Z. Salva, C. L. Himeda, P. W. Tai, et al., Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol. Ther. 15 (2007), 320–329.
19. Q. L. Lu, G. Bou-Gharios, T. A. Partridge, Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther. 10 (2003), 131–142.
20. M. J. Molnar, R. Gilbert, Y. Lu, et al., Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol. Ther. 10 (2004), 447–455.
21. G. Danialou, A. S. Comtois, R. W. Dudley, et al., Ultrasound increases plasmid-mediated gene transfer to dystrophic muscles without collateral damage. Mol. Ther. 6 (2002), 687–693.
22. H. Herweijer, J. A. Wolff, Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 10 (2003), 453–458.
23. G. Zhang, V. Budker, P. Williams, V. Subbotin, J. A. Wolff, Efficient expression of naked DNA delivered intraarterially to limb muscles of nonhuman primates. Hum. Gene Ther. 12 (2001), 427–438.
24. S. Kochanek, High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum. Gene Ther. 10 (1999), 2451–2459.
25. R. Alba, A. Bosch, M. Chillon, Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther. 12:Suppl 1 (2005), S18–S27.
26. T. Athanasopoulos, I. R. Graham, H. Foster, G. Dickson, Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther. 11:Suppl 1 (2004), S109–S121.
27. M. J. Blankinship, P. Gregorevic, J. S. Chamberlain, Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. Mol. Ther. 13 (2006), 241–249.
28. B. C. Schnepp, K. R. Clark, D. L. Klemanski, C. A. Pacak, P. R. Johnson, Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J. Virol. 77 (2003), 3495–3504.
29. P. Gregorevic, J. M. Allen, E. Minami, et al., rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat. Med. 12 (2006), 787–789.
30. T. A. Rando, M. H. Disatnik, L. Z. Zhou, Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 97 (2000), 5363–5368.
31. G. McClorey, S. Fletcher, S. Wilton, Splicing intervention for Duchenne muscular dystrophy. Curr. Opin. Pharmacol. 5 (2005), 529–534.
32. A. Artsma-Rus, G. J. van Ommen, Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13 (2007), 1609–1624.
33. J. C. van Deutekom, A. A. Janson, I. B. Ginjaar, et al., Local dystrophin restoration with antisense oligonucleotide PRO051. N. Engl. J. Med. 357 (2007), 2677–2686.
34. Q. L. Lu, C. J. Mann, F. Lou, et al., Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat. Med. 9 (2003), 1009–1014.
35. C. J. Mann, K. Honeyman, A. J. Cheng, et al., Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc. Natl. Acad. Sci. U. S. A. 98 (2001), 42–47.
36. M. A. Denti, A. Rosa, G. D'Antona, et al., Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 3758–3763.
37. A. Goyenvalle, A. Vulin, F. Fougerousse, et al., Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306 (2004), 1796–1799.
38. C. Bertoni, Clinical approaches in the treatment of Duchenne muscular dystrophy (DMD) using oligonucleotides. Front. Biosci. 13 (2008), 517–527.
39. E. R. Barton-Davis, L. Cordier, D. I. Shoturma, S. E. Leland, H. L. Sweeney, Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest. 104 (1999), 375–381.
40. P. Dunant, M. C. Walter, G. Karpati, H. Lochmuller, Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 27 (2003), 624–627.
41. E. M. Welch, E. R. Barton, J. Zhuo, et al., PTC124 targets genetic disorders caused by nonsense mutations. Nature 447 (2007), 87–91.
42. G. Karpati, Mitigation of deleterious effects of certain abnormal genes in immature skeletal muscle cells. Trends Neurosci. 7 (1985), 524–525.
43. J. Howell, K. R. Walker, L. Davies, et al., Adenovirus and adeno-associated virus-mediated delivery of human myophosphorylase cDNA and LacZ cDNA to muscle in the ovine model of McArdle's disease: expression and re-expression of glycogen phosphorylase. Neuromuscul. Disord. 18 (2008), 248–268.
44. G. Karpati, Utrophin muscles in on the action. Nat. Med. 3 (1997), 22–23.
45. J. A. Rafael, J. M. Tinsley, A. C. Potter, A. E. Deconinck, K. E. Davies, Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nat. Genet. 19 (1998), 79–82.
46. J. Tinsley, N. Deconinck, R. Fisher, et al., Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat. Med. 4 (1998), 1441–1444.
47. J. M. Tinsley, A. C. Potter, S. R. Phelps, R. Fisher, J. I. Trickett, K. E. Davies, Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384 (1996), 349–353.
48. J. R. Deol, G. Danialou, N. Larochelle, et al., Successful compensation for dystrophin deficiency by a Helper-dependent adenovirus expressing full-length utrophin. Mol. Ther. 15 (2007), 1767–1774.
49. M. Cerletti, T. Negri, F. Cozzi, et al., Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Ther. 10 (2003), 750–757.
50. P. M. Wakefield, J. M. Tinsley, M. J. Wood, R. Gilbert, G. Karpati, K. E. Davies, Prevention of the dystrophic phenotype in dystrophin/utrophin-deficient muscle following adenovirus-mediated transfer of a utrophin minigene. Gene Ther. 7 (2000), 201–204.
51. R. Gilbert, J. Nalbantoglu, B. J. Petrof, et al., Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum. Gene Ther. 10 (1999), 1299–1310.
52. E. Mattei, N. Corbi, M. G. Di Certo, et al., Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS ONE 2 (2007), e774.
53. I. Waheed, R. Gilbert, J. Nalbantoglu, G. H. Guibinga, B. J. Petrof, G. Karpati, Factors associated with induced chronic inflammation in mdx skeletal muscle cause posttranslational stabilization and augmentation of extrasynaptic sarcolemmal utrophin. Hum. Gene Ther. 16 (2005), 489–501.
54. I. Courdier-Fruh, A. Briguet, Utrophin is a calpain substrate in muscle cells. Muscle Nerve 33 (2006), 753–759.
55. G. Karpati, M. Molnar, Muscle fiber regeneration in human skeletal muscle diseases. In Skeletal Muscle Regeneration and Repair, eds. S. Schiaffino, T. Partridge. (New York: Springer, 2008), pp. 199–215.
56. T. Nastasi, N. Rosenthal, Boosting muscle regeneration. In Skeletal Muscle Regeneration and Repair, eds. S. Schiaffino, T. Partridge. (New York: Springer, 2008), pp. 335–355.
57. A. Dellavalle, M. Sampaolesi, R. Tonlorenzi, et al., Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat. Cell Biol. 9 (2007), 255–267.
58. M. Sampaolesi, S. Blot, G. D'Antona, et al., Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444 (2006), 574–579.
59. B. Peault, M. Rudnicki, Y. Torrente, et al., Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol. Ther. 15 (2007), 867–877.
60. A. Nadeau, G. Karpati, Are big muscles necessarily good muscles? Ann. Neurol. 63 (2008), 543–545.
61. K. R. Wagner, A. C. McPherron, N. Winik, S. J. Lee, Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann. Neurol. 52 (2002), 832–836.
62. S. Bogdanovich, K. J. Perkins, T. O. Krag, L. A. Whittemore, T. S. Khurana, Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB J. 19 (2005), 543–549.
63. S. Bogdanovich, T. O. Krag, E. R. Barton, et al., Functional improvement of dystrophic muscle by myostatin blockade. Nature 420 (2002), 418–421.
64. G. Karpati, S. Carpenter, S.Prescott, Small-caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy. Muscle Nerve 11 (1988), 795–803.
65. L. Passerini, P. Bernasconi, F. Baggi, et al., Fibrogenic cytokines and extent of fibrosis in muscle of dogs with x-linked golden retriever muscular dystrophy. Neuromuscul. Disord. 12 (2002), 828–835.
65. F. Andreetta, P. Bernasconi, F. Baggi, et al., Immunomodulation of TGF-beta1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: Implications for antifibrotic therapy. J. Neuroimmunol. 175 (2006), 77–86.
66. L. P. Ranum, J. W.Day, Myotonic dystrophy: RNA pathogenesis comes into focus. Am. J. Hum. Genet. 74 (2004), 793–804.
67. L. P. Ranum, T. A.Cooper, RNA-mediated neuromuscular disorders. Annu. Rev. Neurosci. 29 (2006), 259–277.
68. R. J. Osborne, C. A. Thornton, RNA-dominant diseases. Hum. Mol. Genet. 15: Spec No 2 (2006), R162–R169.
69. H. Jiang, A. Mankodi, M. S. Swanson, R. T. Moxley, C. A. Thornton, Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum. Mol. Genet. 13 (2004), 3079–3088.
70. R. N. Kanadia, K. A. Johnstone, A. Mankodi, et al., A muscleblind knockout model for myotonic dystrophy. Science 302 (2003), 1978–1980.
71. R. N. Kanadia, J. Shin, Y. Yuan, et al., Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 11748–11753.
72. E. M. Ovan-Wright, B. L. Davidson, RNAi: a potential therapy for the dominantly inherited nucleotide repeat diseases. Gene Ther. 13 (2006), 525–531.
73. J. Shao, M. I.Diamond, Polyglutamine diseases: emerging concepts in pathogenesis and therapy. Hum. Mol. Genet. 16: Spec No 2 (2007), R115–R123.
74. D. J. Wells, Treatments for muscular dystrophy: increased treatment options for Duchenne and related muscular dystrophies. Gene Ther. 15:5 (2008), 1077–1078.