Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: August 2009

9 - Pathogen-recognition receptors as targets for pathogens to modulate immune function of antigen-presenting cells

from IV - Dendritic cells and immune evasion of bacteria in vivo

Summary

INTRODUCTION

Antigen-presenting cells (APC), such as dendritic cells (DCs) and macrophages, are located throughout the body to sense and capture invading pathogens and to trigger immune responses to fight such invaders. In addition, in the absence of danger signals, DCs have an active role in the induction of T cell tolerance and the maintenance of homeostasis. The recognition and internalization of pathogens is mediated by so-called pathogen-recognition receptors, germ-line encoded cell surface receptors that include toll-like receptors (TLR) and C-type lectins (CLR). It is becoming increasingly clear that during the long co-evolution with their hosts, pathogens have evolved mechanisms to misuse pathogen-recognition receptors to suppress or evade immune responses and thus to escape clearance. In this chapter, we will review recent examples of how pathogens evade immune activation by targeting recognition receptors on APC and subverting their function.

BACTERIAL RECEPTORS ON ANTIGEN-PRESENTING CELLS

APC interact with invading pathogens via pathogen-recognition receptors that bind conserved patterns of carbohydrates, lipids, proteins and nucleic acids in classes of microbes. This variety of receptors and conserved ligands recognized ensures that most, if not all, microbes can be detected by the immune system, either by a single or by combinations of receptors. Pathogen-recognition receptors include TLR and CLR (Figure 9.1). To date, 11 TLR have been identified (see Chapter 2) that each targets specific pathogenic structures, such as lipopolysaccharide (TLR4), viral dsRNA (TLR3) and bacterial peptidoglycans (TLR2/TLR6).

REFERENCES
Taylor, P. R., Martinez-Pomares, L, Stacey, M., Lin, H. H., Brown, G. D., and Gordon, S. (2005). Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–44
Sousa, E. Reis (2004). Activation of dendritic cells: translating innate into adaptive immunity. Curr. Opin. Immunol. 16, 21–5
Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–80
Figdor, C. G., Kooyk, Y., and Adema, G. J. (2002). C-type lectin receptors on dendritic cells and Langerhans cells. Nature Rev. Immunol. 2, 77–84
Underhill, D. M. and Ozinsky, A. (2002). Toll-like receptors: key mediators of microbe detection. Curr. Opin. Immunol. 14, 103–10
McGettrick, A. F. and O'Neill, L. A. (2004). The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol. Immunol. 41, 577–82
Kooyk, Y., Engering, A., Lekkerkerker, A. N., Ludwig, I. S., and Geijtenbeek, T. B. (2004). Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr. Opin. Immunol. 16, 488–93
Geijtenbeek, T. B., Vliet, S. J., Engering, A., Hart, B. A. 't, and Kooyk, Y. (2004). Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54
Drickamer, K. (1999). C-type lectin-like domains. Curr. Opin. Struct. Biol. 9, 585–90
Engering, A., Geijtenbeek, T. B., Vliet, S. J., Wijers, M., Liempt, E., Demaurex, N., Lanzavecchia, A., Fransen, J., Figdor, C. G., Piguet, V., and Kooyk, Y. (2002). The dendritic cell-specific adhesion receptor dendritic cell-SIGN internalizes antigen for presentation to T cells. J. Immunol. 168, 2118–26
Tan, M. C., Mommaas, A. M., Drijfhout, J. W., Jordens, R., Onderwater, J. J., Verwoerd, D., Mulder, A. A., Heiden, A. N., Scheidegger, D., Oomen, L. C., Ottenhoff, T. H., Tulp, A., Neefjes, J. J., and Koning, F. (1997). Mannose receptor-mediated uptake of antigens strongly enhances human leukocyte antigen class II-restricted antigen presentation by cultured dendritic cells. Eur. J. Immunol. 27, 2426–35
Engering, A. J., Cella, M., Fluitsma, D., Brockhaus, M., Hoefsmit, E. C., Lanzavecchia, A., and Pieters, J. (1997). The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27, 2417–25
Inohara, N., Chamaillard, M., McDonald, C., and Nunez, G. (2005). nucleotide-binding oligomerization domain-leucine-rich repeat proteins: role in host–microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–83
Wagner, H. (2004). The immunobiology of the Toll-like receptor9 subfamily. Trends Immunol. 25, 381–6
McGreal, E. P., Miller, J. L., and Gordon, S. (2005). Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 17, 18–24
Kokkinopoulos, I., Jordan, W. J., and Ritter, M. A. (2005). Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol. Immunol. 42, 957–68
Portnoy, D. A. (2005). Manipulation of innate immunity by bacterial pathogens. Curr. Opin. Immunol. 17, 25–8
Kawasaki, K., Ernst, R. K., and Miller, S. I. (2004). 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J. Biol. Chem. 279, 20044–8
Darveau, R. P., Pham, T. T., Lemley, K., Reife, R. A., Bainbridge, B. W., Coats, S. R., Howald, W. N., Way, S. S., and Hajjar, A. M. (2004). Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect. Immun. 72, 5041–51
Netea, M. G., Meer, J. W., and Kullberg, B. J. (2004). Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 12, 484–8
Kleij, D., Latz, E., Brouwers, J. F., Kruize, Y. C., Schmitz, M., Kurt-Jones, E. A., Espevik, T., Jong, E. C., Kapsenberg, M. L., Golenbock, D. T., Tielens, A. G., and Yazdanbakhsh, M. (2002). A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J. Biol. Chem. 277, 48122–9
Sing, A., Rost, D., Tvardovskaia, N., Roggenkamp, A., Wiedemann, A., Kirschning, C. J., Aepfelbacher, M., and Heesemann, J. (2002). Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J. Exp. Med. 196, 1017–24
Geijtenbeek, T. B. H., Torensma, R., Vliet, S. J., Duijnhoven, G. C. F., Adema, G. J., Kooyk, Y., and Figdor, C. G. (2000). Identification of dendritic cell-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–85
Geijtenbeek, T. B., Krooshoop, D. J., Bleijs, D. A., Vliet, S. J., Duijnhoven, G. C., Grabovsky, V., Alon, R., Figdor, C. G., and Kooyk, Y. (2000). dendritic cell-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1, 353–7
Ariizumi, K., Shen, G. L., Shikano, S., Xu, S., Ritter, R., Kumamoto, T., Edelbaum, D., Morita, A., Bergstresser, P. R., and Takashima, A. (2000). Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem. 275, 20157–67
Irjala, H., Johansson, E. L., Grenman, R., Alanen, K., Salmi, M., and Jalkanen, S. (2001). Mannose receptor is a novel ligand for L-selectin and mediates lymphocyte binding to lymphatic endothelium. J. Exp. Med. 194, 1033–42
Stahl, P. D. (1992). The mannose receptor and other macrophage lectins. Curr. Opin. Immunol. 4, 49–52
Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., Ravetch, J. V., Steinman, R. M., and Nussenzweig, M. C. (2001). Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–79
Chieppa, M., Bianchi, G., Doni, A., Prete, A. Del, Sironi, M., Laskarin, G., Monti, P., Piemonti, L., Biondi, A., Mantovani, A., Introna, M., and Allavena, P. (2003). Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol. 171, 4552–60
Kwon, D. S., Gregorio, G., Bitton, N., Hendrickson, W. A., and Littman, D. R. (2002). dendritic cell-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16, 135–44
Ludwig, I. S., Lekkerkerker, A. N., Depla, E., Bosman, F., Musters, R. J., Depraetere, S., Kooyk, Y., and Geijtenbeek, T. B. (2004). Hepatitis C virus targets dendritic cell-SIGN and L-SIGN to escape lysosomal degradation. J. Virol. 78, 8322–32
Geijtenbeek, T. B. H., Kwon, D. S., Torensma, R., Vliet, S. J., Duijnhoven, G. C. F., Middel, J., Cornelissen, I. L., Nottet, H. S., KewalRamani, V. N., Littman, D. R., Figdor, C. G., and Kooyk, Y. (2000). dendritic cell-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–97
Lozach, P. Y., Amara, A., Bartosch, B., Virelizier, J. L., Arenzana-Seisdedos, F., Cosset, F. L., and Altmeyer, R. (2004). C-type lectins L-SIGN and dendritic cell-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J. Biol. Chem. 279, 32035–45
Alvarez, C. P., Lasala, F., Carrillo, J., Muniz, O., Corbi, A. L., and Delgado, R. (2002). C-type lectins dendritic cell-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–4
Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houles, C., Fieschi, F., Arenzana-Seisdedos, F., Moreau, J. F., and Dechanet-Merville, J. (2002). Human cytomegalovirus binding to dendritic cell-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–64
Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S., Birx, D. L., Steinman, R. M., Schlesinger, S., and Marovich, M. A. (2003). dendritic cell-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197, 823–9
Appelmelk, B. J., van Die, I., Vliet, S. J., Vandenbroucke-Grauls, C. M., Geijtenbeek, T. B., and Kooyk, Y. (2003). Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol. 170, 1635–9
Die, I., Vliet, S. J., Kwame Nyame, A., Cummings, R. D., Bank, C. M., Appelmelk, B., Geijtenbeek, T. B., and Kooyk, Y. (2003). The dendritic cell specific C-type lectin dendritic cell-SIGN is a receptor for Schistosoma mansoni egg antigens and recognizes the glycan antigen Lewis-x. Glycobiology 13, 471–8
Cambi, A., Gijzen, K., Vries, J. M., Torensma, R., Joosten, B., Adema, G. J., Netea, M. G., Kullberg, B. J., Romani, L., and Figdor, C. G. (2003). The C-type lectin dendritic cell-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol. 33, 532–8
Geijtenbeek, T. B., Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M., Appelmelk, B., and Kooyk, Y. (2003). Mycobacteria target dendritic cell-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17
Tailleux, L., Schwartz, O., Herrmann, J. L., Pivert, E., Jackson, M., Amara, A., Legres, L., Dreher, D., Nicod, L. P., Gluckman, J. C., Lagrange, P. H., Gicquel, B., and Neyrolles, O. (2003). dendritic cell-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–7
Baldari, C. T., Lanzavecchia, A., and Telford, J. L. (2005). Immune subversion by Helicobacter pylori. Trends Immunol. 26, 199–207
Bergman, M. P., Engering, A., Smits, H. H., Vliet, S. J., Bodegraven, A. A., Wirth, H. P., Kapsenberg, M. L., Vandenbroucke-Grauls, C. M., Kooyk, Y., and Appelmelk, B. J. (2004). Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and dendritic cell-SIGN. J. Exp. Med. 200, 979–90
Appelmelk, B. J., Monteiro, M. A., Martin, S. L., Moran, A. P., and Vandenbroucke-Grauls, C. M. (2000). Why Helicobacter pylori has Lewis antigens. Trends Microbiol. 8, 565–70
Smits, H. H., Engering, A., Kleij, D., Jong, E. C., Schipper, K., Capel, T., Zaat, B., Yazdanbakhsh, M., Wierenga, E. A., Kooyk, Y., and Kapsenberg, M. L. (2005). Selective probiotic bacteria induce regulatory T cells by modulating dendritic cell function via dendritic cell-SIGN in vitro. J. Allergy and Clin. Immunol. 115, 1260–7
Geijtenbeek, T. B., Groot, P. C., Nolte, M. A., Vliet, S. J., Gangaram-Panday, S. T., Duijnhoven, G. C., Kraal, G., Oosterhout, A. J., and Kooyk, Y. (2002). Marginal zone macrophages express a murine homologue of dendritic cell-SIGN that captures blood-borne antigens in vivo. Blood 100, 2908–16
Baribaud, F., Pohlmann, S., and Doms, R. W. (2001). The role of dendritic cell-SIGN and dendritic cell-SIGNR in HIV and SIV attachment, infection, and transmission. Virology 286, 1–6
Taylor, P. R., Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., and Gordon, S. (2004). The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J. Immunol. 172, 1157–62
Kang, Y. S., Kim, J. Y., Bruening, S. A., Pack, M., Charalambous, A., Pritsker, A., Moran, T. M., Loeffler, J. M., Steinman, R. M., and Park, C. G. (2004). The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc. Natl Acad. Sci. USA 101, 215–20
Takahara, K., Yashima, Y., Omatsu, Y., Yoshida, H., Kimura, Y., Kang, Y. S., Steinman, R. M., Park, C. G., and Inaba, K. (2004). Functional comparison of the mouse dendritic cell-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins. Int. Immunol. 16, 819–29
Lanoue, A., Clatworthy, M. R., Smith, P., Green, S., Townsend, M. J., Jolin, H. E., Smith, K. G., Fallon, P. G., and McKenzie, A. N. (2004). SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J. Exp. Med. 200, 1383–93
Nagaoka, K., Takahara, K., Tanaka, K., Yoshida, H., Steinman, R. M., Saitoh, S. I., Akashi-Takamura, S., Miyake, K., Kang, Y. S., Park, C. G., and Inaba, K. (2005). Association of SIGNR1 with Toll-like receptor4-MD-2 enhances signal transduction by recognition of lipopolysaccharide in Gram-negative bacteria. Int. Immunol. 17, 827–36
Brown, G. D. and Gordon, S. (2001). Immune recognition. A new receptor for beta-glucans. Nature 413, 36–7
Underhill, D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M., and Aderem, A. (1999). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–15
Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S., and Gordon, S. (2003). Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197, 1119–24
Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S., and Underhill, D. M. (2003). Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–17
Herre, J., Marshall, A. S., Caron, E., Edwards, A. D., Williams, D. L., Schweighoffer, E., Tybulewicz, V., Sousa, Reis E, Gordon, S., and Brown, G. D. (2004). Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104, 4038–45
Rogers, N. C., Slack, E. C., Edwards, A. D., Nolte, M. A., Schulz, O., Schweighoffer, E., Williams, D. L., Gordon, S., Tybulewicz, V. L., Brown, G. D., and Sousa, Reis E (2005). Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–17
Gantner, B. N., Simmons, R. M., and Underhill, D. M. (2005). Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–86
d'Ostiani, C. F., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., Ricciardi-Castagnoli, P., and Romani, L. (2000). Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–74
Romani, L., Montagnoli, C., Bozza, S., Perruccio, K., Spreca, A., Allavena, P., Verbeek, S., Calderone, R. A., Bistoni, F., and Puccetti, P. (2004). The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int. Immunol. 16, 149–61
Huang, Q., Liu, D., Majewski, P., Schulte, L. C., Korn, J. M., Young, R. A., Lander, E. S., and Hacohen, N. (2001). The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–5
Jeannin, P., Bottazzi, B., Sironi, M., Doni, A., Rusnati, M., Presta, M., Maina, V., Magistrelli, G., Haeuw, J. F., Hoeffel, G., Thieblemont, N., Corvaia, N., Garlanda, C., Delneste, Y., and Mantovani, A. (2005). Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 22, 551–60
Pinhal-Enfield, G., Ramanathan, M., Hasko, G., Vogel, S. N., Salzman, A. L., Boons, G. J., and Leibovich, S. J. (2003). An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am. J. Pathol. 163, 711–21
Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–55
Mosser, D. M. (2003). The many faces of macrophage activation. J. Leukoc. Biol. 73, 209–12
Raes, G., Brys, L., Dahal, B. K., Brandt, J., Grooten, J., Brombacher, F., Vanham, G., Noel, W., Bogaert, P., Boonefaes, T., Kindt, A., , B. R., Leenen, P. J., Baetselier, P., and Ghassabeh, G. H. (2005). Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J. Leukoc. Biol. 77, 321–7
Higashi, N., Fujioka, K., Denda-Nagai, K., Hashimoto, S., Nagai, S., Sato, T., Fujita, Y., Morikawa, A., Tsuiji, M., Miyata-Takeuchi, M., Sano, Y., Suzuki, N., Yamamoto, K., Matsushima, K., and Irimura, T. (2002). The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J. Biol. Chem. 277, 20686–93
Vliet, S. J., Liempt, E., Saeland, E., Aarnoudse, C. A., Appelmelk, B., Irimura, T., Geijtenbeek, T. B., Blixt, O., Alvarez, R., Die, I., and Kooyk, Y. (2005). Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int. Immunol. 17, 661–9