Skip to main content Accessibility help
×
Home
  • Access
  • Open access
  • Print publication year: 2019
  • Online publication date: October 2019

6 - CO2-Rich Melts in Earth

  • View HTML
    • Send chapter to Kindle

      To send this chapter to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Available formats
      ×

      Send chapter to Dropbox

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

      Available formats
      ×

      Send chapter to Google Drive

      To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

      Available formats
      ×

Summary

This chapter reviews the systematics of partial melting of mantle lithologies – like peridotite and eclogite – in the presence of carbon dioxide. It discusses the composition of mantle-derived magmas generated in the presence of carbon dioxide and whether magmas erupted on Earth’s surface resemble carbonated magmas from the mantle. It reviews how the production of carbon dioxide-rich magma in the mantle varies as a function of tectonic settings – beneath continents and oceans and in subduction zones – and time.