Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T15:46:15.179Z Has data issue: false hasContentIssue false

H

Published online by Cambridge University Press:  05 May 2023

J. F. Cade
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Critical Care Compendium
1001 Topics in Intensive Care & Acute Medicine
, pp. 198 - 250
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Alliot, C, Tribout, B Barrios, M, et al. Angiosarcoma variant of Kasabach-Merritt syndrome. Eur J Gastroenterol Hepatol 2001; 13: 731.Google Scholar

Bibliography

Arya, S, Hong, R, Gilbert, EF. Reactive hemophagocytic syndrome. Pediatr Pathol 1985; 3: 129.CrossRefGoogle ScholarPubMed
Barrett-Connor, E. Anemia and infection. Am J Med 1972; 52: 242.CrossRefGoogle ScholarPubMed
Berliner, N, ed. Hematology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Bohnsack, JF, Brown, EJ. The role of the spleen in resistance to infection. Annu Rev Med 1986; 37: 49.Google Scholar
Bolan, CD, Alving, BM. Pharmacologic agents in the management of bleeding disorders. Transfusion 1990; 30: 541.Google Scholar
Collen, D, Lijnen, HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78: 3114.Google Scholar
Colman, N, Herbert, V. Hematologic complications of alcoholism: overview. Semin Hematol 1980; 17: 164.Google ScholarPubMed
Copeman, PW. Livedo reticularis: signs in the skin of disturbance of blood viscosity and blood flow. Br J Dermatol 1975; 93: 519.Google Scholar
Dexter, TM. Stem cells in normal growth and disease. BMJ 1987; 295: 1192.Google Scholar
Doll, DC, List, AF. Myelodysplastic syndromes. Semin Oncol 1992; 19: 1.Google ScholarPubMed
Editorial. Nitrous oxide and acute marrow failure. Lancet 1982; 2: 856.Google Scholar
Editorial. Peripheral stem cells made to work. Lancet 1992; 339: 648.Google Scholar
Goodnough, LT, ed. RFVIIa: potential treatment of critical bleeding in the future ICU. Intens Care Med 2002; 28 (suppl. 2): S221.CrossRefGoogle Scholar
Greenberg, CS, Sane, DC. Coagulation problems in critical care medicine. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 9. Fullerton: Society of Critical Care Medicine. 1990; p 187.Google Scholar
Guyatt, G, Akl, EA, Crowther, M, et al., eds. Antithrombotic therapy and prevention of thrombosis, 9th ed: ACCP evidence-based clinical practice guidelines. Chest 2012; 141: no. 2 (suppl.).CrossRefGoogle Scholar
Hirsh, J, Levine, MN. Low molecular weight heparin. Blood 1992; 79: 1.Google Scholar
Kushner, I, Rzewnicki, DL. The acute phase response: general aspects. Baillieres Clin Rheumatol 1994; 8: 513.CrossRefGoogle ScholarPubMed
Lieschke, GJ, Burgess, AW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N Engl J Med 1992; 327: 28 & 99.Google ScholarPubMed
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Metcalf, D. Hematopoietic regulators: redundancy or subtlety? Blood 1993; 82: 3515.Google Scholar
Moake, JL. Common hemostatic problems and blood banking in critical care medicine. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 8. Fullerton: Society of Critical Care Medicine. 1990; p 161.Google Scholar
Nachman, RL. Thrombosis and atherogenesis: molecular connections. Blood 1992; 79: 1897.Google Scholar
Ogawa, M. Differentiation and proliferation of hemopoietic stem cells. Blood 1993; 81: 2844.CrossRefGoogle Scholar
Provan, D, ed. ABC of Clinical Haematology. 4th edition. London: BMJ Publishing. 2018.Google Scholar
Rapaport, SI. Preoperative hemostatic evaluation: which tests, if any? Blood 1983; 61: 229.Google Scholar
Rose, WF. The spleen as a filter. N Engl J Med 1987; 317: 704.Google Scholar
Salama, A, Mueller-Eckhardt, C. Immune-mediated blood cell dyscrasias related to drugs. Semin Hematol 1992; 29: 54.Google ScholarPubMed
Schafer, AI. Bleeding and thrombosis in the myeloproliferative disorders. Blood 1984; 64: 1.Google Scholar
Shram, AM, Berliner, N. Nonmalignant disorders of leukocytes. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Silverstein, RL, Nachman, RL. Cancer and clotting – Trousseau’s warning. N Engl J Med 1992; 327: 1163.Google Scholar
Sox, HC, Liang, MH. The erythrocyte sedimentation rate: guidelines for rational use. Ann Intern Med 1986; 104: 515.CrossRefGoogle ScholarPubMed
Weitz, JI. Low-molecular-weight heparins. N Engl J Med 1997; 337: 688.Google Scholar

Bibliography

Cronin, RE, Kaehny, WD, Miller, PD, et al. Renal cell carcinoma: unusual systemic manifestations. Medicine 1976; 55: 291.Google Scholar
Froom, P, Ribak, J, Benbassat, J. Significance of microhaematuria in young adults. BMJ 1984; 288: 20.CrossRefGoogle ScholarPubMed

Bibliography

Adams, PC, Kertesz, AE, Valberg, LS. Clinical presentation of hemochromatosis. Am J Med 1991; 90: 445.Google Scholar
Bassett, ML. Haemochromatosis: iron still matters. Intern Med J 2001; 31: 237.Google Scholar
Bomford, A. Genetics of haemochromatosis. Lancet 2002; 360: 1673.Google Scholar
Burke, W, Thomson, E, Khoury, MJ, et al. Hereditary hemochromatosis: gene discovery and its implications for population-based screening. JAMA 1998; 280: 172.Google Scholar
Burt, MJ, George, DK, Powell, LW. Haemochromatosis – a clinical update. Med J Aust 1996; 164: 348.Google Scholar
Challoner, T, Briggs, C, Rampling, MW, et al. A study of the haematological and haemorrheological consequences of venesection. Br J Haematol 1986; 62: 671.CrossRefGoogle Scholar
Editorial. Serum-ferritin. Lancet 1979; 1: 533.Google Scholar
Finch, CA. The detection of iron overload. N Engl J Med 1982; 307: 1702.Google Scholar
Finch, CA, Huebers, H. Perspectives in iron metabolism. N Engl J Med 1992; 306: 1520.Google Scholar
Gertig, DM, Hopper, JL, Allen, KJ. Population genetic screening for hereditary haemochromatosis. Med J Aust 2003; 179: 517.Google Scholar
Olynyk, JK. Hereditary haemochromatosis: diagnosis and management in the gene era. Liver 1999; 19: 73.Google Scholar
Powell, LW, Bassett, ML. Haemochromatosis: diagnosis and management after the cloning of the HFE gene. Aust NZ J Med 1998; 28: 159.Google Scholar
Radford-Smith, DE, Powell, EE, Powell, LW. Haemochromatosis: a clinical update for the practicing physician. Intern Med J 2018; 48: 509.Google Scholar
Valberg, LS, Ghent, CN. Diagnosis and management of hereditary hemochromatosis. Annu Rev Med 1985; 36: 27.Google Scholar

Bibliography

Bunn, HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997; 337: 762.Google Scholar
Charache, S, Terrin, ML, Moore, RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anaemia. N Engl J Med 1995; 332: 1317.Google Scholar
Cohen, AR, Galanello, R, Piga, A. Safety and effectiveness of long-term therapy with the oral iron chelator deferiprone. Blood 2003; 102: 1583.Google Scholar
Davies, SC, Luce, PJ, Win, AA, et al. Acute chest syndrome in sickle-cell disease. Lancet 1984; 1: 36.Google Scholar
Dessap, AM, Fartoukh, M, Machado, RF. Ten tips for managing critically ill patients with sickle cell disease. Intens Care Med 2017; 43: 80.CrossRefGoogle Scholar
Embury, SH. The clinical pathophysiology of sickle cell disease. Annu Rev Med 1986; 37: 361.Google Scholar
Francis, RB, Johnson, CS. Vascular occlusion in sickle cell disease: current concepts and unanswered questions. Blood 1991; 77: 1405.Google Scholar
Koshy, M, Burd, L. Management of pregnancy in sickle cell anemia. Hematol Oncol Clin North Am 1991; 5: 585.Google Scholar
Novelli, EM, Gladwin, MT. Crises in sickle cell disease. Chest 2016; 149: 1082.Google Scholar
Otis, S, Price, EA. Hemoglobinopathies and hemolytic anemias. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Piomelli, S, Loew, T. Management of thalassemia major (Cooley’s anemia). Hematol Oncol Clin North Am 1991; 5: 557.Google Scholar
Platt, OS. Easing the suffering caused by sickle cell disease. N Engl J Med 1994; 330: 783.Google Scholar
Rice, L, Teruya, M. Sickle cell patients face death in ICU. Crit Care Med 2014; 42: 1730.CrossRefGoogle Scholar
Schrier, SL. Thalassemia: pathophysiology of red cell shapes. Annu Rev Med 1994; 45: 211.Google Scholar
Styles, LA, Schalkwijk, CG, Aarsman, AJ, et al. Phospholipase A2 levels in acute chest syndrome of sickle cell disease. Blood 1996; 87: 2573.Google Scholar
Weatherall, DJ. The treatment of thalassemia – slow progress and new dilemmas. N Engl J Med 1993; 329: 877.Google Scholar

Bibliography

Boutboul, D, Touzot, F, Szalat, R. Understanding therapeutic emergencies in acute hemolysis. Intens Care Med 2018; 44: 482.Google Scholar

Bibliography

Aster, RH. Quinine sensitivity: a new cause of hemolytic-uremic syndrome. Ann Intern Med 1993; 119: 243.Google Scholar
Azoulay, E, Knoebl, P, Garnacho-Montero, J, et al. Expert statements on the standard of care in critically ill adult patients with atypical hemolytic uremic syndrome. Chest 2017; 152: 424.Google Scholar
Beers, M, Cameron, S. Hemolytic uremic syndrome. Emerg Infect Dis 1995; 1: 4.Google Scholar
Caprioli, J, Peng, L, Remuzzi, G. The hemolytic uremic syndromes. Curr Opin Crit Care 2005; 11: 487.Google Scholar
Franchini, M. Atypical hemolytic uremic syndrome: from diagnosis to treatment. Clin Chem Lab Med 2015; 53: 1679.Google Scholar
Hovinger, JAK, Heeb, SR, Skowronska, M, et al. Pathophysiology of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. J Thromb Haemost 2018; 16: 618.Google Scholar
Kaplan, B, Drummond, K. The hemolytic-uremic syndrome is a syndrome. N Engl J Med 1978; 298: 964.Google Scholar
Legendre, CM, Licht, C, Loirat, C. Eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 2013; 369: 1379.Google ScholarPubMed
Remuzzi, G. HUS and TTP: variable expression of a single entity. Kidney Int 1987; 32: 292.Google Scholar
Wehling, C, Kirschfink, M. Tailored eculizumab regimen for patients with atypical hemolytic uremic syndrome. J Thromb Haemost 2014; 12: 1437.CrossRefGoogle ScholarPubMed
Wong, CS, Jelacic, S, Habeeb, RL, et al. The risk of hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infection. N Engl J Med 2000; 342: 1930.Google Scholar
Zipfel, P, Naumann, HP, Jozsi, M. Genetic screening of hemolytic uremic syndrome. Curr Opin Nephrol Hypertens 2003; 12: 653.Google Scholar

Bibliography

Athale, J. Challenges in identifying hemophagocytic lymphohistiocytosis in the ICU. Crit Care Med 2020; 48: 599.Google Scholar
Creput, C, Galicier, L, Buyse, S, et al. Understanding organ dysfunction in hemophagocytic lymphohistiocytosis. Intens Care Med 2008; 34: 1177.Google Scholar
Fisman, DN. Hemophagocytic syndromes and infection. Emerg Infect Dis 2000; 6: 6.Google Scholar
Gauvin, F, Toledano, B, Champagne, J, et al. Reactive hemophagocytic syndrome presenting as a component of multiple organ dysfunction syndrome. Crit Care Med 2000; 28: 3341.Google Scholar
Grom, AA. Macrophage activation syndrome and reactive hemophagocytic lymphohistiocytosis: the same entities? Curr Opin Rheumatol 2003; 15: 587.Google Scholar
Janka, GE. Hemophagocytic syndromes. Blood Rev 2007; 21: 245.Google Scholar
Lachmann, G, Knaak, C, Vorderwulbecke, G, et al. Hyperferritinemia in critically ill patients. Crit Care Med 2020; 48: 459.Google Scholar
La Rosee, P, Horne, A, Hines, M, et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood 2019; 133: 2465.Google Scholar
Otrock, ZK, Eby, CS. Clinical characteristics, prognostic factors, and outcomes of adult patients with hemophagocytic lymphohistiocytosis. Am J Hematol 2015; 90: 220.Google Scholar
Ramos-Casals, M, Brito-Zeron, P, Lopez-Guillermo, A, et al. Adult haemophagocytic syndrome. Lancet 2014; 383: 1503.Google Scholar

Bibliography

Aledort, LM. Economic aspects of haemophilia care in the United States. Haemophilia 1999: 5: 282.Google Scholar
Arruda, VR. The search for the origin of factor VIII synthesis and its impact on therapeutic strategies for haemophilia A. Haematologica 2015; 100: 849.Google Scholar
Berntorp, E, ed. Modern management of haemophilia A to prevent bleeding and arthropathy. Semin Thromb Hemost 2003; 29: 1.Google Scholar
Bloom, AL. Progress in the clinical management of haemophilia. Thromb Haemost 1991; 66: 166.Google Scholar
Chuah, MK, Collen, D, Van den Driessche, T. Gene therapy for hemophilia. J Gene Med 2001; 3: 3.Google Scholar
Fay, PJ. Activation of factor VIII and mechanism of cofactor action. Blood Rev 2004; 18: 1.Google Scholar
Franchini, M, Mannucci, PM. Acquired haemophilia A: a 2013 update. Thromb Haemost 2013; 110: 1087.Google Scholar
Furie, B, Furie, BC. Molecular basis of hemophilia. Semin Hematol 1990; 27: 270.Google Scholar
Gitschier, J, Wood, WI, Goralka, TM, et al. Characterization of the human factor VIII gene. Nature 1984; 312: 326.Google Scholar
Green, P. The ‘Royal Disease’. J Thromb Haemost 2010; 8: 2214.Google Scholar
Hoyer, LW. Haemophilia, A. N Engl J Med 1994; 330: 38.Google Scholar
Klinge, J, Ananyeva, NM, Hauser, CAE, et al. Hemophilia A – from basic science to clinical practice. Semin Thromb Hemost 2002; 28: 309.Google Scholar
Mann, KG, Kalafatis, M. Factor V: a combination of Dr Jekyll and Mr Hyde. Blood 2002 101: 20.Google Scholar
Mannucci, PM. Hemophilia: treatment options in the twenty-first century. J Thromb Haemost 2003; 1: 1349.Google Scholar
Mannucci, PM, Tuddenham, EGD. The hemophiliac – from royal genes to gene therapy. N Engl J Med 2001; 344: 1773.Google Scholar
Oldenburg, J, Schwaab, R. Molecular biology of blood coagulation. Semin Thromb Hemost 2001; 27: 313.Google Scholar
Sommer, SS, Scaringe, WA, Hill, KA. Human germline mutation in the factor IX gene. Mutat Res 2001; 487: 1.Google Scholar
Srivastava, AWFH, Santagostino, E, Dougall, A, et al. Guidelines for the management of haemophilia. Haemophilia 2020; 26: 1.Google Scholar

Bibliography

Andrejak, C, Parrot, A, Bazelly, B, et al. Surgical lung resection for severe hemoptysis. Ann Thorac Surg 2009; 88: 1556.Google Scholar
Bobrowitz, ID, Ramakrishna, S, Shim, Y-S. Comparison of medical v surgical treatment of major hemoptysis. Arch Intern Med 1983; 143: 1343.Google Scholar
Davidson, K, Shojaee, S. Managing massive haemoptysis. Chest 2020; 157: 77.Google Scholar
Jean-Baptiste, E. Clinical assessment and management of massive hemoptysis. Crit Care Med 2000; 28: 1642.Google Scholar
Ong, T-H, Eng, P. Massive hemoptysis requiring intensive care. Intens Care Med 2003; 29: 317.Google Scholar
Remy, J, Arnaud, A, Fardou, H, et al. Treatment of hemoptysis by embolization of bronchial arteries. Radiology 1977; 122: 33.Google Scholar
Swanson, KL, Johnson, CM, Prakash, UB, et al. Bronchial artery embolization. Chest 2002; 121: 789.Google Scholar
Valipour, A, Kreuzer, A, Koller, H, et al. Bronchoscopy-guided topical hemostatic tamponade therapy for the management of life-threatening hemoptysis. Chest 2005; 127: 2113.Google Scholar

Bibliography

Boender, J, Kruip, MJ, Leebeek, FW. A diagnostic approach to mild bleeding disorders. J Thromb Haemost 2016; 14: 1507.Google Scholar
Mezzano, D, Quiroga, T. Diagnostic challenges of inherited mild bleeding disorders: a bait for poorly explored clinical and basic research. J Thromb Haemost 2019; 17: 257.Google Scholar

Bibliography

Duchin, JS, Koster, FT, Peters, CJ, et al. Hantaviral pulmonary syndrome: clinical description of disease caused by a newly recognized hemorrhagic fever virus in the Southwestern United States. N Engl J Med 1994; 330: 949.Google Scholar
Hallin, GW, Simpson, SQ, Crowell, RE, et al. Cardiopulmonary manifestations of hantavirus pulmonary syndrome. Crit Care Med 1996; 24: 252.Google Scholar
Hughes, JM, Peters, CJ, Cohen, ML, et al. Hantavirus pulmonary syndrome: an emerging infectious disease. Science 1993; 262: 850.Google Scholar
Khan, AS, Young, JC. Hantavirus pulmonary syndrome: at the crossroads. Curr Opin Infect Dis 2001; 14: 205.Google Scholar
Schmaljohn, C, Hjelle, B. Hantaviruses: a global disease problem. Emerg Infect Dis 1997; 3: 2.Google Scholar
Shope, RE. A midcourse assessment of hantavirus pulmonary syndrome. Emerg Infect Dis 1999; 5: 1.Google Scholar

Bibliography

Lugo-Amador, NM, Rothenhaus, T, Moyer, P. Heat-related illness. Emerg Med Clin North Am 2004; 22: 315.Google Scholar
Marr, JJ, Geiss, PT. Management of heat injury syndromes. In: Shoemaker, WC, Thompson, WL, eds. Critical Care: State of the Art. Fullerton: Society of Critical Care Medicine. 1982; p K1.Google Scholar

Bibliography

Bruemmer-Smith, S, Stuber, F, Schroeder, S. Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. Intens Care Med 2001; 27: 1835.Google Scholar
Buchman, TG. Manipulation of stress gene expression: a novel therapy for the treatment of sepsis? Crit Care Med 1994; 22: 901.Google Scholar
Chu, EK, Ribeiro, SP, Slutsky, AS. Heat stress increases survival rates in polysaccharide-stimulated rats. Crit Care Med 1997; 25: 1727.Google Scholar
Delogu, G, Bosco, LL, Marandola, M, et al. Heat shock protein (HSP70) expression in septic patients. J Crit Care 1997; 12: 188.Google Scholar
Lindquist, S. The heat shock response. Annu Rev Biochem 1986; 55: 1151.Google Scholar
Schopf, FH, Biebl, MM, Buchner, J. The HSP90 machinery. Nat Rev Mol Cell Biol 2017; 18: 345.Google Scholar
Trepel, J, Mollapour, M, Giaccone, G, et al. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010; 10: 537.Google Scholar
van Eden, W, ed. Heat shock proteins and inflammation. Basel: Birkhauser. 2003.Google Scholar
van Eden, W, Young, DB, eds. Stress Proteins in Medicine. New York: Dekker. 1996.Google Scholar
Villar, J, Ribeiro, SP, Mullen, JBM, et al. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis induced acute lung injury model. Crit Care Med 1994; 22: 914.Google Scholar

Bibliography

Bouchama, A, al-Sedairy, S, Siddiqui, S, et al. Elevated pyrogenic cytokines in heat stroke. Chest 1993; 104: 1498.Google Scholar
Bouchama, A, Cafege, A, Devol, EB, et al. Ineffectiveness of dantrolene sodium in the treatment of heatstroke. Crit Care Med 1991; 19: 176.Google Scholar
Bouchama, A, Knochel, JP. Heat stroke. N Engl J Med 2002; 346: 1978.Google Scholar
Clowes, GHA, O’Donnell, TF. Heat stroke. N Engl J Med 1974; 291: 564.Google Scholar
Costrini, A. Emergency treatment of exertional heatstroke and comparison of whole body cooling techniques. Med Sci Sports Exerc 1990; 22: 15.Google Scholar
Knochel, JP. Heat stroke and related heat stress disorders. Dis Mon 1989; 35: 301.Google Scholar
Lugo-Amador, NM, Rothenhaus, T, Moyer, P. Heat-related illness. Emerg Med Clin North Am 2004; 22: 315.Google Scholar
Marr, JJ, Geiss, PT. Management of heat injury syndromes. In: Shoemaker, WC, Thompson, WL, eds. Critical Care: State of the Art. Fullerton: Society of Critical Care Medicine. 1982; p K1.Google Scholar
Pease, S, Bouadma, L, Kermarrec, N, et al. Early organ dysfunction course, cooling time and outcome in classic heatstroke. Intens Care Med 2009; 35: 1454.Google Scholar
Simon, HB. Hyperthermia. N Engl J Med 1993; 329: 483.Google Scholar

Bibliography

Burrows, RF, Kelton, JG. Thrombocytopenia at delivery: a prospective survey of 6715 deliveries. Am J Obstet Gynecol 1990; 162: 731.Google Scholar
Jayawardena, L, Mcnamara, E. Diagnosis and management of pregnancies complicated by haemolysis, elevated liver enzymes and low platelets syndrome in the tertiary setting. Intern Med J 2020; 50: 342.Google Scholar
Martin, JN, Files, FC, Blake, PG. Plasma exchange for preeclampsia: I. Postpartum use for persistently severe preeclampsia with HELLP syndrome. Am J Obstet Gynecol 1990; 162: 126.Google Scholar
Pousti, TJ, Tominaga, GT, Scannell, G. Help for the HELLP syndrome. Intens Care World 1994; 11: 62.Google Scholar
Sibai, B. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 2004; 103: 981.Google Scholar
Sibai, BM, Ramadan, MK, Usta, I, et al. Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes and low platelets (HELLP syndrome). Am J Obstet Gynecol 1993; 169: 1000.Google Scholar
Van Dam, PA, Renier, M, Baekelandt, M, et al. Disseminated intravascular coagulation and the syndrome of hemolysis, elevated liver enzymes, and low platelets in severe preeclampsia. Obstet Gynecol 1989; 73: 97.Google Scholar
Weinstein, L. Syndrome of hemolysis, elevated liver enzymes and low platelet count: a severe consequence of hypertension. Am J Obstet Gynecol 1982; 142: 159.Google Scholar

Bibliography

Khemasuwan, D, Farver, CF, Mehta, AC. Parasites of the airways. Chest 2014; 145: 883.Google Scholar
Van Voorhis, WC. Helminthic infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Morantz, RA, Walsh, JW, eds. Brain Tumors. New York: Marcel Dekker. 1994.Google Scholar

Bibliography

Young, JR, Selvey, CE, Symons, R. Hendra virus. Med J Aust 2011; 195: 250.Google Scholar

Bibliography

Cameron, JS. Henoch-Schonlein purpura: clinical presentation. Contrib Nephrol 1984; 40: 246.Google Scholar
Hetland, LE, Susrud, KS, Lindahl, KH, et al. Henoch-Schonlein purpura: a literature review. Acta Derm Venereol 2017; 97: 1160.Google Scholar
Saulsbury, FT. Henoch-Schonlein purpura. Curr Opin Rheumatol 2010; 22: 598.Google Scholar
Szer, I. Henoch-Schonlein purpura: when and how to treat. J Rheumatol 1996; 23: 1661.Google Scholar

Bibliography

Hemker, HC. A century of heparin: past, present and future. J Thromb Haemost 2016; 14: 2329.Google Scholar
Hirsh, J, Bauer, KA, Donati, MB, et al. Parenteral anticoagulants. Chest 2008; 133 (suppl.): 141S.Google Scholar
Hirsh, J, Levine, MN. Low molecular weight heparin. Blood 1992; 79: 1.Google Scholar
Oster, JR, Singer, I, Fishman, LM. Heparin-induced aldosterone suppression and hyperkalaemia. Am J Med 1995; 98: 575.Google Scholar
Poteruche, TJ, Libby, P, Goldhaber, SZ. More than an anticoagulant: do heparins have direct anti-inflammatory effects. Thromb Haemost 2017; 117: 437.Google Scholar
Schindewolf, M, Kroll, H, Ackermann, H, et al. Heparin-induced non-necrotizing skin lesions: rarely associated with heparin-induced thrombocytopenia. J Thromb Haemost 2010; 8: 1486.Google Scholar
Thachil, J. The versatile heparin in COVID-19. J Thromb Haemost 2020; 18: 1020.Google Scholar
Weitz, JI, Hirsh, J, Samama, MM. New antithrombotic drugs. Chest 2008; 133 (suppl.): 234S.Google Scholar

Bibliography

Aster, RH, Bougie, DW. Drug-induced immune thrombocytopenia. N Engl J Med 2007; 357: 904.Google Scholar
Aster, RH, Curtis, BR, McFarland, JG, et al. Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J Thromb Haemost 2009; 7: 911.Google Scholar
Bick, RL. Heparin-induced thrombocytopenia and paradoxical thromboembolism: diagnostic and therapeutic dilemmas. Clin Appl Thromb Hemost 1997; 3: 63.Google Scholar
Chong, BH. Heparin-induced thrombocytopenia. J Thromb Haemost 2003; 1: 1471.Google Scholar
Chong, BH, Ismail, F, Cade, J, et al. Heparin-induced thrombocytopenia: studies with low molecular weight heparinoid, Org 10172. Blood 1989; 73: 1592.Google Scholar
Farag, SS, Savoia, H, O’Malley, CJ, et al. Lack of in vitro cross-reactivity predicts safety of low-molecular weight heparins in heparin-induced thrombocytopenia. Clin Appl Thromb Hemost 1997; 3: 58.Google Scholar
Greinacher, A. Heparin-associated thrombocytopenia. Vessels 1995; 1: 17.Google Scholar
Greinacher, A, Selleng, K, Warkentin, E. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost 2017; 15: 2099.Google Scholar
Hoylaerts, MF, Vanassche, T, Verhamme, P. Bacterial killing by platelets; making sense of (H)IT. J Thromb Haemost 2018; 16: 1182.Google Scholar
Kelton, JG, Arnold, DM, Bates, SM. Nonheparin anticoagulants for heparin-induced thrombocytopenia. N Engl J Med 2013; 368: 737.Google Scholar
Lewis, BE, Wallis, DE, Leya, F, et al. Argatroban anticoagulation in patients with heparin-induced thrombocytopenia. Arch Intern Med 2003; 163: 1849.Google Scholar
Magnani, HN, Gallus, A. Heparin-induced thrombocytopenia: a report of 1478 clinical outcomes of patients treated with danaparoid (Orgaran) from 1982 to mid 2004. Thromb Haemost 2006; 95: 967.Google Scholar
Padmanabhan, A, Jones, CG, Pechauer, SM, et al. IVIg for treatment of severe refractory heparin-induced thrombocytopenia. Chest 2017; 152: 478.Google Scholar
Selleng, K, Warkentin, TE, Greinacher, A. Heparin-induced thrombocytopenia in intensive care patients. Crit Care Med 2007; 35: 1165.Google Scholar
Schindewolf, M, Kroll, H, Ackermann, H, et al. Heparin-induced non-necrotizing skin lesions: rarely associated with heparin-induced thrombocytopenia. J Thromb Haemost 2010; 8: 1486.Google Scholar
Shantsila, E, Lip, GYH, Chong, BH. Heparin-induced thrombocytopenia. Chest 2009; 135: 1651.Google Scholar
Shih, AW, Sheppard, J-AI, Warkentin, TE. Platelet count recovery and seroreversion in immune HIT despite continuation of heparin: further observations and literature review. Thromb Haemost 2017; 117: 1868.Google Scholar
Various. Drug-induced thrombocytopenia. Chest 2005; 127(2): suppl.Google Scholar
Warkentin, TE. Heparin-induced thrombocytopenia: yet another treatment paradox. Thromb Haemost 2001; 85: 947.Google Scholar
Warkentin, TE. Heparin-induced thrombocytopenia: pathogenesis and management. Br J Haematol 2003; 121: 535.Google Scholar
Warkentin, TE, Chong, BH, Greinacher, A. Heparin-induced thrombocytopenia: towards consensus. Thromb Haemost 1998; 79: 1.Google Scholar
Warkentin, TE, Greinacher, A, eds. Heparin-Induced Thrombocytopenia. 5th edition. London: CRC Press. 2012.Google Scholar
Warkentin, TE, Greinacher, A, Koster, A, et al. Treatment and prevention of heparin-induced thrombocytopenia: ACCP evidence-based clinical practice guidelines Chest 2008; 133 (suppl.): 340S.Google Scholar
Warkentin, TE, Levine, MN, Hirsh, J, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med 1995; 332: 1330.Google Scholar
Warkentin, TE, Pai, M, Linkins, LA. Direct oral anticoagulants for treatment of HIT. Blood 2017; 130: 1104.Google Scholar
Warkentin, TE, Sheppard, J-AI, Heels-Ansdell, D, et al. Heparin-induced thrombocytopenia in medical surgical critical illness. Chest 2013; 144: 848.Google Scholar

Bibliography

Adedoyin, A, Branch, RA. The effect of liver disease on drugs. Curr Opin Crit Care 1997; 3: 255.Google Scholar
Alshamsi, F, Alshammari, K, Belley-Cote, E, et al. Extracorporeal liver support in patients with liver failure: a systematic review and meta-analysis of randomized trials. Intens Care Med 2020; 46: 1.Google Scholar
Ambrosino, P, Tarantino, L, Di Minno, G, et al. The risk of venous thromboembolism in patients with cirrhosis: a systematic review and meta-analysis. Thromb Haemost 2017; 117: 139.Google Scholar
Bailey, B, Amre, DK, Gaudreault, P. Fulminant hepatic failure secondary to acetaminophen poisoning: a systematic review and meta-analysis of prognostic criteria determining the need for liver transplantation. Crit Care Med 2003; 31: 299.Google Scholar
Bauer, M, Fuhrmann, V, Wendon, J. Pulmonary complications of liver disease. Intens Care Med 2019; 45: 1433.Google Scholar
Bernal, W, Auzinger, G, Dhawan, A, et al. Acute liver failure. Lancet 2010; 376: 190.Google Scholar
Bernal, W, Wendon, J. Acute liver failure. N Engl J Med 2013; 369: 2525.Google Scholar
Bernsmeier, C, Antoniades, CG, Wendon, J. What’s new in acute liver failure? Intens Care Med 2014; 40: 1545.Google Scholar
Better, OS. Renal and cardiovascular dysfunction in liver disease. Kidney Int 1986; 29: 598.Google Scholar
Calvo, CP, Sipman, FS, Caramelo, C. Renal and electrolyte abnormalities in patients with hepatic insufficiency. Curr Opin Crit Care 1996; 2: 413.Google Scholar
Dooley, J, Lok, ASF, Garcia-Tsao, G, et al., eds. Sherlock’s Diseases of the Liver and Biliary System. 13th edition. Hoboken: Wiley. 2018.Google Scholar
Eckardt, K-U. Renal failure in liver disease. Intens Care Med 1999; 25: 5.Google Scholar
Editorial. Hepatic osteomalacia and vitamin D. Lancet 1982; 1: 943.Google Scholar
Foreman, MG, Moss, M. The role of hepatic dysfunction in critical illness. Pulmonary Perspectives 2001; 18(4): 8.Google Scholar
Fraser, CL, Arieff, AI. Hepatic encephalopathy. N Engl J Med 1985; 313: 865.Google Scholar
Garcia-Tsao, G. Treatment of ascites with single total paracentesis. Hepatology 1991; 13: 1005.Google Scholar
LaMont, JT, Isselbacher, KJ. Postoperative jaundice. N Engl J Med 1973; 288: 305.Google Scholar
Larsen, FS, Wendon, J. Understanding paracetamol-induced liver failure. Intens Care Med 2014; 40: 888.Google Scholar
Lee, WM. Drug-induced hepatotoxicity. N Engl J Med 2003; 349: 474.Google Scholar
Lieber, CS. Medical disorders of alcoholism. N Engl J Med 1995; 333: 1058.Google Scholar
Ludwig, J. The nomenclature of chronic active hepatitis: an obituary. Gastroenterology 1993; 105: 274.Google Scholar
McClain, CJ. Trace metals in liver disease. Semin Liver Dis 1991; 11: 321.Google Scholar
Mills, PR, Sturrock, RD. Clinical associations between arthritis and liver disease. Ann Rheum Dis 1982; 41: 295.Google Scholar
Nanchal, R, Subramanian, R, Karvellas, CJ, et al. Guidelines for the management of adult acute and acute-on-chronic liver failure in the ICU: cardiovascular, endocrine, hematologic, pulmonary and renal considerations. Crit Care Med 2020; 48: 415.Google Scholar
Raschke, RA, Curry, SC, Rempe, S, et al. Results of a protocol for the management of patients with fulminant liver failure. Crit Care Med 2008; 36: 2244.Google Scholar
Riordan, SM, Williams, R. Current management of fulminant hepatic failure. Curr Opin Crit Care 1999; 5: 136.Google Scholar
Romero-Gomez, M, Montagnese, S, Jalan, R. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J Hepatol 2015; 62: 437.Google Scholar
Runyon, BA. Care of patients with ascites. N Engl J Med 1994; 330: 337.Google Scholar
Starzl, TE, Demetris, AJ, Van Thiel, D. Liver transplantation. N Engl J Med 1989; 321: 1014 & 1092.Google Scholar
Stravitz, RT. Critical management decisions in patients with acute liver failure. Chest 2008; 134: 1092.Google Scholar
Stravitz, RT, Kramer, AH, Davern, T, et al. Intensive care of patients with acute liver failure: recommendations of the US Acute Liver Failure Study Group. Crit Care Med 2007; 35: 2498.Google Scholar
Thomson, SJ, Cowan, ML, Johnston, I, et al. ‘Liver function tests’ on the intensive care unit: a prospective, observational study. Intens Care Med 2009; 35: 1406.Google Scholar
Vennes, JA, Bond, JH. Approach to the jaundiced patient. Gastroenterology 1983; 84: 1615.Google Scholar
Warrilow, S, Bailey, M, Pilcher, D, et al. Characteristics and outcomes of patients with acute liver failure admitted to Australian and New Zealand intensive care units. Intern Med J 2019; 49: 874.Google Scholar
Warrilow, SJ, Bellomo, R. Preventing cerebral oedema in acute liver failure: the case for quadruple-H therapy. Anaesth Intens Care 2014; 42: 78.Google Scholar
Weiss, N, Jalan, R, Thabout, D. Understanding hepatic encephalopathy. Intens Care Med 2018; 44: 231.Google Scholar
Wilkinson, GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005; 352: 2211.Google Scholar
Wright, TL. Etiology of fulminant hepatic failure: is another virus involved? Gastroenterology 1993; 104: 640.Google Scholar

Bibliography

Ambrosino, P, Tarantino, L, Di Minno, G, et al. The risk of venous thromboembolism in patients with cirrhosis: a systematic review and meta-analysis. Thromb Haemost 2017; 117: 139.Google Scholar
Assis, DN, Navarro, VJ. Human drug hepatotoxicity: a contemporary clinical perspective. Expert Opin Drug Metab Toxicol 2009; 5: 463.Google Scholar
Bell, SJ, Nguyen, T. The management of hepatitis B. Aust Prescriber 2009; 32: 99.Google Scholar
Bernal, W, Wendon, J. Acute liver failure. N Engl J Med 2013; 369: 2525.Google Scholar
Chiew, AL, Reith, D, Pomerleau, A, et al. Updated guidelines for the management of paracetamol poisoning in Australia and New Zealand. Med J Aust 2020; 212: 175.Google Scholar
Ciesek, S, Manns, MP. Chronic liver diseases. In: Scientific American Medicine. Hepatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Croagh, CM, Lubel, J. Advances in the management of hepatitis C. Intern Med J 2013; 43: 1265.Google Scholar
Davis, GL, Esteban-Mur, R, Rustgi, V, et al. Interferon alfa–2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. N Engl J Med 1998; 339: 1493.Google Scholar
Dienstag, JL, Schiff, ER, Wright, TL, et al. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med 1999; 341: 1256.Google Scholar
D’Souza, R, Foster, GR. Diagnosis and management of chronic hepatitis B. J R Soc Med 2004; 97: 318.Google Scholar
Farrell, GC. Acute viral hepatitis. Med J Aust 1998; 168: 565.Google Scholar
Farrell, GC. Chronic viral hepatitis. Med J Aust 1998; 168: 619.Google Scholar
Froomes, PRA, Morgan, DJ, Smallwood, RA, et al. Comparative effects of oxygen supplementation on theophylline and acetaminophen clearance in human cirrhosis. Gastroenterology 1999; 116: 915.Google Scholar
Fuhrmann, V, Kneidinger, N, Herkner, H, et al. Hypoxic hepatitis: underlying conditions and risk factors for mortality in critically ill patients. Intens Care Med 2009; 35: 1397.Google Scholar
Gross, JB, Persing, DH. Hepatitis C: advances in diagnosis. Mayo Clin Proc 1995; 70: 296.Google Scholar
Hoofnagle, JH. Type, D (delta) hepatitis. JAMA 1989; 261: 1321.Google Scholar
Hoofnagle, JH, Bjornsson, ES. Drug-induced liver injury: types and phenotypes. N Engl J Med 2019; 381: 264.Google Scholar
Hutin, YJ, Pool, V, Cramer, EH, et al. A multistate, foodborne outbreak of hepatitis A. N Engl J Med 1999; 340: 595.Google Scholar
Jackson, K, MacLachlan, J, Cowie, B, et al. Epidemiology and phylogenetic analysis of hepatitis D virus infection in Australia. Intern Med J 2018; 48: 1308.Google Scholar
Johnson, RJ, Gretch, Dr, Yamabe, H, et al. Membranoproliferative glomerulonephritis associated with hepatitis C virus infection. N Engl J Med 1993; 328: 465.Google Scholar
Kaplowitz, N, Aw, TY, Simon, FR, et al. Drug-induced hepatotoxicity. Ann Intern Med 1986; 104: 826.Google Scholar
Keays, R, Harrison, PM, Wendon, JA, et al. Intravenous acetylcysteine in paracetamol fulminant hepatic failure: a prospective controlled trial. BMJ 1991; 303: 1026.Google Scholar
Krawczynski, K. Hepatitis, E. Hepatology 1993; 17: 932.Google Scholar
Lau, JY, Wright, TL. Molecular virology and pathogenesis of hepatitis B. Lancet 1995; 342: 1335.Google Scholar
Lee, WM. Hepatitis B virus infection. N Engl J Med 1997; 337: 1733.Google Scholar
Liang, TJ, Rehermann, B, Seeff, LB, et al. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann Intern Med 2000; 132: 296.Google Scholar
Linnen, J, Wages, J, Zhen-Yong, ZK, et al. Molecular cloning and disease association of hepatitis G virus: A transfusion-transmissible agent. Science 1996; 271: 505.Google Scholar
Lok, AS, McMahon, BJ. Chronic hepatitis B: update of recommendations. AASLD Practice Guidelines. Hepatology 2004; 39: 857.Google Scholar
Lubel, JS, Strasser, SI, Thompson, AJ, et al. Australian consensus recommendations for the management of hepatitis B. Med J Aust 2022; 216: 478.Google Scholar
Maddrey, WC. Chronic hepatitis. Dis Mon 1993; 39: 53.Google Scholar
McCaughan, GW, Koorey, DJ. Liver transplantation. Aust NZ J Med 1997; 27: 371.Google Scholar
McCaughan, GW, Strasser, SI. Emerging therapies for hepatitis C virus (HCV) infection: the importance of HCV genotype. Aust NZ J Med 2000; 30: 644.Google Scholar
McHutchison, JG, Gordon, SC, Schiff, ER, et al. Interferon alfa–2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N Engl J Med 1998; 339: 1485.Google Scholar
Mitra, AK. Hepatitis C-related hepatocellular carcinoma. Epidem Rev 1999; 21: 180.Google Scholar
Mohsen, W, Levy, MT. Hepatitis A to E: what’s new? Intern Med J 2017; 47: 380.Google Scholar
Moulds, RFW, Malani, J. Kava: herbal panacea or liver poison. Med J Aust 2003; 178: 451.Google Scholar
Navarro, VJ, Khan, I, Bjornsson, E, et al. Liver injury from herbal and dietary supplements. Hepatology 2017; 65: 363.Google Scholar
Pak, E, Esrason, KT, Wu, VH. Hepatotoxicity of herbal remedies: an emerging dilemma. Prog Transplant 2004; 14: 91.Google Scholar
Perron, AD, Patterson, JA, Yanofsky, NN. Kombucha ‘mushroom’ hepatotoxicity. Ann Emerg Med 1995; 26: 660.Google Scholar
Riordan, SM, Williams, R. Current management of fulminant hepatic failure. Curr Opin Crit Care 1999; 5: 136.Google Scholar
Schaefer, EAK, Dienstag, JL. Viral hepatitis. In: Scientific American Medicine. Hepatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Shapiro, CN. Transmission of hepatitis viruses. Ann Intern Med 1994; 120: 82.Google Scholar
Shrestha, MP, Scott, RM, Joshi, DM, et al. Safety and efficacy of a recombinant hepatitis E vaccine. N Engl J Med 2007; 356: 895.Google Scholar
Teoh, NC, Farrell, GC. Management of chronic hepatitis C virus infection: a new era of disease control. Intern Med J 2004; 34: 324.Google Scholar
Thompson, AJV. Australian recommendations for the management of hepatitis C virus infection: a consensus statement. Med J Aust 2016; 204: 268.Google Scholar
Thompson, AJ, Holmes, JA. Treating hepatitis C – what’s new? Aust Prescriber 2015; 38: 191.Google Scholar
Tsukuma, H, Hiyama, T, Tanaka, S, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993; 328: 1797.Google Scholar
Whiting, P, Clouston, A, Kerlin, P. Black cohosh and other herbal remedies associated with acute hepatitis. Med J Aust 2002; 177: 440.Google Scholar
Wright, TL. Etiology of fulminant hepatic failure: is another virus involved? Gastroenterology 1993; 104: 640.Google Scholar
Zuckerman, AJ. The new GB hepatitis viruses. Lancet 1995; 345: 1453.Google Scholar

Bibliography

Earl, TM, Chapman, WC. Hepatocellular carcinoma: resection versus transplantation. Semin Liver Dis 2013; 33: 282.Google Scholar
El-Serag, HB, Mason, AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340: 745.Google Scholar
Fan, S-T, Lo, C-M, Lai, ECS, et al. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med 1994; 331: 1547.Google Scholar
Farmer, DG, Rosove, MH, Shaked, A, et al. Current treatment modalities for hepatocellular carcinoma. Ann Surg 1994; 219: 236.Google Scholar
Forner, A, Reig, M, Bruix, J. Hepatocellular carcinoma. Lancet 2018; 391: 1301.Google Scholar
Heimbach, JK, Kulik, LM, Finn, RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 358.Google Scholar
Koorey, D. Hepatocellular carcinoma: prevention, detection and treatment … in the real world. Intern Med J 2007; 37: 513.Google Scholar
Livraghi, T, Giorgio, A, Marin, G, et al. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology 1995; 197: 101.Google Scholar
Lubel, JS, Roberts, SK, Strasser, SI, et al. Australian recommendations for the management of hepatocellular carcinoma: a consensus statement. Med J Aust 2021; 214: 475.Google Scholar
Margolis, S, Homcy, C. Systemic manifestations of hepatoma. Medicine 1972; 51: 381.Google Scholar
Mazzaferro, V, Regalia, E, Doci, R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 334: 693.Google Scholar
McCaughan, GW, Koorey, DJ, Strasser, SI. Hepatocellular carcinoma: current approaches to diagnosis and management. Intern Med J 2002; 32: 394.Google Scholar
Mitra, AK. Hepatitis C-related hepatocellular carcinoma. Epidem Rev 1999; 21: 180.Google Scholar
Tsukuma, H, Hiyama, T, Tanaka, S, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993; 328: 1797.Google Scholar
Venook, AP. Treatment of hepatocellular carcinoma: too many options? J Clin Oncol 1994; 12: 1323.Google Scholar
Wands, JR, Blum, HE. Primary hepatocellular carcinoma. N Engl J Med 1991; 325: 729.Google Scholar

Bibliography

Bauer, M, Fuhrmann, V, Wendon, J. Pulmonary complications of liver disease. Intens Care Med 2019; 45: 1433.Google Scholar
Herve, P, Lebrec, D, Brenot, F, et al. Pulmonary vascular disorders in portal hypertension. Eur Respir J 1998; 11: 1153.Google Scholar
Krowka, MJ, Cortese, DA. Hepatopulmonary syndrome: current concepts in diagnostic and therapeutic considerations. Chest 1994; 105: 1528.Google Scholar
Krowka, MJ, Wiseman, GA, Burnett, OL, et al. Hepatopulmonary syndrome. Chest 2000; 118: 615.Google Scholar
Rodriguez-Roisin, R, Krowka, MJ. Hepatopulmonary syndrome: a liver-induced lung vascular disorder. N Engl J Med 2008; 358: 2378.Google Scholar
Schraufnagel, DE, Kay, JM. Structural and pathological changes in the lung vasculature in chronic liver disease. Clin Chest Med 1996; 17: 1.Google Scholar

Bibliography

Al-Khafaji, A, Nadim, MK, Kellum, JA. Hepatorenal disorders. Chest 2015; 148: 550.Google Scholar
Gines, P, Schrier, RW. Renal failure in cirrhosis. New Engl J Med 2009; 361: 1279.Google Scholar
Salerno, F, Gerbes, A, Gines, P, et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007; 56: 1310.Google Scholar
Wong, F, Nadim, MK, Kellum, JA. Working party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut 2011; 60: 702.Google Scholar

Bibliography

Hirsch, MS. Herpesvirus infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Whitley, RJ, Roizman, B. Herpes simplex virus infections. Lancet 2001; 357: 1513.Google Scholar

Bibliography

Bartsch, P, Mairbaurl, H, Maggiorini, M, et al. Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 2005; 98: 1101.Google Scholar
Boyer, SJ, Blume, FD. Weight loss and changes in body composition at high altitude. J Appl Physiol 1984; 57: 1580.Google Scholar
Cottrell, JJ. Altitude exposure during aircraft flight: flying higher. Chest 1988; 92: 81.Google Scholar
Cramer, D, Ward, S, Geddes, D. Assessment of oxygen supplementation during air travel. Thorax 1996; 51: 202.Google Scholar
Frayser, R, Houston, CS, Bryan, AC, et al. Retinal hemorrhage at high altitude. N Engl J Med 1970; 282: 1183.Google Scholar
Hackett, PH, Rennie, D, Levine, HD. The incidence, importance and prophylaxis of acute mountain sickness. Lancet 1976; 2: 1149.Google Scholar
Hackett, PH, Roach, RC. High-altitude illness. N Engl J Med 2001; 345: 107.Google Scholar
Hock, RJ. The physiology of high altitude. Sci Am 1970; 222: 2: 52.Google Scholar
Hornbein, TF, Schoene, RB, eds. High Altitude: An Exploration of Human Adaptation. New York: Marcel Dekker. 2001.Google Scholar
Houston, CS, Dickinson, J. Cerebral form of high-altitude illness. Lancet 1975; 2: 758.Google Scholar
Hultgren, HN. High-altitude pulmonary edema: current concepts. Annu Rev Med 1996; 47: 267.Google Scholar
Johnson, TS, Rock, PB. Acute mountain sickness. N Engl J Med 1988; 319: 841.Google Scholar
Luks, AM, Swenson, ER. Medication and dosage considerations in the prophylaxis and treatment of high-altitude illness. Chest 200; 133: 744.Google Scholar
Menon, ND. High altitude pulmonary edema. New Engl J Med 1965; 273: 66.Google Scholar
Penaloza, D, Sime, F. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness). Am J Med 1971; 50: 728.Google Scholar
Plata, R, Cornejo, A, Arratia, C, et al. Angiotensin-converting-enzyme inhibition therapy in altitude polycythaemia. Lancet 2002; 359: 663.Google Scholar
Pollard, AJ, Murdoch, DR. High Altitude Medicine. 3rd edition. Abingdon: Radcliffe. 2003.Google Scholar
Richalet, JP. High altitude pulmonary oedema: still a place for controversy? Thorax 1995; 50: 923.Google Scholar
Saxena, S, Kumar, R, Madan, T, et al. Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Chest 2005; 128: 1611.Google Scholar
Scherrer, U, Vollenweider, L, Delabays, A, et al. Inhaled nitric oxide for high-altitude pulmonary edema. N Engl J Med 1996; 334: 624.Google Scholar
Schoene, RB. Pulmonary edema at high altitude: review, pathophysiology, and update. Clin Chest Med 1985; 6: 491.Google Scholar
Schoene, RB. Illnesses at high altitude. Chest 2008; 134: 402.Google Scholar
Sutton, JR, Reeves, JT, Wagner, PD, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol 1988; 64: 1309.Google Scholar
Ward, M, Millege, J, West, J. High Altitude Medicine and Physiology. Philadelphia: University of Pennsylvania Press. 1989.Google Scholar
Waterlow, JC, Bunje, HW. Observations on mountain sickness in the Colombian Andes. Lancet 1966; 2: 655.Google Scholar
West, JB. The physiologic basis of high-altitude diseases. Ann Intern Med 2004; 141: 789.Google Scholar
West, JB, Boyer, SJ, Graber, DJ, et al. Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol 1983; 55: 688.Google Scholar

Bibliography

Del Rosso, JQ. Disorders of hair. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Ikhena, DE, Pal, L. Hirsutism and hyperandrogenism. In: Scientific American Medicine. Women’s Health. Hamilton: Decker Medicine. 2020.Google Scholar
Kvedar, JC, Gibson, M, Krusinski, PA. Hirsutism: evaluation and treatment. J Am Acad Dermatol 1985; 12: 215.Google Scholar
McKenna, TJ. Screening for sinister causes of hirsutism. N Engl J Med 1994; 331: 1015.Google Scholar
Paus, R, Cotsarelis, G. The biology of hair follicles. N Engl J Med 1999; 341: 491.Google Scholar
Rusting, RL. Hair: why it grows, why it stops. In: The Frontiers of Biotechnology. New York: Scientific American. 2002; p 66.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Cheyne, C. Histiocytosis, X. J Bone Joint Surg 1971; 53: 366.Google Scholar
Coppes-Zantinga, A, Egeler, RM. Historical review: the Langerhans cell histiocytosis X files revealed. Br J Haematol 2002; 116: 3.Google Scholar
Crausman, RS, Jennings, CA, Tuder, RM, et al. Pulmonary histiocytosis X: pulmonary function and exercise physiology. Am J Respir Crit Care Med 1996; 153: 426.Google Scholar
Kambouchner, M, Valeyre, D, Soler, P, et al. Pulmonary Langerhans’ cell granulomatosis (histiocytosis X). Annu Rev Med 1992; 43: 105.Google Scholar
Litchenstein, L. Histiocytosis: integration of eosinophilic granuloma of the bone, Letterer-Siwe disease and Hand-Schuller-Christian disease as related manifestations of a single nosologic entity. Arch Pathol 1953; 56: 84.Google Scholar
Nezelof, C, Basset, F. Langerhans cell histiocytosis research: past, present and future. Hematol Oncol Clin North Am 1998; 12: 385.Google Scholar
Seigelman, SS. Taking the X out of histiocytosis X. Radiology 1997; 204: 322.Google Scholar
Steinman, RS. Dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271.Google Scholar

Bibliography

Guillet, J-G, Lai, M-Z, Briner, TJ, et al. Immunological self, nonself discrimination. Science 1987; 235: 865.Google Scholar
Lundy, SK, Gizinski, A, Fox, DA. Introduction to clinical immunology: overview of immune response, autoimmune conditions, and immunosuppressive therapeutics for rheumatic diseases. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Schlossman, SF, Boumsell, L, Gilks, W, et al. Update: CD antigens 1993. J Immunol 1994; 152: 1.Google Scholar
Sheehan, NJ. The ramifications of HLA-B27. J R Soc Med 2004; 97: 10.Google Scholar
Tiwari, JL, Terasaki, PI. HLA and Disease Associations. New York: Springer-Verlag. 1985.Google Scholar

Bibliography

Kauffman, CA. Mycotic infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Wheat, LJ. Systemic fungal infections: diagnosis and treatment; I. Histoplasmosis. Infect Dis Clin North Am 1988; 2: 841.Google Scholar

Bibliography

Reddy, G, Coombes, A, Hubbard, AD. Horner’s syndrome following internal jugular vein cannulation. Intens Care Med 1998; 24: 194.Google Scholar

Bibliography

Beauchamp, RO, Bus, JS, Popp, JA, et al. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 1984; 13: 25.Google Scholar
Drabek, T. Hydrogen sulphide – curiouser and curiouser! Crit Care Med 2012; 40: 2255.Google Scholar
Kapoor, A, Thiemermann, C. Hydrogen sulfide, neurogenic inflammation and cardioprotection: a tale of rotten eggs and vanilloid receptors. Crit Care Med 2010; 38: 728.Google Scholar
Li, L, Bhatia, M, Moore, PK. Hydrogen sulphide: a novel mediator of inflammation? Curr Opin Pharmacol 2006; 6: 125.Google Scholar
Steendijk, P. Toward therapeutic use of hydrogen sulfide in critical care. Crit Care Med 2010; 38: 725.Google Scholar
Szabo, C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007; 6: 917.Google Scholar
Wagner, F, Asfar, P, Calzia, E, et al. Bench-to-bedside review: hydrogen sulfide – the third gaseous transmitter: applications for critical care. Crit Care 2009; 13: 213.Google Scholar

Bibliography

Bachmann, C. Mechanisms of hyperammonemia. Clin Chem Lab Med 2002; 40: 653.Google Scholar
Bernal, W, Wendon, J. Acute liver failure N Engl J Med 2013; 369: 2525.Google Scholar
Clay, AS, Hainline, BE. Hyperammonaemia in the ICU. Chest 2008; 132: 1368.Google Scholar
Crosbie, DC, Sugamar, H, Simpson, MA, et al. Late-onset ornithine transcarbamylase deficiency: a potentially fatal yet treatable cause of coma. Crit Care Resusc 2009; 11: 222.Google Scholar
Kwan, L, Wang, C, Levitt, L. Hyperammonemic encephalopathy in multiple myeloma. N Engl J Med 2002; 346: 1674.Google Scholar
Lockwood, AH. Controversies in ammonia metabolism: implications for hepatic encephalopathy. Metab Brain Dis 2007; 22: 285.Google Scholar
Summar, M, Barr, F, Dawling, S, et al. Unmasked adult-onset urea cycle disorder in the critical care setting. Crit Care Clin 2005; 21 (suppl.): S1.Google Scholar
Warrilow, S, Fisher, C, Bellomo, R. Correction and control of hyperammonemia in acute liver failure: the impact of continuous renal replacement timing, intensity, and duration. Crit Care Med 2020; 48: 218.Google Scholar

Bibliography

Featherstone, PJ, Ball, CM. The therapeutic use of air under hyperbaric pressure. Anaesth Intens Care 2021; 49: 159.Google Scholar
Weaver, LK. Hyperbaric oxygen in the critically ill. Crit Care Med 2011; 39: 1784.Google Scholar

Bibliography

Anderson, JJB, Toverud, SU. Diet and vitamin D: a review with an emphasis on human function. J Nutr Biochem 1994; 5: 58.Google Scholar
Beall, DP, Scofield, RH. Milk-alkali syndrome associated with calcium carbonate consumption. Medicine 1995; 74: 89.Google Scholar
Bilerzikian, JP. Management of acute hypercalcemia. N Engl J Med 1992; 326: 1196.Google Scholar
Cox, M, Haddad, JG. Lymphoma, hypercalcemia, and the sunshine vitamin. Ann Intern Med 1994; 21: 709.Google Scholar
DeLuca, HF. Vitamin D metabolism and function. Arch Intern Med 1978; 138: 836.Google Scholar
Dickinson, M, Prince, HM, Kirsa, S, et al. Osteonecrosis of the jaw complicating bisphosphonate treatment for bone disease in multiple myeloma: an overview with recommendations for prevention and treatment. Intern Med J 2009; 39: 304.Google Scholar
Major, P, Lortholary, A, Hon, J, et al. Zoledronic acid is superior to palmidronate in the treatment of hypercalcaemia of malignancy. J Clin Oncol 2001; 19: 558.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
Mundy, GR. Hypercalcemia of malignancy revisited. J Clin Invest 1988; 82: 1.Google Scholar
Nussbaum, SR. Pathophysiology and management of severe hypercalcemia. Endocrinol Metab Clin North Am 1993; 22: 343.Google Scholar
Ralston, SH, Gallacher, SJ, Patel, U, et al. Comparison of three intravenous biphosphonates in cancer-associated hypercalcemia. Lancet 1989; 2: 1180.Google Scholar
Rodan, GA, Fleisch, HA. Bisphosphonates: mechanisms of action. J Clin Invest 1996; 97: 2692.Google Scholar
Theriault, RL. Hypercalcemia of malignancy: pathophysiology and implications for treatment. Oncology 1993; 7: 47.Google Scholar
Wysolmerski, JJ, Broadus, AE. Hypercalcemia of malignancy: the central role of parathyroid hormone-related protein. Annu Rev Med 1994; 45: 189.Google Scholar

Bibliography

Levy, B, Fritz, C, Tahon, E, et al. Vasoplegia treatments: the past, the present, and the future. Crit Care 2018; 22: 52.Google Scholar

Bibliography

Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Bilezikian, JP, Potts, JT, Fuleihan, G-H, et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Bone Miner Res 2002; 17 (suppl. 2): N2.Google Scholar
Block, GA, Martin, KJ, de Francisco, ALM, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. Ne Engl J Med 2004; 350: 1516.Google Scholar
Brown, EM. Extracellular Ca2+ sensing regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 1991; 71: 371.Google Scholar
Brown, EM, Gamba, G, Riccardi, D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993; 366: 575.Google Scholar
Deftos, LJ, Parthemore, JG, Stabile, BE. Management of primary hyperparathyroidism. Annu Rev Med 1993; 44: 19.Google Scholar
Fischer, JA. ‘Asymptomatic’ and symptomatic primary hyperparathyroidism. Clin Invest 1993; 71: 505.Google Scholar
Glendenning, P. Diagnosis of primary hyperparathyroidism: controversies, practical issues and the need for Australian guidelines. Intern Med J 2003; 33: 598.Google Scholar
Heath, H. Familial benign (hypocalciuric) hypercalcemia: a troublesome mimic of mild primary hyperparathyroidism. Endocrinol Metab Clin North Am 1989; 18: 723.Google Scholar
Heath, H, Hodgson, SE, Kennedy, MA. Primary hyperparathyroidism: incidence, morbidity and potential economic impact in a community. N Engl J Med 1980; 302: 189.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
Pocotte, SL, Ehrenstein, G, Fitzpatrick, LA. Regulation of parathyroid hormone secretion. Endocr Rev 1991; 12: 291.Google Scholar
Slatopolsky, E, Delmez, JA. Pathogenesis of secondary hyperparathyroidism. Am J Kidney Dis 1994; 23: 229.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar

Bibliography

Coburn, JW, Salusky, IB. Control of serum phosphorus in uremia. N Engl J Med 1989; 320: 1140.Google Scholar
Connor, A, Tolan, D, Hughes, S, et al. Consensus guidelines for the safe prescription and administration of oral bowel-cleansing agents. Gut 2012; 61: 1525.Google Scholar
Weisinger, JR, Bellorin-Font, E. Magnesium and phosphorus. Lancet 1998; 352: 391.Google Scholar

Bibliography

Bernardo, J, Center, DM. Hypersensitivity pneumonia. Dis Mon 1981; 27: 1.Google Scholar
Fernandez-Perez, ER, Travis, WD, Lynch, DA, et al. Executive summary: diagnosis and evaluation of hypersensitivity pneumonitis: CHEST guideline and expert panel report. Chest 2021; 160: 595.Google Scholar
Fink, JN, Ortega, HG, Reynolds, HY, et al. Needs and opportunities for research in hypersensitivity pneumonitis. Am J Respir Crit Care Med 2005; 171: 792.Google Scholar
Glazer, C, Rose, C, Lynch, D. Clinical and radiological manifestations of hypersensitivity pneumonitis. J Thorac Imaging 2002; 17: 261.Google Scholar
Ismail, T, McSharry, C, Royd, G. Extrinsic allergic alveolitis. Respirology 2006; 11: 262.Google Scholar
Lacasse, Y, Girard, M, Cornier, Y. Recent advances in hypersensitivity pneumonitis. Chest 2012; 142: 208.Google Scholar
Mohr, LC. Hypersensitivity pneumonitis. Curr Opin Pulm Med 2004; 10: 401.Google Scholar
Morell, F, Roger, A, Cruz, M-J, et al. Suberosis: clinical study and new etiologic agents in a series of eight patients. Chest 2003; 124: 1145.Google Scholar
Nicholson, DP. Extrinsic allergic pneumonias. Am J Med 1972; 53: 131.Google Scholar
Salvaggio, JE. Extrinsic allergic alveolitis: past, present and future. Clin Exp Allergy 1997; 27 (suppl. 1): 18.Google Scholar

Bibliography

Bohnsack, JF, Brown, EJ. The role of the spleen in resistance to infection. Annu Rev Med 1986; 37: 49.Google Scholar
Rose, WF. The spleen as a filter. N Engl J Med 1987; 317: 704.Google Scholar

Bibliography

Bourcier, S, Coutrot, M, Kimmoun, A, et al. Thyroid storm in the ICU: a retrospective multicenter study. Crit Care Med 2020; 48: 83.Google Scholar
Burrow, GN. The management of thyrotoxicosis in pregnancy. N Engl J Med 1985; 313: 562.Google Scholar
Carter, JA, Utiger, RD. The ophthalmopathy of Graves’ disease. Annu Rev Med 1992; 43: 487.Google Scholar
Cooper, DS. Which anti-thyroid drug? Am J Med 1986; 80: 1165.Google Scholar
Cooper, DS. Hyperthyroidism. Lancet 2003; 362: 459.Google Scholar
DeGroot, LJ, Quintans, J. The causes of autoimmune thyroid disease. Endocr Rev 1989; 10: 537.Google Scholar
El-Kaissi, S, Frauman, AG, Wall, JR. Thyroid-associated ophthalmopathy: a practical guide to classification, natural history and management. Intern Med J 2004; 34: 482.Google Scholar
Franklyn, J, Sheppard, M. Radioiodine for thyrotoxicosis: perhaps the best option. BMJ 1992; 305: 727.Google Scholar
Hall, AJH, Topliss, DJ. Medical and surgical treatment of thyroid eye disease. Intern Med J 2022; 52: 14.Google Scholar
Jiang, YZ, Hutchinson, KA, Bartelloni, P, et al. Thyroid storm presenting as multiple organ dysfunction syndrome. Chest 2000; 118: 877.Google Scholar
Khir, ASM. Suspected thyrotoxicosis. BMJ 1985; 290: 916.Google Scholar
Lazar, MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184.Google Scholar
Magner, JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr Rev 1990; 11: 354.Google Scholar
Nayak, B, Burman, K. Thyrotoxicosis and thyroid storm. Endocrinol Metab Clin North Am 2006; 35: 663.Google Scholar
Ramsay, I. Drug and non-thyroid induced changes in thyroid function tests. Postgrad Med J 1985; 61: 375.Google Scholar
Shupnik, MA, Ridgway, EC, Chin, WW. Molecular biology of thyrotropin. Endocr Rev 1989; 10: 459.Google Scholar
Smallridge, RC. Metabolic and anatomic thyroid emergencies: a review. Crit Care Med 1992; 20: 276.Google Scholar
Smith, TJ, Hegedus, L. Graves’ disease. N Engl J Med 2016; 375: 1552.Google Scholar
Stockigt, JR. Hyperthyroidism secondary to drugs and acute illness. Endocrinologist 1993; 3: 67.Google Scholar
Surks, MI, Chopra, IJ, Mariash, CN, et al. American Thyroid Association guidelines for use of laboratory tests in thyroid disorders. JAMA 1990; 263: 1529.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
Topliss, DJ, Eastman, CJ. Diagnosis and management of hyperthyroidism and hypothyroidism. Med J Aust 2004; 180: 186.Google Scholar
Waldstein, SS, Slodki, SJ, Kaganiec, GI. A clinical study of thyroid storm. Ann Intern Med 1960; 52: 626.Google Scholar
Woeber, KA. Thyrotoxicosis and the heart. N Engl J Med 1992; 327: 94.Google Scholar
Wong, R, Farrell, SG, Grossmann, M. Thyroid nodules: diagnosis and management. Med J Aust 2018; 209: 92.Google Scholar

Bibliography

Aberegg, SK. Ionized calcium in the ICU: should it be measured and corrected? Chest 2016; 149: 846.Google Scholar
Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Cholst, IN, Steinberg, SF, Tropper, PJ, et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984; 310: 1221.Google Scholar
Kelly, A, Levine, MA. Hypocalcemia in the critically ill patient. J Intens Care Med 2013; 28: 166.Google Scholar
Lebowitz, MR, Moses, AM. Hypocalcemia. Semin Nephrol 1992; 12: 146.Google Scholar
Reid, IR, Bolland, MJ. Controversies in medicine: the role of calcium and vitamin D supplements in adults. Med J Aust 2019; 211: 468.Google Scholar
Slomp, J, van der Voort, PHJ, Gerritsen, RT, et al. Albumin-adjusted calcium is not suitable for diagnosis of hyper- and hypocalcemia in the critically ill. Crit Care Med 2003; 31: 1389.Google Scholar
Vivien, B, Langeron, O, Morell, E, et al. Early hypocalcemia in severe trauma. Crit Care Med 2005; 33: 1946.Google Scholar
Zaloga, GP. Hypocalcemia in critically ill patients. Crit Care Med 1992; 20: 251.Google Scholar

Bibliography

Achinger, SG, Ayus, JC. Treatment of hyponatremic encephalopathy in the critically ill. Crit Care Med 2017; 45: 1762.Google Scholar
Nigro, N, Grossmann, M, Chiang, C, et al. Polyuria-polydipsia syndrome: a diagnostic challenge. Intern Med J 2018; 48: 244.Google Scholar
Spasovski, G, Vanholder, R, Allolio, B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intens Care Med 2014; 40: 320.Google Scholar
Tee, SL, Sindone, A, Roger, S, et al. Hyponatraemia in heart failure. Intern Med J 2020; 50: 659.Google Scholar

Bibliography

Bilezikian, JP, Brandi, ML, Cusano, NE, et al. Management of hypoparathyroidism: present and future. J Clin Endocrinol Metab 2016; 101: 2313.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Pocotte, SL, Ehrenstein, G, Fitzpatrick, LA. Regulation of parathyroid hormone secretion. Endocr Rev 1991; 12: 291.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar

Bibliography

Aubier, M, Murciano, D, Lecocguic, Y, et al. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med 1985; 313: 420.Google Scholar
Charro, T, Bernard, F, Skrobik, Y, et al. Intravenous phosphate in the intensive care unit: more aggressive repletion regimens for moderate and severe hypophosphatemia. Intens Care Med 2003; 29: 1273.Google Scholar
Coburn, JW, Salusky, IB. Control of serum phosphorus in uremia. N Engl J Med 1989; 320: 1140.Google Scholar
Kingston, M, Al-Siba’l, MB. Treatment of severe hypophosphatemia. Crit Care Med 1985; 13: 16.Google Scholar
Weisinger, JR, Bellorin-Font, E. Magnesium and phosphorus. Lancet 1998; 352: 391.Google Scholar

Bibliography

Kanhutu, K, Jones, P, Cheng, AC, et al. Spleen Australia guidelines for the prevention of sepsis in patients with asplenia and hyposplenism in Australia and New Zealand. Intern Med J 2017; 47: 848.Google Scholar
Katz, SC, Pachter, HL. Indications for splenectomy. Am Surg 2006; 72: 565.Google Scholar
O’Neal, HR, Niven, AS, Karam, GH. Critical illness in patients with asplenia. Chest 2016; 150: 1394.Google Scholar
Rubin, LG, Schaffner, W. Clinical practice: care of the asplenic patient. N Engl J Med 2014; 371: 349.Google Scholar
Spelman, D, Buttery, J, Daley, A, et al. Guidelines for the prevention of sepsis in asplenic and hyposplenic patients. Intern Med J 2008; 38: 349.Google Scholar

Bibliography

Alqalyoobi, S, Boctor, N, Sarkeshik, AA, et al. Therapeutic hypothermia and mortality in the intensive care unit: systematic review and meta-analysis. Crit Care Resusc 2019; 21: 287.Google Scholar
Arons, MM, Wheeler, AP, Bernard, GR, et al. Effects of ibuprofen on the physiology and survival of hypothermic sepsis. Crit Care Med 1999; 27: 699.Google Scholar
Bernard, SA, Buist, M. Induced hypothermia in critical care medicine: a review. Intens Care Med 2003; 31: 2041.Google Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557.Google Scholar
Brauer, A, Wrigge, H, Kersten, J, et al. Severe accidental hypothermia: rewarming strategy using a veno-venous bypass system and a convective air warmer. Intens Care Med 1999; 25: 520.Google Scholar
Britt, LD, Dascombe, WH, Rodriguez, A. New horizons in management of hypothermia and frostbite injury. Surg Clin North Am 1991; 71: 345.Google Scholar
Chen, H, Wu, F, Yang, P, et al. A meta-analysis of therapeutic hypothermia in adult patients with traumatic brain injury. Crit Care 2019; 23: 396.Google Scholar
Clemmer, TP, Fisher, CJ, Bone, RC, et al. Hypothermia in the sepsis syndrome and clinical outcome. Crit Care Med 1992; 20: 1395.Google Scholar
Clifton, GL, Miller, ER, Choi, SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 2001; 344: 556.Google Scholar
Cooper, DJ, Nichol, AD, Bailey, M, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA 2018; 320: 2211.Google Scholar
Dexter, WW. Hypothermia: safe and efficient methods of rewarming the patient. Postgrad Med 1990; 88: 55.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Easterbrook, PJ, Davis, HP. Thrombocytopenia in hypothermia: a common but poorly recognised complication. BMJ 1985; 291: 23.Google Scholar
Frank, SM, Fleischer, LA, Breslow, MJ, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. JAMA 1997; 277: 1127.Google Scholar
Hanania, NA, Zimmerman, JL. Accidental hypothermia. Crit Care Clin 1999; 15: 235.Google Scholar
Herr, DL, Badjatia, N, eds. Therapeutic temperature management: state of the art in the critically ill. Crit Care Med 2009; 37 (suppl.): S185.Google Scholar
Kim, JH, Nagy, A, Putzu, A, et al. Therapeutic hypothermia in critically ill patients: a systematic review and meta-analysis of high quality randomized trials. Crit Care Med 2020; 48: 1047.Google Scholar
Ku, J, Brasel, KJ, Baker, CC, et al. Triangle of death: hypothermia, acidosis, and coagulopathy. New Horizons 1999; 7: 61.Google Scholar
Kurisu, K, Yenari, MA. Therapeutic hypothermia for ischemic stroke: pathophysiology and future promise. Neuropharmacology 2018; 134: 302.Google Scholar
Kurz, A, Sessler, DI, Lenhardt, R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med 1996; 334: 1209.Google Scholar
Larach, MG. Accidental hypothermia. Lancet 1995; 345: 493.Google Scholar
Lefrant, J-Y, Muller, L, Coussaye, JE, et al. Temperature measurement in intensive care patients: comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intens Care Med 2003; 29: 414.Google Scholar
Lloyd, EL. Treatment after exposure to cold. Lancet 1972; 1: 491.Google Scholar
Perman, SM, Goyal, M, Neumar, RW, et al. Clinical applications of targeted temperature management. Chest 2014; 145: 386.Google Scholar
Polderman, KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: indications and evidence. Intens Care Med 2004; 30: 556.Google Scholar
Polderman, KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 2: practical aspects and side effects. Intens Care Med 2004; 30: 757.Google Scholar
Polderman, KH, Herold, I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med 2009; 37: 1101.Google Scholar
Reuler, JB. Hypothermia: pathophysiology, clinical settings, and management. Ann Intern Med 1978; 89: 519.Google Scholar
Sessler, DI. Mild perioperative hypothermia. N Engl J Med 1997; 336: 1730.Google Scholar
Sunjic, KM, Webb, AC, Sunjic, I, et al. Pharmacokinetic and other considerations for drug therapy during targeted temperature management. Crit Care Med 2015; 43: 2228.Google Scholar
The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549.Google Scholar
Tisherman, SA, Sterz, F, eds. Therapeutic Hypothermia. Berlin: Springer. 2005.Google Scholar
Tortorici, MA, Kochanek, PM, Poloyac, SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus on hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med 2007; 35: 2196.Google Scholar
Varon, J, Acosta, P. Therapeutic hypothermia: past, present and future. Chest 2008; 133: 1267.Google Scholar
Varon, J, Sadovnikoff, N, Sternbach, GL. Hypothermia: saving patients from the big chill. Postgrad Med 1992; 92: 47.Google Scholar
Vassal, T, Benoit-Gonin, B, Carrat, F, et al. Severe accidental hypothermia treated in an ICU: prognosis and outcome. Chest 2001; 120: 1998.Google Scholar
Walpoth, BH, Walpoth-Aslan, BN, Mattle, HP, et al. Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N Engl J Med 1997; 337: 1500.Google Scholar
Woodhouse, P, Keatinge, WR, Coleshaw, SR. Factors associated with hypothermia in patients admitted to a group of inner city hospitals. Lancet 1989; 2: 1201.Google Scholar

Bibliography

Bastenie, PA, Bonnyns, M, Vanhaelst, L. Natural history of primary myxedema. Am J Med 1985; 79: 91.Google Scholar
DeGroot, LJ, Quintans, J. The causes of autoimmune thyroid disease. Endocr Rev 1989; 10: 537.Google Scholar
Editorial. Subclinical hypothyroidism. Lancet 1986; 1: 251.Google Scholar
Jordan, RM. Myxedema coma: the prognosis is improving. Endocrinologist 1993; 3: 149.Google Scholar
Lazar, MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Magner, JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr Rev 1990; 11: 354.Google Scholar
Mazzaferri, EL. Adult hypothyroidism. Postgrad Med 1986; 79: 64 & 75.Google Scholar
Ramsay, I. Drug and non-thyroid induced changes in thyroid function tests. Postgrad Med J 1985; 61: 375.Google Scholar
Roberts, CG, Ladenson, PW. Hypothyroidism. Lancet 2004; 363: 793.Google Scholar
Shupnik, MA, Ridgway, EC, Chin, WW. Molecular biology of thyrotropin. Endocr Rev 1989; 10: 459.Google Scholar
Smallridge, RC. Metabolic and anatomic thyroid emergencies: a review. Crit Care Med 1992; 20: 276.Google Scholar
Surks, MI, Chopra, IJ, Mariash, CN, et al. American Thyroid Association guidelines for use of laboratory tests in thyroid disorders. JAMA 1990; 263: 1529.Google Scholar
Surks, MI, Ortiz, E, Daniels, GH, et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 2004; 291: 228.Google Scholar
Topliss, DJ, Eastman, CJ. Diagnosis and management of hyperthyroidism and hypothyroidism. Med J Aust 2004; 180: 186.Google Scholar
Vance, ML. Hypopituitarism. N Engl J Med 1994; 330: 1651.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
Walsh, JP, Stuckey, BGA. What is the optimal treatment for hypothyroidism. Med J Aust 2001; 174: 141.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • H
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • H
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • H
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×