Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: February 2010

3 - Microstructure of natural ice features

Summary

Introduction

The microstructure of a natural ice feature is a direct result of its thermal-mechanical history. Glaciers, for instance, form from snow through the processes of sintering and densification. At the surface, sintering of dry snow is driven by a reduction in surface and grain boundary energy. Below a depth of 2–3 m, density increases under the combined effects of particle rearrangement and sintering. Snow gradually changes into firn, a form of porous ice of relative density of about 0.6. The transition marks the end of particle packing as the dominant densification process. Firn densifies mainly through creep. Closed pores progressively form, leading to bubbly ice. In polar ice sheets, depending upon the snow accumulation rate and temperature, the transition from firn to bubbly ice occurs at a relative density between 0.82 and 0.84 (Arnaud, 1997). At the close-off density, ice contains cylindrical and spherical pores. The density of bubbly ice increases with depth, and the pressure within bubbles progressively increases. In polar sheets, bubbles transform into hydrate crystals below a depth of 500 m (Miller, 1973). The evolution of the microstructure with depth depends on temperature, strain rate and impurities, and depends as well on grain growth and recrystallization. The grain size of the ice that eventually forms is typically between a millimeter and several centimeters (Chapter 6).

Related content

Powered by UNSILO
References
Alley, R. B. (1987). Firn densification by grain boundary sliding: a first model. J. Physique, 48, C1-249–C1-256.
Arnaud, L. (1997). Modélisation de la transformation de la neige en glace à la surface des calottes polaires; Etude du transport des gaz dans ces milieux poreux. Thesis, Université Joseph Fourier, Grenoble.
Arnaud, L., Lipenkov, V., Barnola, J. M., Gay, M. and Duval, P. (1998). Modelling of the densification of polar firn: characterization of the snow-firn transition. Ann. Glaciol., 26, 39–44.
Arnaud, L., Barnola, J. M. and Duval, P. (2000). Physical modeling of the densification of snow-firn and ice in the upper part of polar ice sheets. In Physics of Ice Core Records, ed. Hondoh, T.. Sapporo: Hokkaido University Press, pp. 285–305.
Baker, I. and Cullen, D. (2003). SEM/EDS observations of impurities in polar ice: Artifacts or not?J. Glaciol., 49, 184–190.
Baker, I., Iliescu, D., Obbard, R.et al. (2005). Microstructural characterization of ice cores. Ann. Glaciol., 42, 441–444.
Blackford, J. R. (2007). Sintering and microstructure of ice: a review. J. Phys. D: Appl. Phys., 40, R355–R385.
Cherepanov, N. V. (1971). Spatial arrangement of sea ice crystal structure. Prob. Arkt. i Antarkt., 38, 176–181.
Colbeck, S. C. (1983). Theory of metamorphism of dry snow. J. Geophys. Res., 88, 5475–5482.
Colbeck, S. C. (1997). A review of sintering in seasonal snow. CRREL Report, 97-10, 1–11.
Colbeck, S. C. (1998). Sintering in a dry snow cover. J. Appl. Phys., 84, 4585–4589.
Cole, D. M. and Shapiro, L. H. (1998). Observations of brine drainage networks and microstructure of first-year sea ice. J. Geophys. Res., 103, 21739–21750.
Cox, G. F. N. and Weeks, W. F. (1974). Salinity variations in sea ice. J. Glaciol., 13, 109–120.
Cullen, D. and Baker, I. (2000). The chemistry of grain boundaries in Greenland ice. J. Glaciol., 46, 703–706.
Druez, J., Cloutier, J. and Claveau, L. (1987). Etude comparative de la resistance a la traction et a la compression de la glace atmospherique. J. Physique Coll. C1, 49, C1-337–C1-343.
Flemings, M. C., Ed. (1974). Solidification Processing. Materials Science and Engineering Series. New York: McGraw-Hill, Inc.
Fletcher, N. H. (1970). The Chemical Physics of Ice. Cambridge: Cambridge University Press.
Flin, F., Brzoska, J. B., Lesaffre, B., Coleou, C. and Pieritz, R. (2004). Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions. Ann. Glaciol., 38, 39–44.
Fukazawa, H., Sugiyama, K., Mae, S., Narita, H. and Hondoh, T. (1998). Acid ions at triple junction of Antarctic ice observed by Raman scattering. Geophys. Res. Lett., 25, 2845–2848.
Gold, L. W. and Krausz, A. S. (1971). Investigation of the mechanical properties of St. Lawrence river ice. Can. Geotech. J., 8, 163–169.
Golden, K. M., Ackley, S. F. and Lytle, V. I. (1998). The percolation phase transition in sea ice. Science, 282, 2238–2241.
Gow, A. J. (1969). On the rates of growth of grains and crystals in south polar firn. J. Glaciol., 8, 241–252.
Gow, A. J. (1986). Orientation textures in ice sheets of quietly frozen lakes. J. Cryst. Growth, 74, 247–258.
Gow, A. J., Weeks, S. F. and Govoni, J. W. (1982). Physical and structural characteristics of Antarctic sea ice. Ann. Glaciol., 3, 113–117.
Gross, G. W. and Svec, R. K. (1997). Effect of ammonium on anion uptake and dielectric relaxation in laboratory-grown ice columns. J. Phys. Chem. B, 101, 6282–6284.
Gubler, H. (1985). Model for dry snow metamorphism by interparticle vapor flux. J. Geophys. Res., 90, 8081–8092.
Hallett, J. (1960). Crystal growth and the formation of spikes in the surface of supercooled water. J. Glaciol., 3, 698–704.
Hellawell, A. and Herbert, P. M. (1962). The development of preferred orientations during the freezing of metals and alloys. Proc. R. Soc. A, 269, 560–573.
Hillig, W. B. (1958). The kinetics of freezing of ice in the direction perpendicular to the basal plane. In Growth and Perfection of Crystals, eds. Doremus, R. H., Roberts, B. W. and Turnbull, D.. New York: Wiley & Sons, pp. 350–359.
Hillig, W. B. (1959). Kinetics of solidification from nonmetallic liquids. In Kinetics of High Temperature Processes, ed. Kingery, W. D.. New York: Wiley & Sons, pp. 127–135.
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon Press.
Iliescu, D., Baker, I. and Chang, H. (2004). Determining the orientations of ice crystals using electron backscatter patterns. Microsc. Res. Tech., 63, 184–187.
Jeffries, M. O., Weeks, W. F., Shaw, R. and Morris, K. (1993). Structural characteristics of congelation and platelet ice and their role in the development of Antarctic land-fast sea ice. J. Glaciol., 39, 223–238.
Kawamura, T. (1987). Studies on preferred growth of sea ice grain. In Contributions of the Institute of Low Temperature Science. Sapporo: Hokkaido University Press, pp. 1–29.
Kermani, M., Farzaneh, M. and Gagnon, R. (2008). Bend strength and effective modulus of atmospheric ice, Cold Reg. Sci. Technol., 53, 162–169.
Ketcham, W. M. and Hobbs, P. V. (1967). The preferred orientation in the growth of ice from the melt. J. Cryst. Growth, 1, 263–270.
Killawee, J. A., Fairchild, I. J., Tison, J. -L., Janssens, L. and Lorrain, R. (1998). Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems. Geochem. Cosmochim. Acta, 62, 3637–3655.
Knight, C. A. (1966). Grain boundary migration and other processes in the formation of ice sheets on water. J. Appl. Phys., 37, 568–574.
Knight, C. A. and Knight, N. C. (1968a). Spongy hailstone growth criteria I. Orientation fabrics. J. Atmos. Sci., 25, 445–452.
Knight, C. A. and Knight, N. C. (1968b). Spongy hailstone growth criteria II. Microstructures. J. Atmos. Sci., 25, 453–459.
Knight, C. A. and Knight, N. C. (1971). Hailstones. Sci. Am., 224, 96–103.
Koo, K. -k., Ananth, R. and Gill, W. N. (1991). Tip splitting in dendritic growth of ice crystals. Phys. Rev. A, 44, 3782–3790.
Langhorne, P. J. and Robinson, W. H. (1986). Alignment of crystals in sea ice due to fluid motion. Cold Reg. Sci. Technol., 12, 197–214.
Lipenkov, V. (2000). Air-bubbles and air-hydrate crystals in the Vostok ice core. In Physics of Ice Core Records, ed. Hondoh, T.. Sapporo: Hokkaido University Press, pp. 327–385.
Lipenkov, V., Salamatin, A. N. and Duval, P. (1997). Bubble-densification in ice sheets. J. Glaciol., 43, 397–407.
Lock, G. S. H. (1990). The Growth and Decay of Ice. Cambridge: Cambridge University Press.
Lofgren, G. and Weeks, W. F. (1969). Effect of growth parameters on the substructure spacing in NaCl ice crystals. J. Glaciol., 8, 153–164.
Ludlam, F. H. (1951). The heat economy of a rimed cylinder. Q. J. R. Meteorol. Soc., 77, 663–666.
Macklin, W. C. and Ryan, B. F. (1965). The structure of ice grown in bulk supercooled water. J. Atmos. Sci., 22, 452–459.
Maeno, N. and Ebinuma, T. (1983). Pressure sintering of ice and its implication to the densification of snow at polar glaciers and ice sheets. J. Phys. Chem., 87, 4103–4110.
Michel, B. and Ramseier, R. O. (1971). Classification of river and lake ice. Can. Geotech. J., 8, 36–45.
Miller, S. L. (1973). The clathrate hydrates – their nature and occurrence. In Physics and Chemistry of Ice, eds. Whalley, E., Jones, S. J. and Gold, L. W.. Ottawa, Canada: Royal Society of Canada, pp. 42–50.
Mulvaney, R., Wolff, E. W. and Oates, K. (1988). Sulfuric-acid at grain-boundaries in Antarctic ice. Nature, 331, 247–249.
Nakawo, M. and Sinha, N. K. (1984). A note on brine layer spacing in first-year sea ice. Atmosphere-Ocean, 22, 193–206.
Obbard, R. and Baker, I. (2007). The microstructure of meteroric ice from Vostok, Antarctica. J. Glaciol., 53, 41–62.
Obbard, R., Baker, I. and Sieg, K. (2006). Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets. J. Glaciol., 52, 546–557.
Oxtoby, D. W., Ed. (1999). Nucleation and Surface Melting of Ice. NATO ASI Series, Ice Physics and the Natural Environment. Heidelberg: Springer-Verlag.
Paterson, W. S. (2000). Physics of Glaciers, 3rd edn. Oxford: Butterworth Heineman.
Pauer, F., Kipfstuhl, J., Kuhs, W. F. and Shoji, H. (1999). Air clathrate crystals from the GRIP deep ice core: a number-, size- and shape-distribution study. J. Glaciol., 45, 22–30.
Perey, F. G. J., and Pounder, E. R. (1958). Crystal orientation in ice sheets. Can. J. Phys., 36, 494–502.
Perovich, D. K. and Richter-Menge, J. A. (2000). Ice growth and solar heating in springtime leads. J. Geophys. Res., 105, 6541–6548.
Piazolo, S., Montagnat, M. and Blackford, J. R. (2008). Sub-structure characterization of experimentally and naturally deformed ice using Cryo-EBSD. J. Microscopy, 230, 509–519.
Pieritz, R., Brzoska, J. B., Flin, F., Lesaffre, B. and Coleou, C. (2004). From snow X-ray tomography raw volume data to micromechanics modeling: first results. Ann. Glaciol., 38, 52–58.
Poots, G. (2000). Ice and snow accretion on structures: Introductory remarks. Phil. Trans. R. Soc. Lond. A, 358, 2803–2810.
Ramseier, R. O. (1968). Origin of preferred orientation in columnar ice. J. Cryst. Growth, 3, 621–624.
Rothrock, D. A., Yu, U. and Maykut, G. A. (1999). Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26, 3469–3472.
Rutter, B. F. and Chalmers, B. (1953). A prismatic substructure formed during solidification of metals. Can. J. Phys., 1, 15–39.
Ryerson, C. C. and Gow, A. J. (2000). Crystalline structure and physical properties of ship superstructure spray ice. Phil. Trans. R. Soc. Lond. A, 358, 2847–2871.
Salamatin, A. N. and Lipenkov, V. (2003). Air-hydrate crystal growth in polar ice. J. Cryst. Growth, 257, 412–426.
Salamatin, A. N., Lipenkov, V., Barnola, J. M., Hori, A. and Duval, P. (in press). Snow-firn densification in polar ice sheets. In Physics of Ice Core Records II, ed. Hondoh, T.. Sapporo: Hokkaido University Press.
Seeley, L. H. and Seidler, G. T. (2001). Two-dimensional nucleation of ice from supercooled water. Phys. Rev. Lett., 87, 057702.
Shapiro, L. H. and Weeks, W. F. (1993). The influence of crystallographic and structural properties on the flexural strength of small sea ice beam. In Ice Mechanics-1993; 1993 Joint ASME Applied Mechanics and Materials Summer Meeting AMD. New York: American Society of Mechanical Engineers.
Sinha, N. K. (1977). Technique for studying structure of sea ice. J. Glaciol., 18, 315–323.
Tiller, W. A. (1957). Preferred growth direction of metals. J. Metals, 9, 847–855.
Tison, J. -L., Haas, C., Gowing, M. M., Sleewaegen, S. and Bernard, A. (2002). Tank study of physico-chemical controls on gas content composition during growth of young sea ice. J. Glaciol., 48, 177–190.
Turnbull, D. and Fisher, J. C. (1949). Rate of nucleation in condensed systems. J. Chem. Phys., 17, 71–73.
Uchida, T., Hondoh, T., Mae, S., Lipenkov, V. and Duval, P. (1994). Air-hydrate crystals in deep-ice core samples from Vostok station, Antarctica. J. Glaciol., 40, 79–86.
Wakatsuchi, M. and Kawamura, T. (1987). Formation processes of brine drainage channels in sea ice. J. Geophys. Res., 92, 7195–7197.
Walton, D. and Chalmers, B. (1959). The origin of preferred orientation in the columnar zone of metal ingots. Trans. AIME, 215, 447–457.
Weeks, W. F. and Ackley, S. F. (1986). The growth, structure, and properties of sea ice. In The Geophysics of Sea Ice, ed. Untersteiner, N.. New York: Plenum, pp. 9–164.
Weeks, W. F. and Gow, A. J. (1980). Crystal alignments in the fast ice of arctic Alaska. J. Geophys. Res., 84, 1137–1146.
Weeks, W. F. and Wettlaufer, J. S., Eds. (1996). Crystal orientations in floating ice sheets. The Johannes Weertman Symposium, The Minerals, Metals & Materials Society.
Wilkinson, D. S. (1988). A pressure-sintering model for the densification of polar firn and glacier ice. J. Glaciol., 34, 40–45.
Wolff, E. W., Mulvaney, R. and Oates, K. (1988). The location in impurities in Antarctic ice. Ann. Glaciol., 11, 194–197.