Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: February 2010

12 - Brittle compressive failure of confined ice

Summary

Introduction

Compressive failure more often than not occurs under a multi-axial state of stress. For example, during the interaction between a floating ice feature and an engineered structure, material within the contact zone is compressed not only along the direction of impact, but also in orthogonal directions, owing to constraint imposed by surrounding material. The confinement induces biaxial (thin feature, wide structure) and triaxial (thick feature, narrow structure) stress states, which, as we show below, have a large effect on the strength of the ice and on its mode of failure.

This is not surprising. Based upon the failure of unconfined material and on the importance to that process of frictional crack sliding cum the development of secondary cracks (Chapter 11), confinement plays two roles: it lessens the excess or effective shear stress that drives sliding; and it lowers the mode-I stress intensity factor that drives crack growth. Higher applied stresses are thus required to activate the mechanism. Also, in holding the ice together, confinement promotes the development of shear faults. Indeed, very little confinement is required (Wachter et al., 2008), to the effect that from a practical perspective faulting and not axial splitting is the more important failure mode.

In this chapter we review the observations and their interpretation. We again begin with a short discussion of experimental methods, and then quantify the effects of confinement on the behavior of both granular and columnar polycrystalline ice.

References
Ashby, M. F. and Hallam, S. D. (1986). The failure of brittle solids containing small cracks under compressive stress states. Acta Metall., 34, 497–510.
Backofen, W. A. (1972). Deformation Processing. Reading, Mass.: Addison-Wesley Publishing Co.
Barnes, P., Tabor, D., Walker, F. R. S. and Walker, J. F. C. (1971). The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. A, 324, 127–155.
Bazant, Z. P. and Xiang, Y. (1997). Size effect in compression fracture: Splitting crack band propagation. J. Eng. Mech., February, 162–172.
Beeman, M., Durham, W. B. and Kirby, S. H. (1988). Friction of ice. J. Geophys. Res., 93, 7625–7633.
Bowden, F. P. and Hughes, T. P. (1939). The mechanism of sliding on ice and snow. Proc. R. Soc. A, 172, 280–298.
Brace, W. F. and Bombolakis, E. G. (1963). A note of brittle crack growth in compression. J. Geophys. Res., 68, 3709–3713.
Byerlee, J. D. (1967). Frictional characteristics of granite under high confining pressure. J. Geophys. Res., 72, 3639–3648.
Colbeck, S. C. (1995). Pressure melting and ice skating. Amer. J. Phys., 63 (10), 888–890.
Conrad, R. E. and Friedman, M. (1976). Microscopic feather fractures in the faulting process. Tectonophysics, 33, 187–198.
Cooke, M. L. (1997). Fracture localization along faults with spatially varying friction. J. Geophys. Res., 102, 24,425–24,434.
Costamagna, R., Renner, J. and Bruhns, O. T. (2007). Relationship between fracture and friction for brittle rocks. Mech. Mater., 39, 291–301.
Cottrell, A. H. (1964). The Mechanical Properties of Matter. Wiley Series on the Science and Technology of Materials. New York: John Wiley & Sons, Inc.
Couture, M. L. and Schulson, E. M. (1994). The cracking of ice under rapid unloading. Phil. Mag. Lett., 69, 865–886.
Cruikshank, K. M., Zhao, G. and Johnson, A. (1991). Analysis of minor fractures associated with joints and faulted joints. J. Struct. Geol., 13, 865–886.
Davies, R. K. and Pollard, D. D. (1986). Relations between left-lateral strike-slip faults and right-lateral kink bands in granodiorite, Mt. Abbot Quadrangle, Sierra Nevada, California. Pure Appl. Geophys., 124, 177–201.
Durham, W. B., Heard, H. C. and Kirby, S. H. (1983). Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: Preliminary results. J. Geophys. Res., 88, B377–B392.
Fortt, A. (2006). The resistance to sliding along coulombic shear faults in columnar S2 ice. Ph.D. thesis, Thayer School of Engineering, Dartmouth College.
Fortt, A. and Schulson, E. M. (2007a). Do loading path and specimens thickness affect the brittle compressive strength of ice? J. Glaciol., 53, 305–309
Fortt, A. L. and Schulson, E. M. (2007b). The resistance to sliding along coulombic shear faults in ice. Acta Mater., 55, 2253–2264.
Frederking, R. (1977). Plane-strain compressive strength of columnar-grained and granular-snow ice. J. Glaciol., 18, 505–516.
Frost, H. J. and Ashby, M. F. (1982). Deformation Mechanisms Maps. Oxford: Permagon Press.
Gagnon, R. E. and Gammon, P. H. (1995). Triaxial experiments on iceberg and glacier ice. J. Glaciol., 41, 528–540.
Golding, N. (2009). M.Sc. thesis. Hanover, Dartmouth College (in preparation).
Gottschalk, R. R., Kronenberg, A. K., Russel, J. E. and Handin, J. (1990). Mechanical anisotropy of gneiss: Failure criterion and textural sources of directional behavior. J. Geophys. Res., 95, 613–621.
Granier, T. (1985). Origin, damping and pattern development of faults in granite. Tectonics, 4, 721–737.
Gratz, E. T. and Schulson, E. M. (1997). Brittle failure of columnar saline ice under triaxial compression. J. Geophys. Res., 102, 5091–5107.
Griggs, D. T. and Baker, D. W. (1969). The origin of deep focus earthquakes. In Properties of Matter Under Unusual Conditions, eds. Mark, H. and Fernback, S.. Hoboken, N.J.: Wiley Interscience, pp. 23–42.
Gupta, V. and Bergström, J. S. (1998). Compressive failure of rocks by shear faulting. J. Geophys. Res., 103, 23,875–23,895.
Haimson, B. (2006). True triaxial stresses and the brittle fracture of rock. Pure Appl. Geophys. 163, 1101–1130.
Häusler, F. U. (1981). Multiaxial compressive strength tests on saline ice using brush-type loading platens. IAHR Ice Symposium, Quebec, Canada.
Häusler, F. U. (1989). Beitrag zur ermittlung der kräfte beim eisbrechen under besonderere berücksichtigung der anisotropie des eises under seinter versagenseigenschaften under mehrachsiger beanspruchung. Bericht Nr. 494. Hamburg: Institut für Schiffbau der Universität Hamburg, 142.
Hill, R. (1950). The Mathematical Theory of Plasticity. New York: Oxford University Press.
Hobbs, B. E. and Ord, A. (1988). Plastic instabilities: Implications for the origin of intermediate and deep focus earthquakes. J. Geophys. Res., 93, 10,521–10,540.
Horii, H. and Nemat-Nasser, S. (1985). Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. J. Geophys. Res., 90, 3105–3125.
Horii, H. and Nemat-Nasser, S. (1986). Brittle failure in compression: Splitting, faulting and brittle-ductile transition. Phil. Trans. R. Soc. A, 319, 337–374.
Iliescu, D. (2000). Contributions to brittle compressive failure of ice. Ph.D. thesis, Thayer School of Engineering, Dartmouth College.
Iliescu, D. and Schulson, E. M. (2004). The brittle compressive failure of fresh-water columnar ice loaded biaxially. Acta Mater., 52, 5723–5735.
Ingraffea, A. R. (1981). Mixed-mode fracture initiation in Indiana limestone and westerly granite. Proceedings 22nd U.S. Symposium on Rock Mechanics, 199–204.
Jaeger, J. C. and Cook, N. G. W. (1979). Fundamentals of Rock Mechanics, 3rd edn. London: Chapman and Hall.
Johnson, K. L. (1985). Contact Mechanics. Cambridge: Cambridge University Press.
Jones, S. J. (1982). The confined compressive strength of polycrystalline ice. J. Glaciol., 28, 171–177.
Jordaan, I. J. (2001). Mechanics of ice-structure interaction. Eng. Fract. Mech., 68, 1923–1960.
Jordaan, I. J., Matskevitch, D. G. and Meglis, I. L. (1999). Disintegration of ice under fast compressive loading. Int. J. Fract., 97, 279–300.
Karato, S., Riedel, M. R. and Yuen, D. A. (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: Implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter., 127, 83–108.
Kennedy, F. E., Schulson, E. M. and Jones, D. (2000). Friction of ice on ice at low sliding velocities. Phil. Mag. A, 80, 1093–1110.
Kirby, S. H. (1987). Localized polymorphic phase transformations in high-pressure faults and applications to the physical mechanism of deep earthquakes. J. Geophys. Res., 92, 13,789–13,800.
Kuehn, G. A. and Schulson, E. M. (1994). The mechanical properties of saline ice under uniaxial compression. Ann. Glaciol., 19, 39–48.
Liu, F., Baker, I. and Dudley, M. (1995). Dislocation-grain boundary interactions in ice crystals. Phil. Mag. A, 71, 15–42.
Liu, C. T., Heatherly, L., Easton, D. S.et al. (1998). Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A, 29, 1811–1820.
Lliboutry, L. (2002). Overthrusts due to easy-slip/poor-slip transitions at the bed: The mathematical singularity with non-linear isotropic viscosity. J. Glaciol., 48, 109–119.
Martel, S. M. and Pollard, D. D. (1989). Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock. J. Geophys. Res., 94, 9417–9428.
Martel, S. J., Pollard, D. D. and Segall, P. (1988). Development of simple strike-slip fault zones in granitic rock, Mount Abbott Quadrangle, Sierra Nevada, California. Geol. Soc. Am. Bull., 100, 1451–1465.
Meglis, I. L., Melanson, P. M. and Jordaan, I. J. (1999). Microstructural change in ice: II. Creep behavior under triaxial stress conditions. J. Glaciol., 45, 438–448.
Melanson, P. M., Meglis, I. L., Jordaan, I. J. and Stone, B. M. (1999). Microstructural change in ice: I. Constant-deformation-rate tests under triaxial stress conditions. J. Glaciol., 45, 417–455.
Melton, J. S. and Schulson, E. M. (1998). Ductile compressive failure of columnar saline ice under triaxial loading. J. Geophys. Res., 103, 21,759–21,766.
Montagnat, M. and Schulson, E. M. (2003). On friction and surface cracking during sliding. J. Glaciol., 49, 391–396.
Nadreau, J.-P. and Michel, B. (1986). Yield and failure envelope for ice under multiaxial compressive stresses. Cold Reg. Sci. Technol., 13, 75–82.
Nickolayev, O. Y. and Schulson, E. M. (1995). Grain-boundary sliding and across-column cracking in columnar ice. Phil. Mag. Lett. 72, 93–97.
Ogawa, M. (1987). Shear instability in a viscoelastic material as the cause for deep focus earthquakes. J. Geophy. Res., 92, 13,801–13,810.
Orowan, E. (1960). Mechanism of seismic faulting. In Rock Deformation, eds. Griggs, D. T. and Handin, J.. New York: Memoirs of the Geological Society of America, pp. 323–345.
Paterson, M. S. and Wong, T.-F. (2005). Experimental Rock Deformation: The Brittle Field, 2nd edn. New York: Springer-Verlag.
Peng, S. and Johnson, A. M. (1972). Crack growth and faulting in cylindrical specimens of chelmsford granite. Int. J. Rock. Mech. Min. Sci., 9, 37–86.
Petrenko, V. F. and Whitworth, R. W. (1999). Physics of Ice. New York: Oxford University Press.
Picu, R. C. and Gupta, V. (1995). Crack nucleation in columnar ice due to elastic anistropy and grain boundary sliding. Acta Metall. Mater., 43, 3783–3789.
Pollard, D. D. and Segall, P. (1987). Theoretical displacements and stresses near fractures in rocks: With applications to faults, joints, veins, dikes, and solution surfaces. In Fracture Mechanics of Rock, ed. Atkinson, B. K.. San Diego: Academic Press, pp. 277–349.
Renshaw, C. E. and Schulson, E. M. (2001). Universal behavior in compressive failure of brittle materials. Nature, 412, 897–900.
Renshaw, C. E. and Schulson, E. M. (2004). Plastic faulting: Brittle-like failure under high confinement. J. Geophys. Res., 109, 1–10.
Richter-Menge, J. (1991). Confined compressive strength of horizontal first-year sea ice samples. J. Offshore Mech. Arctic Eng., 113, 344–351.
Richter-Menge, J. A. and Jones, K. F. (1993). The tensile strength of first-year sea ice. J. Glaciol., 39, 609–618.
Rispoli, R. (1981). Stress fields about strike-slip faults from stylolites and tension gashes. Tectonophysics, 75, T29–T36.
Rist, M. A. (1997). High stress ice fracture and friction. J. Phys. Chem. B, 101, 6263–6266.
Rist, M. A. and Murrell, S. A. F. (1994). Ice triaxial deformation and fracture. J. Glaciol., 40, 305–318.
Rist, M. A., Jones, S. J. and Slade, T. D. (1994). Microcracking and shear fracture in ice. Ann. Glaciol., 19, 131–137.
Roark, R. J. and Young, W. C. (1975). Formulas for Stress and Strain, 5th edn. New York: McGraw-Hill Book Co., p. 550.
Rudnicki, J. W. and Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Sol., 23, 371–394.
Sammis, C. G. and Ashby, M. F. (1986). The failure of brittle porous solids under compressive stress states. Acta Metall., 34, 511–526.
Sammonds, P. R. and Rist, M. A. (2001). Sea ice fracture and friction. In Scaling Laws in Ice Mechanics, eds. Dempsey, J. P. and Shen, H. H.. Dordrecht: Kluwer Academic Publishing, pp. 183–194.
Sammonds, P. R., Murrell, S. A. F. and Rist, M. A. (1989). Fracture of multi-year sea ice under triaxial stresses: Apparatus description and preliminary results. J. Offshore Mech. Arctic Eng., 111, 258–263.
Sammonds, P. R., Murrell, S. A. F. and Rist, M. A. (1998). Fracture of multi-year sea ice. J. Geophys. Res., 103, 21,795–21,815.
Schulson, E. M. (2001). Brittle failure of ice. Eng. Fract. Mech., 68, 1839–1887.
Schulson, E. M. (2002). Compressive shear faulting in ice: Plastic vs. Coulombic faults. Acta Mater., 50, 3415–3424.
Schulson, E. M. and Buck, S. E. (1995). The brittle-to-ductile transition and ductile failure envelopes of orthotropic ice under biaxial compression. Acta Metall. Mater., 43, 3661–3668.
Schulson, E. M. and Gratz, E. T. (1999). The brittle compressive failure of orthotropic ice under triaxial loading. Acta Mater., 47, 745–755.
Schulson, E. M. and Iliescu, D. (2006). Brittle compressive failure of ice: Proportional straining vs. proportional loading. J. Glaciol., 52, 248–250.
Schulson, E. M. and Nickolayev, O. Y. (1995). Failure of columnar saline ice under biaxial compression: failure envelopes and the brittle-to-ductile transition. J. Geophys. Res., 100, 22,383–22,400.
Schulson, E. M., Jones, D. E. and Kuehn, G. A. (1991). The effect of confinement on the brittle compressive fracture of ice. Ann. Glaciol., 15, 216–221.
Schulson, E. M., Iliescu, D. and Renshaw, C. E. (1999). On the initiation of shear faults during brittle compressive failure: A new mechanism. J. Geophys. Res., 104, 695–705.
Schulson, E. M., Fortt, A., Iliescu, D. and Renshaw, C. E. (2006a). Failure envelope of first-year arctic sea ice: The role of friction in compressive fracture. J. Geophys. Res., 111, doi: 10.1029/2005JC003234186.
Schulson, E. M., Fortt, A., Iliescu, D. and Renshaw, C. E. (2006b). On the role of frictional sliding in the compressive fracture of ice and granite: Terminal vs. post-terminal failure. Acta Mater., 54, 3923–3932.
Scott, T. E. and Nielsen, K. C. (1991a). The effects of porosity on the brittle-ductile transition in sandstones. J. Geophys. Res., 96, 405–414.
Scott, T. E. and Nielsen, K. C. (1991b). The effects of porosity on fault reactivation in sandstones. J. Geophy. Res., 96, 2352–2362.
Segall, P. and Pollard, D. D. (1983). Nucleation and growth of strike-slip faults in granite. J. Geophys. Res., 88, 555–568.
Shen, W. and Lin, S. Z. (1986). Fracture toughness of Bohai Bay sea ice. 5th International Offshore Mechanics and Arctic Engineering Symposium, OMAE-AIME.
Smith, T. R. and Schulson, E. M. (1993). The brittle compressive failure of fresh-water columnar ice under biaxial loading. Acta Metall. Mater., 41, 153–163.
Smith, T. R. and Schulson, E. M. (1994). The brittle compressive failure of columnar salt-water ice under biaxial loading. J. Glaciol., 40, 265–276.
Taylor, K. (2005). Faulting under high-confinement conditions: An experimental study of compressive failure in granular ice. M.Sc. thesis, Earth Sciences, Dartmouth College, 87.
Thouless, M. D., Evans, A. G., Ashby, M. F. and Hutchinson, J. W. (1987). The edge cracking and spalling of brittle plates. Acta. Metall., 35, 1333–1341.
Timco, G. W. and Frederking, R. M. W. (1986). Confined compression tests: Outlining the failure envelope of columnar sea ice. Cold Reg. Sci. Technol., 12, 13–28.
Tusima, K. (1977). Friction of a steel ball on a single crystal of ice. J. Glaciol., 19, 225–235.
Mises, R. (1928). Mechanics of the ductile form changes of crystals. Z. Angew. Math Mech., 8, 161–185.
Wachter, L., Renshaw, C. E. and Schulson, E. M. (2008). Transition in brittle failure mode in ice under low confinement. Acta Mater., in press.
Weiss, J. and Schulson, E. M. (1995). The failure of fresh-water granular ice under multiaxial compressive loading. Acta Metall. Mater., 43, 2303–2315.
Weiss, J. and Schulson, E. M. (2000). Grain boundary sliding and crack nucleation in ice. Phil. Mag., 80, 279–300.
Weiss, J., Schulson, E. M. and Stern, H. L. (2007). Sea ice rheology in-situ, satellite and laboratory observations: Fracture and friction. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2006.11.033.
Wiens, D. A. (2001). Seismological constraints on the mechanism of deep earthquakes: Temperature dependence of deep earthquake source properties. Phys. Earth Planet. Inter., 127, 145–163.
Winter, R. E. (1975). Adiabatic shear of titanium and polymethylmethacrylate. Phil. Mag., 31, 765–773.
Wong, T.-F. (1982). Micromechanics of faulting in Westerly granite. Int. J. Rock Mech. Min. Sci., 19, 49–64.