Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2011
  • Online publication date: December 2011

2 - The cerebral circulation

from Section 1 - Applied clinical physiology and pharmacology

Further reading

Aaslid, R., Lindegaard, K. F., Sorteberg, W. and Nornes, H. (1989). Cerebral autoregulation dynamics in humans. Stroke 20, 45–52.
Attwell, D., Buchan, A. M., Charpak, S. et al. (2010). Glial and neuronal control of brain blood flow. Nature 468, 232–43.
Bentsen, N., Larsen, B. and Lassen, N. A. (1975). Chronically impaired autoregulation of cerebral blood flow in long-term diabetics. Stroke 6, 497–502.
Benyó, Z. and Wahl, M. (1996). Opiate receptor-mediated mechanisms in the regulation of cerebral blood flow. Cerebrovasc Brain Metab Rev 8, 326–57.
Bouma, G. J., Muizelaar, J. P., Stringer, W. A. et al. (1992). Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77, 360–8.
Bundgaard, H., von Oettingen, G., Larsen, K. M. et al. (1998). Effects of sevoflurane on intracranial pressure, cerebral blood flow and cerebral metabolism. A dose–response study in patients subjected to craniotomy for cerebral tumours. Acta Anaesthesiol Scand 42, 621–7.
Chakkarapani, E., Dingley, J., Liu, X. et al. (2010). Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 68, 330–41.
Chesnut, R. M. (1997). Hyperventilation in traumatic brain injury: friend or foe? Crit Care Med 25, 1275–8.
Coles, J., Minhas, P., Fryer, T. et al. (2002). Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med 30, 1950–9.
Davis, D. H. and Sundt, T. M. (1980). Relationship of cerebral blood flow to cardiac output, mean arterial pressure, blood volume, and alpha and beta blockade in cats. J Neurosurg 52, 745–54.
Diringer, M. N. (2009). Management of aneurysmal subarachnoid hemorrhage. Crit Care Med 37, 432–40.
Dóczi, T. P. (1995). Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26, 2372–3.
Foster, G. E., Poulin, M. J. and Hanly, P. J. (2007). Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol 92, 51–65.
Fox, P. T., Raichle, M. E., Mintun, M. A. and Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462–4.
Göbel, U., Theilen, H. and Kuschinsky, W. (1990). Congruence of total and perfused capillary network in rat brains. Circ Res 66, 271–81.
Grubb, R. L., Raichle, M. E., Eichling, J. O. and Ter-Pogossian, M. M. (1974). The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5, 630–9.
Gupta, A. K., Menon, D. K., Czosnyka, M., Smielewski, P. and Jones, J. G. (1997). Thresholds for hypoxic cerebral vasodilation in volunteers. Anesth Analg 85, 817–20.
Hamner, M. A., Möller, T. and Ransom, B. R. (2010). Anaerobic function of CNS white matter declines with age. J Cereb Blood Flow Metab (Epub ahead of print; doi:10.1038/jcbfm.2010.216).
Iadecola, C. (1998). Neurogenic control of the cerebral microcirculation: is dopamine minding the store? Nat Neurosci 1, 263–5.
Koehler, R. C., Roman, R. J. and Harder, D. R. (2009). Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32, 160–9.
Kolbitsch, C., Lorenz, I. H., Hörmann, C. et al. (2000). A subanesthetic concentration of sevoflurane increases regional cerebral blood flow and regional cerebral blood volume and decreases regional mean transit time and regional cerebrovascular resistance in volunteers. Anesth Analg 91, 156–62.
Krabbe-Hartkamp, M. J., van der Grond, J., de Leeuw, F. E. et al. (1998). Circle of Willis: morphologic variation on three-dimensional time-of-flight MR angiograms. Radiology 207, 103–11.
Magni, G., Rosa, I. L., Melillo, G., Savio, A. and Rosa, G. (2009). A comparison between sevoflurane and desflurane anesthesia in patients undergoing craniotomy for supratentorial intracranial surgery. Anesth Analg 109, 567–71.
Maktabi, M. A., Elbokl, F. F., Faraci, F. M. and Todd, M. M. (1993). Halothane decreases the rate of production of cerebrospinal fluid. Possible role of vasopressin V1 receptors. Anesthesiology 78, 72–82.
March, K. (1994). Retrograde jugular catheter: monitoring SjO2. J Neurosci Nurs 26, 48–51.
Matta, B. F. and Lam, A. M. (1995). Nitrous oxide increases cerebral blood flow velocity during pharmacologically induced EEG silence in humans. J Neurosurg Anesthesiol 7, 89–93.
Matta, B. F., Mayberg, T. S. and Lam, A. M. (1995). Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology 83, 980–5; discussion 27A.
Matta, B. F., Heath, K. J., Tipping, K. and Summors, A. C. (1999). Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology 91, 677–80.
Oldendorf, W. H. (1971). Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221, 1629–39.
Oldendorf, W. H. (1974). Lipid solubility and drug penetration of the blood brain barrier. Proc Soc Exp Biol Med 147, 813–15.
Origitano, T. C., Wascher, T. M., Reichman, O. H. and Anderson, D. E. (1990). Sustained increased cerebral blood flow with prophylactic hypertensive hypervolemic hemodilution (“triple-H” therapy) after subarachnoid hemorrhage. Neurosurgery 27, 729–39; discussion 739.
Paulson, O. B., Hasselbalch, S. G., Rostrup, E., Knudsen, G. M. and Pelligrino, D. (2010) Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab 30, 2–14.
Pawlik, G., Rackl, A. and Bing, R. J. (1981) Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res 208, 35–58.
Pellerin, L. and Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91, 10,625–29.
Pellerin, L. and Magistretti, P. J. (2004). Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10, 53–62.
Raslan, A. and Bhardwaj, A. (2007). Medical management of cerebral edema. Neurosurg Focus 22, E12.
Rozet, I., Vavilala, M. S., Lindley, A. M. et al. (2006). Cerebral autoregulation and carbon dioxide reactivity in anterior and posterior cerebral circulation during sevoflurane anesthesia. Anesth Analg 102, 560–4.
Sokoloff, L. (1960). The metabolism of the central nervous system in vivo. In Field, J., Magoun, H. and Hall, V., eds. Handbook of Physiology, Section I, Neurophysiology. Washington, DC: American Physiological Society, pp. 1843–64.
The Brain Trauma Foundation (2000). The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Guidelines for cerebral perfusion pressure. J Neurotrauma 17, 507–11.
Thompson, B. G., Pluta, R. M., Girton, M. E. and Oldfield, E. H. (1996). Nitric oxide mediation of chemoregulation but not autoregulation of cerebral blood flow in primates. J Neurosurg 84, 71–8.
Ueda, Y., Walker, S. A. and Povlishock, J. T. (2006). Perivascular nerve damage in the cerebral circulation following traumatic brain injury. Acta Neuropathol 112, 85–94.
Vazquez, A. L., Masamoto, K., Fukuda, M. and Kim, S. G. (2010). Cerebral oxygen delivery and consumption during evoked neural activity. Front Neuroenergetics 2, 11.
Zakhary, R., Gaine, S. P., Dinerman, J. L. et al. (1996). Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sci U S A 93, 795–8.
Zornow, M. H., Fleischer, J. E., Scheller, M. S., Nakakimura, K. and Drummond, J. C. (1990). Dexmedetomidine, an α2-adrenergic agonist, decreases cerebral blood flow in the isoflurane-anesthetized dog. Anesth Analg 70, 624–30.