Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T14:40:37.080Z Has data issue: false hasContentIssue false

14 - Circuit lower bounds: Complexity theory's Waterloo

from PART TWO - LOWER BOUNDS FOR CONCRETE COMPUTATIONAL MODELS

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

In Chapter 2 we saw that if there is any NP language that cannot be computed by polynomial-sized circuits, then NPP. Thus proving circuit lower bounds is a potential approach for proving NPP. Furthermore, there is a reason to hope that this is a viable approach, since the Karp-Lipton Theorem (Theorem 6.19) shows that if the polynomial hierarchy PH does not collapse, then there exists an NP language that does not have polynomial size circuits.

In the 1970s and 1980s, many researchers came to believe that proving circuit lower bounds represented the best route to resolving P versus NP, since circuits seem easier to reason about than Turing machines. The success in this endeavor was mixed.

Progress on general circuits has been almost nonexistent: a lower bound of n is trivial for any function that depends on all its input bits. We are unable to prove even a superlinear circuit lower bound for any NP problem–the best we can do after years of effort is 5no(n).

To make life (comparatively) easier, researchers focused on restricted circuit classes, and were successful in proving some good lower bounds. We prove some of the major results of this area, specifically, for bounded depth circuits (Section 14.1), bounded depth circuits with “counting” gates (Section 14.2), and monotone circuits (Section 14.3). In all these results we have a notion of “progress” of the computation. We show that small circuits simply cannot achieve the amount of progress necessary to compute the output from the inputs.

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 286 - 306
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×