Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T05:05:42.171Z Has data issue: false hasContentIssue false

Section 1 - Evidence-based Cognitive Rehabilitation

Published online by Cambridge University Press:  25 June 2018

Gianna Locascio
Affiliation:
NYU Langone Health, New York
Beth S. Slomine
Affiliation:
Kennedy Krieger Institute, Baltimore
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1.Tamm, L., Epstein, J. N., Peugh, J. L., Nakonezny, P. A., Hughes, C. W. Preliminary data suggesting the efficacy of attention training for school-aged children with ADHD. Dev Cogn Neurosci 2013; 4: 1628.Google Scholar
2.Broadbent, D. E. Perception and Communication. London: Pergamon Press, 1958: 338.Google Scholar
3.Sohlberg, M. M., Mateer, C. A. Effectiveness of an attention-training program. J Clin Exp Neuropsychol 1987; 9: 117–30.Google Scholar
4.Coull, J. T. Neural correlates of attention and arousal: Insights from electrophysiology, functional neuroimaging, and psychopharmacology. Prog Neurobiol 1998; 55: 343–61.Google Scholar
5.Beauregard, M, Levesque, J. Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 2006; 31: 320.CrossRefGoogle ScholarPubMed
6.Kim, Y. H, Yoo, W. K., Ko, M. H., Park, C. H., Kim, S. T., Na, D. L. Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabil Neural Repair 2008; 23: 468–77.Google Scholar
7.Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn Sci 2000; 4: 417–23.CrossRefGoogle ScholarPubMed
8.Engle, R. W., Kane, M. J. Executive attention, working memory capacity, and a two-factor theory of cognitive control. In: Ross, B, editor. The Psychology of Learning and Motivation, Vol. 44. New York: Elsevier, 2004: 145–99.Google Scholar
9.Hasher, L., Lustig, C., Zacks, R. T. Inhibitory mechanisms and the control of attention. In: Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., Towse, J. N., editors. Variation in Working Memory. New York: Oxford University Press, 2007: 227–49.Google Scholar
10.Alloway, T. P., Gathercole, S. E., Pickering, S. J. Verbal and visuo-spatial short-term and working memory in children: Are they separable? Child Dev 2006; 77: 1698–716.Google Scholar
11.Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. Computerized training of working memory in children with ADHD: A randomized, controlled trial. J Am Acad Child Adolesc Psychiatry 2005; 44: 177–86.Google Scholar
12.Mezzacappa, E., Buckner, J. C. Working memory training for children with attention problems or hyperactivity: A school-based pilot study. Sch Ment Health 2010; 2: 202–8.Google Scholar
13.Kenworthy, L., Yerys, B. E., Anthony, L. G., Wallace, G. L. Understanding executive control in autism spectrum disorders in the lab and in the real world. Neuropsychol Rev 2008; 18: 320–38.Google Scholar
14.Archibald, L. M., Gathercole, S. E. Short-term and working memory in specific language impairment. In: Alloway, T. P., Gathercole, S. E., editors. Working Memory in Neurodevelopmental Disorders. New York, NY: Psychology Press, 2006: 139–60.Google Scholar
15.Blumenfeld, H. Neuroanatomy through Clinical Cases, 2nd ed. Sunderland: Sinauer Associates, 2010; 1005.Google Scholar
16.Leung, HC, Seelig, D, Gore, JC. The effect of memory load on cortical activity in the spatial working memory circuit. Cogn Affect Behav Neurosci 2004; 4: 553–63.Google Scholar
17.Klingberg, T. Training and plasticity of working memory. Trends Cogn Sci 2010; 14: 317–24.CrossRefGoogle ScholarPubMed
18.Swanson, H. L. Working memory and reading disabilities: Both phonological and executive processing deficits are important. In: Alloway, T. P., Gathercole, S. E., editors. Working Memory and Neurodevelopmental Disorders. New York, NY: Psychology Press, 2006: 5988.Google Scholar
19.Passolunghi, M. C. Working memory and mathematical disability. In: Alloway, T. P., Gathercole, S. E., editors. Working Memory and Neurodevelopmental Disorders. New York, NY: Psychology Press, 2006: 113–38.Google Scholar
20.Shipstead, Z., Redick, T. S., Engle, R. W. Does working memory training generalize? Psychol Belg 2010; 50: 245–76.CrossRefGoogle Scholar
21.Engle, R. W. Working memory capacity as executive attention. Curr Dir Psychol Sci 2002; 11: 1923.Google Scholar
22.Barnett, S. M., Ceci, J. S. When and where do we apply what we learn? A taxonomy for far transfer. Psychol Bull 2002; 128: 612–37.Google Scholar
23.Wass, S. V., Scerif, G., Johnson, M. H. Training attentional control and working memory – Is younger, better? Dev Rev 2012; 32: 360–87.CrossRefGoogle Scholar
24.Anderson, V., Spencer-Smith, M., Wood, A. Do children really recover better? Neurobehavioral plasticity after early brain insult. Brain 2011; 134: 2197–221.CrossRefGoogle ScholarPubMed
25.Giza, C. C., Prins, M. L. Is being plastic fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury. Dev Neurosci 2006; 28: 364–79.Google Scholar
26.Spencer-Smith, M., Anderson, P., Jacobs, R., Coleman, L., Long, B., Anderson, V. Does timing of brain lesion have an impact on children’s attention? Dev Neuropsychol 2011; 36: 353–66.Google Scholar
27.Stiles, J. Neural plasticity and cognitive development. Dev Nepsy 2000; 18: 237–72.Google Scholar
28.Wass, S. V. Applying cognitive training to target executive functions during early development. Child Neuropsychol 2015; 21: 150–66.Google Scholar
29.Scherf, K. S, Sweeney, J, A, Luna, B. Brain basis of developmental change in visualspatial working memory. J Cogn Neurosci 2006; 18: 1045–58.Google Scholar
30.Rey-Casserly, C., Meadows, M. E. Developmental perspectives on optimizing educational and vocational outcomes in child and adult survivor of cancer. Dev Disabil Res Rev 2008; 14: 243–50.CrossRefGoogle ScholarPubMed
31.Conant, L., Fastenau, P., Giordani, B., Biovin, M., Chounramany, C. Environmental influences on primary memory development: a cross-cultural study of memory span in Lao and American children. J Clin Exp Neuropsychol 2003; 25: 1102–16.Google Scholar
32.Boivin, M. J., Bangirana, P., Smith, R. C. The relationship between visual-spatial and auditory working memory span in Senegalese and Ugandan Children. PLoS One 2010; 5: e8914.Google Scholar
33.Siegler, R. S. Emerging Minds: The Process of Change in Children’s Thinking. New York: Oxford University Press, 1996; 288.Google Scholar
34.DeMarie, D., Miller, P., Ferron, J., Cunningham, W. Path analysis tests of theoretical models of children’s memory performance. J Cogn Dev 2004; 5: 461–92.Google Scholar
35.Sohlberg, M. M, Mateer, C. A. Cognitive Rehabilitation: An Integrative Neuropsychological Approach. 2nd ed. New York: Guilford Press, 2001: 492.Google Scholar
36.Shaw, D. R. A systematic review of pediatric cognitive rehabilitation in the elementary and middle school systems. NeuroRehabilitation 2016; 39: 119–23.Google Scholar
37.Kesler, S. R., Lacayo, N. J., Booil, J. A pilot study of an online cognitive rehabilitation program for executive function skills in children with cancer-related brain injury. Brain Inj 2011; 25: 101–12.Google Scholar
38.Shipstead, Z., Hicks, K. L., Engle, R. W. Cogmed working memory training: Does the evidence support the claims? J Appl Res Mem Cogn 2012; 1: 18593.Google Scholar
39.Shinaver, C. S., Entwistle, P. C., Soderqvist, S. Cogmed WM training: Reviewing the reviews. Appl Neuropsychol Child 2014; 3: 163–72.Google Scholar
40.Rapport, M. D., Orban, S. A., Kofler, M. J., Friedman, L. M. Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic and behavioral outcomes. Clin Psychol Rev 2013; 33: 1237–52.Google Scholar
41.Edlund, W., Gronseth, G., So, Y., Franklin, G. Clinical Practice Guideline Process Manual. St. Paul, MN: American Academy of Neurology, 2004.Google Scholar
42.Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmer, K., Fraas, M., et al. Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil 2011; 92: 519–30.Google Scholar
43.Melby-Lervåg, M., Hulme, C. Is working memory training effective? A meta-analytic review. Dev Psychol 2013; 49: 270–91.CrossRefGoogle ScholarPubMed
44.Laugenbahn, D. M., Ashman, T., Cantor, J., Trott, C. An evidence-based review of cognitive rehabilitation in medical conditions affecting cognitive function. Arch Phys Med Rehabil 2013; 94: 271–86.Google Scholar
45.Slomine, B., Locascio, G. Cognitive rehabilitation for children with acquired brain injury. Dev Disabil Res Rev 2009; 15: 133–43.CrossRefGoogle ScholarPubMed
46.Laatsch, L., Harrington, D., Hotz, G., Marcantuono, J., Mozzoni, M. P., Walsh, V., et al. An evidence-based review of cognitive and behavioral rehabilitation treatment studies in children with acquired brain injury. J Head Trauma Rehabil 2007; 22: 248–56.Google Scholar
47.Robinson, K. E., Kaizar, E., Catroppa, C., Godfrey, C., Yeates, K. O. Systematic review and meta-analysis of cognitive interventions for children with central nervous system disorders and neurodevelopmental disorders. J Pediatr Psychol 2014; 39: 846–65.Google Scholar
48.Melby-Lervåg, M., Redick, R. A, Hulme, C. Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: evidence from a meta-analytic review. Perspect Psychol Sci 2016; 11: 512–34.Google Scholar
49.Tucha, O., Tucha, L., Kaumann, G., Konig, S., Lange, K. M., Stasik, D., et al. Training of attention functions in children with attention deficit hyperactivity disorder. Atten Defic Hyperact Disord 2011; 3: 271–83.CrossRefGoogle ScholarPubMed
50.Lange, K. W., Tucha, L., Hauser, J., Lange, K. M., Stasik, D., Tucha, O. Attention training in attention deficit hyperactivity disorder. Aula Abierta 2012; 40: 5560.Google Scholar
51.Klingberg, T., Forssberg, H., Westerberg, H. Training of working memory in children with ADHD. Clin Exp Neuropsychol 2002; 24: 781–91.Google Scholar
52.Gray, S. A., Chaban, P., Martinussen, R., Goldberg, R., Gotlieb, H., Kronitz, R. et al. Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: a randomized controlled trial. J Child Psychol Psychiatry 2012; 53: 1277–84.Google Scholar
53.Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittmann, R. W., et al. Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J Am Acad Child Adolesc Psychiatry 2015; 54: 164–74.Google Scholar
54.Limond, J., Leeke, R. Practitioner review: Cognitive rehabilitation for children with acquired brain injury. J Child Psychol Psychiatry 2005; 46: 339–52.Google Scholar
55.Tal, G., Tirosh, E. Rehabilitation of children with traumatic brain injury: A critical review. Pediatr Neurol 2013; 48: 424–31.Google Scholar
56.Backeljauw, B., Kurowski, B. G. Interventions for attention problems after pediatric traumatic brain injury: What is the evidence? PM R 2014; 6: 814–24.CrossRefGoogle ScholarPubMed
57.Weicker, J., Villringer, A., Thöne-Otto, A. Can impaired working memory functioning be improved by training? A meta-analysis with a special focus on brain injured patients. Neuropsychology 2016; 30: 190212.Google Scholar
58.Buschkuehl, M., Jaeggi, S. M., Jonides, J. Neuronal effects following working memory training. Dev Cogn Neurosci 2012; 2S1: 167–79.Google Scholar
59.von Bastain, C. C, Eschen, A. Does working memory training have to be adaptive? Psychol Res 2016; 80: 181–94.Google Scholar
60.Sohlberg, M. M., Mateer, C. A. Attention process training (APT). Puyallup, WA: Center for Cognitive Rehabilitation, 1986.Google Scholar
61.Sohlberg, M. M., Mateer, C. A. Attention Process Training APT-3: A Direct Attention Training Program for Persons with Acquired Brain Injury. Youngsville, LA: Lash & Associates, 2011.Google Scholar
62.Thomson, J., Kerns, K. Pay Attention! Attention Training for Children. Ages 4–10. 2nd ed. Youngsville, LA: Lash and Associates, 2005: 80.Google Scholar
63.Cogmed. Cogmed training method. 2016c. www.cogmed.com/cogmed-training-method. (Accessed November 5, 2016.)Google Scholar
64.Cogmed. Cogmed working memory training improves attention. 2016a. www.cogmed.com/users. (Accessed November 5, 2016.)Google Scholar
65.Cogmed. Cogmed training delivers substantial improvements in working memory capacity. 2016. www.cogmed.com/benefits. (Accessed November 5, 2016.)Google Scholar
66.Soderqvist, S., Sissela, N. Cogmed Working Memory Training, Claims & Evidence – Extended Version V.4. 2016. www.cogmed.com/wp-content/uploads/CogmedClaimsEvidence.pdf. (Accessed November 5, 2016.)Google Scholar
67.Grunewaldt, K. H., Skranes, J., Brubakk, A. M., Lahaugen, G. C. Computerized working memory training has positive long-term effect in very low birthweight preschool children. Dev Med Child Neurol 2016; 58: 195201.CrossRefGoogle ScholarPubMed
68.van Dongen-Boomsma, M., Vollebregt, M. A., Buitelaar, J. K., Slaats-Willemse, D. Working memory training in young children with ADHD: A randomized placebo-controlled trial. J Child Psychol Psychiatry 2014; 55: 886–96.Google Scholar
69.Bigorra, A., Garolera, M., Guijarro, S., Hervas, S. Long-term far-transfer effects of working memory training in children with ADHD: A randomized controlled trial. Eur Child and Adoles Psychiatry 2015; 25: 853–67.Google Scholar
70.Conklin, H. M., Ogg, R. J., Ashford, J. M., Scoggins, M. A., Zou, P., Clark, K. N., et al. Computerized cognitive training for amelioration of cognitive late effects among childhood cancer survivors: A randomized controlled trial. J Clin Oncol 2015; 33: 3894–902.CrossRefGoogle ScholarPubMed
71.Westerberg, H., Klingberg, T. Changes in cortical activity after training of working memory – a single-subject analysis. Physiol Behav 2007; 92: 186–92.Google Scholar
72.McNabb, F., Varrone, A., Farde, L., Jucite, A., Bystritsky, P., Forssberg, H., et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 2009; 323: 800–2.Google Scholar
73.Stevens, M. C., Gaynor, A., Bessette, K. L., Pearlson, G. D. A preliminary study of the effects of working memory training on brain function. Brain Imaging Behav 2016; 10: 387407.Google Scholar
74.Holmes, J., Gathercole, S. E. Taking working memory training from the laboratory into schools. Educ Psychol (Lond) 2014; 34: 440–50.Google Scholar
75.Soderqvist, S., Bergman Nutley, S. Working memory training is associated with long term attainments in math and reading. Front Psychol 2015; 6: 1711.Google Scholar
76.Spencer-Smith, M., Klingberg, T. Benefits of a working memory training program for inattention in daily life: A systematic review and meta-analysis. PLoS One 2015; 10: e0119522.CrossRefGoogle ScholarPubMed
77.Phillips, N., Mandalis, A., Benson, S., Parry, L., Epps, A., Morrow, A., et al. Computerized working memory training for children with moderate to severe traumatic brain injury: A double-blind, randomized, placebo-controlled trial. J Neurotrauma 2016; 33: 2097–104.Google Scholar
78.Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M., Anand, K. J. Cognitive and behavioral outcomes of school-aged children who were born pre-term: A meta-analysis. JAMA 2002; 288: 728–37.Google Scholar
79.Løhaugen, G. C. C., Antonsen, I., Håberg, A., Gramstad, A., Vik, T., Brubakk, A. M., et al. Computerized working memory training improves function in adolescents born at extremely low birth weight. J Pediatr 2011; 158: 555–61.Google Scholar
80.Söderqvist, S., Nutley, S. B., Ottersen, J., Grill, K. M., Klingberg, T. Computerized training of non-verbal reasoning and working memory in children with intellectual disability. Front Hum Neurosci 2012; 6, 271.Google Scholar
81.Dovis, S., Agelink van Rentergem, J., Huizenga, H. M. Does Cogmed Working Memory Training really improve inattention in daily life? A reanalysis. PLoS One 2015a; 10: e85992.Google Scholar
82.Dovis, S., Agelink van Rentergem, J., Huizenga, H. M. Response to the correction by Spencer-Smith and Klingberg: unaddressed concerns. PLoS One 2015b; 10: e86579.Google Scholar
83.Spencer-Smith, M., Klingberg, T. Correction: Benefits of a working memory training program for inattention in daily life: a systematic review and meta-analysis. PLoS One 2016; 11: e0167373.Google Scholar
84.Dovis, S., Agelink van Rentergem, J., Huizenga, H. M. Concerns about the corrected review and meta-analysis of Cogmed Working Memory Training effects on inattention in daily life. PLoS One 2016; 11.Google Scholar
85.BrainTrain. Captain’s Log MindPower Builder. 2016. www.braintrain.com/captains-log-mindpower-builder/. (Accessed November 5, 2016.)Google Scholar
86.CogniFit. 2016. www.cognifit.com. (Accessed November 5, 2016.)Google Scholar
87.Jungle Memory. 2016. http://junglememory.com. (Accessed November 5, 2016.)Google Scholar
88.Lumosity. 2016. www.lumosity.com. (Accessed November 5, 2016.)Google Scholar
89.Bangirana, P., Giordani, B., John, C. C, Page, C., Opoka, R. O., Boivin, M. J. Immediate neuropsychological and behavioral benefits of computerized cognitive rehabilitation in Ugandan pediatric cerebral malaria survivors. J Dev Behav Pediatr 2009; 30: 310–18.Google Scholar
90.Butler, R. W., Copeland, D. R. Attentional processes and their remediation in children treated for cancer: A literature review and the development of a therapeutic approach. J Int Neuropsychol Soc 2002; 8: 115–24.Google Scholar
91.Butler, R. W., Copeland, D. R., Fairclough, D. L., Mulhern, R. K., Katz, E. R., Kazak, A. E., et al. A multicenter randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. J Consult Clin Psychol 2008; 76: 367–78.Google Scholar
92.van’t Hooft, I. H. Cognitive Rehabilitation in Children with Acquired Brain Injuries. Stockholm: Karolinska University Press, 2005: 76.Google Scholar
93.van’t Hooft, I. H., Andersson, K., Bergman, B., Sejersen, T., von Wendt, L., Bartfai, A. Sustained favorable effects of cognitive training in children with acquired brain injuries. NeuroRehabil 2007; 22: 109–16.Google Scholar
94.Sjo, N. M., Spellerberg, S. M., Weidner, S., Kihlgren, M. Training of attention and memory deficits in children with acquired brain injury. Acta Paediatr 2010; 99: 230–36.Google Scholar
95.Catroppa, C., Stone, K., Hearps, S. J. C., Soo, C., Anderson, V., Rosema, S. Evaluation of an attention and memory intervention post-childhood acquired brain injury: Preliminary efficacy, immediate and 6 months post-intervention. Brain Inj 2015; 29: 1317–24.Google Scholar
96.Shalev, L., Tsal, Y., Mevorach, C. Computerized progressive attentional training (CPAT) program: Effective direct intervention for children with ADHD. Child Neuropsychol 2007; 13: 382–8.CrossRefGoogle ScholarPubMed
97.Kerns, K. A., MacSween, J., Wekken, S. V., Gruppuso, V. Investigating the efficacy of an attention training programme in children with fetal alcohol spectrum disorder. Dev Neurorehabil 2010; 13: 413–22.Google Scholar
98.Galbiati, S., Recla, M., Pastore, V., Liscio, M., Bardoni, A., Castelli, E., et al. Attention remediation following traumatic brain injury in childhood and adolescence. Neuropsychology 2009; 23: 4049.Google Scholar
99.HASOMED GmbH. Rehacom for Cognitive Therapy after Stroke or TBI. Trent: San Antonio, TX: Pearson, 2016.Google Scholar
100.Di Nuovo, S. Attenzione e concentrazione. Trent: Erickson, 1992.Google Scholar
101.Sturm, W., Orgass, B., Hartje, W. AixTent: A Computerized Training of Four Attention Functions – A training on Alertness, Vigilance, Selective Attention, Divided Attention. Bonn: Phoenix Software, 2001.Google Scholar
102.Lofstad, G. E., Reinfjell, T., Hetad, K., Diseth, T. H. Cognitive outcome in children and adolescents treated for acute lymphoblastic leukemia with chemotherapy only. Acta Paediatr 2009; 98: 180–6.Google Scholar
103.Sahler, O. J., Varni, J. W., Fairclough, D. L., Butler, R. W., Noll, R. B., Dolgin, M. J., et al. Problem-solving skills training for mothers of children with newly diagnosed cancer: A randomized trial. J Dev Behav Pediatr 2002; 23:7786.Google Scholar

References

1.Glisky, E. L. In: Ponsford, J., editor. Cognitive and Behavioral Rehabilitation: From Neurobiology to Clinical Practice. New York City, NY: The Guilford Press; 2004. pp. 100–28.Google Scholar
2.Haskins, E. C., Cicerone, K., Dams-O’Connor, K., Eberle, R., Langenbahn, D., Shapiro-Rosenbaum, A. Cognitive Rehabilitation Manual: Translating Evidence-Based Recommendations into Practice. Reston, VA: American Congress of Rehabilitation Medicine; 2012.Google Scholar
3.Velikonja, D., Tate, R., Ponsford, J., McIntyre, A., Janzen, S., Bayley, M., et al. INCOG recommendations for management of cognition following traumatic brain injury, part V: Memory. J Head Trauma Rehabil 2014;29(4):369–86.Google Scholar
4.Van Den Broek, M. D., Downes, J., Johnson, Z., Dayus, B., Hilton, N. Evaluation of an electronic memory aid in the neuropsychological rehabilitation of prospective memory deficits. Brain Inj 2000;14(5):455–62.Google Scholar
5.Schoenberg, M. R. and Scott, J. G., editors. The Little Black Book of Neuropsychology: A Syndrome-Based Approach. New York, NY: Springer; 2011.Google Scholar
6.Valitchka, L., Turkstra, L. S. Communicating with inpatients with memory impairments. Semin Speech Lang 2013;34(3):142–53.Google Scholar
7.Schaffer, Y., Geva, R. Memory outcomes following cognitive interventions in children with neurological deficits: A review with a focus on under-studied populations. Neuropsychol Rehabil 2016;26(2):286317.Google Scholar
8.Hayne, H., Scarf, D., Imuta, K. Childhood memories. In Wright, J. D., editor. International Encyclopedia of the Social and Behavioral Sciences. 3rd ed. Oxford, UK: Elsevier; 2015.Google Scholar
9.Courage, M., Cowan, N., editors. Studies in Developmental Psychology: The Development of Memory in Infancy and Childhood. New York, NY: Psychology Press; 2009.Google Scholar
10.Babikian, T., Asarnow, R. Neurocognitive outcomes and recovery after pediatric TBI: Meta-analytic review of the literature. Neuropsychology 2009;23(3):283–96.Google Scholar
11.Massagli, T. L., Jaffe, K. M., Fay, G. C., Polissar, N. L., Liao, S. Q., Rivara, J. B. Neurobehavioral sequelae of severe pediatric traumatic brain injury: A cohort study. Arch Phys Med Rehabil 1996;77(3):223–31.Google Scholar
12.Catroppa, C., Anderson, V. Recovery in memory function, and its relationship to academic success, at 24 months following pediatric TBI. Child Neuropsychol 2007;13(3):240–61.CrossRefGoogle ScholarPubMed
13.Pauly-Takacs, K., Moulin, C. J., Estlin, E. J. Benefits and limitations of errorless learning after surviving pediatric brain tumors: A case study. J Clin Exp Neuropsychol 2012;34(6):654–66.Google Scholar
14.Carpentieri, S. C., Waber, D. P., Scott, R. M., Goumnerova, L. C., Kieran, M. W., Cohen, L. E., et al. Memory deficits among children with craniopharyngiomas. Neurosurgery 2001;49(5):1053–7.Google Scholar
15.Lansing, A. E., Max, J. E., Delis, D. C., Fox, P. T., Lancaster, J., Manes, F. F., et al. Verbal learning and memory after childhood stroke. J Int Neuropsychol Soc 2004;10(5):742–52.Google Scholar
16.Kolk, A., Ennok, M., Laugesaar, R., Kaldoja, M. L., Talvik, T. Long-term cognitive outcomes after pediatric stroke. Pediatr Neurol 2011;44(2):101–9.Google Scholar
17.Yeates, K. O., Enrile, B. G. Implicit and explicit memory in children with congenital and acquired brain disorder. Neuropsychology 2005;19(5):618–28.Google Scholar
18.Lindquist, B., Persson, E. K., Uvebrant, P., Carlsson, G. Learning, memory and executive functions in children with hydrocephalus. Acta Paediatr 2008;97(5):596601.Google Scholar
19.Vicari, S., Brizzolara, D., Carlesimo, G. A., Pezzini, G., Volterra, V. Memory abilities in children with Williams syndrome. Cortex 1996;32(3):503–14.CrossRefGoogle ScholarPubMed
20.Vinter, A., Detable, C. Implicit and explicit motor learning in children with and without Down’s syndrome. Br J Dev Psychol 2008;26(4):507–23.Google Scholar
21.Lah, S., Epps, A., Levick, W., Parry, L. Implicit and explicit memory outcome in children who have sustained severe traumatic brain injury: Impact of age at injury (preliminary findings). Brain Inj 2011;25(1):4452.Google Scholar
22.Hersh, N. A., Treadgold, L. G. NeuroPage: The rehabilitation of memory dysfunction by prosthetic memory and cueing. NeuroRehabilitation 1994;4(3):187–97.Google Scholar
23.Robinson, K. E., Kaizar, E., Catroppa, C., Godfrey, C., Yeates, K. O. Systematic review and meta-analysis of cognitive interventions for children with central nervous system disorders and neurodevelopmental disorders. J Pediatr Psychol 2014;39(8):846–65.Google Scholar
24.Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Klamar, K., Fraas, M., et al. Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil 2011;92(4):519–30.Google Scholar
25.Slomine, B., Locascio, G. Cognitive rehabilitation for children with acquired brain injury. Dev Disabil Res Rev 2009;15(2):133–43.Google Scholar
26.Glasgow, R. E., Zeiss, R. A., Barrera, M., Jr., Lewinsohn, P. M. Case studies on remediating memory deficits in brain-damaged individuals. J Clin Psychol 1977;33(4):1049–54.Google Scholar
27.Ryan, T. V., Ruff, R. M. The efficacy of structured memory retraining in a group comparison of head trauma patients. Arch Clin Neuropsychol 1988;3(2):165–79.Google Scholar
28.Crosson, B., Buenning, W. An individualized memory retraining program after closed-head injury – A single case study. J Clin Neuropsychol 1984;6(3):287301.Google Scholar
29.Crovitz, H. F., Harvey, M. T., Horn, R. W. Problems in the acquisition of imagery mnemonics – 3 brain damaged cases Cortex. 1979;15(2):225–34.Google Scholar
30.Gianutsos, R., Gianutsos, J. Rehabilitating the verbal recall of brain-damaged patients by mnemonic training: An experimental demonstration using single-case methodology. J Clin Neuropsychol 1979;1:117–35.Google Scholar
31.Malec, J., Questad, K. Rehabilitation of memory after craniocerebral trauma – Case-report. Arch Phys Med Rehabil 1983;64(9):436–8.Google Scholar
32.Schacter, D. L., Crovitz, H. F. Memory function after closed head injury – review of quantitative research. Cortex 1977;13(2):150–76.Google Scholar
33.Berg, I. J., Koning-haanstra, M., Deelman, B. G. Long-term effects of memory rehabilitation: A controlled study. Neuropsychol Rehabil 1991;1(2):97111.Google Scholar
34.Kaschel, R., Della Sala, S., Cantagallo, A., Fahlbock, A., Laaksonen, R., Kazen, M. Imagery mnemonics for the rehabilitation of memory: A randomised group controlled trial. Neuropsychol Rehabil 2002;12(2):127–53.Google Scholar
35.O’Neil-Pirozzi, T. M., Strangman, G. E., Goldstein, R., Katz, D. I., Savage, C. R., Kelkar, K., Supelana, C., Burke, D., Rauch, S. L., Glenn, M. B. A controlled treatment study of internal memory strategies (I-MEMS) following traumatic brain injury. J Head Trauma Rehabil 2010;25(1):4351.Google Scholar
36.Potvin, M. J., Rouleau, I., Senechal, G., Giguere, J. F. Prospective memory rehabilitation based on visual imagery techniques. Neuropsychol Rehabil 2011;21(6):899924.Google Scholar
37.Yerys, B. E., White, D. A., Salorio, C. F., McKinstry, R., Moinuddin, A., DeBaun, M. Memory strategy training in children with cerebral infarcts related to sickle cell disease. J Pediatr Hematol Oncol 2003;25(6):495–8.Google Scholar
38.Patel, S. K., Katz, E. R., Richardson, R., Rimmer, M., Kilian, S. Cognitive and problem solving training in children with cancer: A pilot project. J Pediatr Hematol Oncol. 2009;31(9):670–7.Google Scholar
39.Butler, R. W., Copeland, D. R. Attentional processes and their remediation in children treated for cancer: A literature review and the development of a therapeutic approach. J Int Neuropsychol Soc 2002;8(1):115–24.Google Scholar
40.Sumowski, J. F., Coyne, J., Cohen, A., Deluca, J. Retrieval practice improves memory in survivors of severe traumatic brain injury. Arch Phys Med Rehabil 2014;95(2):397400.Google Scholar
41.Coyne, J. H., Borg, J. M., DeLuca, J., Glass, L., Sumowski, J. F. Retrieval practice as an effective memory strategy in children and adolescents with traumatic brain injury. Arch Phys Med Rehabil 2015;96(4):742–5.Google Scholar
42.Roediger, H. L., 3rd, Butler, A. C. The critical role of retrieval practice in long-term retention. Trends Cogn Sci 2011;15(1):20–7.Google Scholar
43.van’t Hooft, I., Andersson, K., Bergman, B., Sejersen, T., von Wendt, L., Bartfai, A. Sustained favorable effects of cognitive training in children with acquired brain injuries. NeuroRehabilitation 2007;22(2):109–16.Google Scholar
44.Catroppa, C., Stone, K., Hearps, S. J., Soo, C., Anderson, V., Rosema, S. Evaluation of an attention and memory intervention post-childhood acquired brain injury: Preliminary efficacy, immediate and 6 months post-intervention. Brain Inj 2015;29(11):1317–24.Google Scholar
45.Butler, R. W., Copeland, D. R., Fairclough, D. L., Mulhern, R. K., Katz, E. R., Kazak, A. E., et al. A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. J Consult Clin Psychol 2008;76(3):367–78.Google Scholar
46.Sohlberg, M., Mateer, C. A. Attention Process Training I (APT-I). Wake Forest, NC: Lash & Associates; 1999.Google Scholar
47.McDonald, A., Haslam, C., Yates, P., Gurr, B., Leeder, G., Sayers, A. Google Calendar: a new memory aid to compensate for prospective memory deficits following acquired brain injury. Neuropsychol Rehabil 2011;21(6):784807.Google Scholar
48.Depompei, R., Gillette, Y., Goetz, E., Xenopoulos-Oddsson, A., Bryen, D., Dowds, M. Practical applications for use of PDAs and smartphones with children and adolescents who have traumatic brain injury. NeuroRehabilitation 2008;23(6):487–99.Google Scholar
49.Schmitter-Edgecombe, M., Fahy, J. F., Whelan, J. P., Long, C. J. Memory remediation after severe closed head injury: Notebook training versus supportive therapy. J Consul Clin Psychol 1995;63(3):484–9.Google Scholar
50.Ownsworth, T. L., McFarland, K. Memory remediation in long-term acquired brain injury: Two approaches in diary training. Brain Inj 1999;13(8):605–26.Google Scholar
51.Wilson, B. A., Emslie, H., Evans, J. J., Quirk, K., Watson, P., Fish, J. The NeuroPage system for children and adolescents with neurological deficits. Develop Neurorehabil 2009;12(6):421–6.Google Scholar
52.Wilson, B. A., Evans, J. J., Emslie, H., Malinek, V. Evaluation of NeuroPage: A new memory aid. J Neurol Neurosurg Psychiatr 1997;63(1):113–5.Google Scholar
53.Hart, T., Hawkey, K., Whyte, J. Use of a portable voice organizer to remember therapy goals in traumatic brain injury rehabilitation: A within-subjects trial. J Head Trauma Rehabil 2002;17(6):556–70.Google Scholar
54.Kim, H. J., Burke, D. T., Dowds, M. M., Robinson Boone, K. A., Park, G. J. Electronic memory aids for outpatient brain injury: Follow-up findings. Brain Inj 2000;14(2):187–96.Google Scholar
55.Gillette, Y., Depompei, R. Do PDAs enhance the organization and memory skills of students with cognitive disabilities? Psychol Schools 2008;45(7):665–77.Google Scholar
56.Plackett, R., Thomas, S., Thomas, S. Professionals’ views on the use of smartphone technology to support children and adolescents with memory impairment due to acquired brain injury. Disability Rehabil Assistive Technol 2016:18.Google Scholar
57.Ehlhardt, L. A., Sohlberg, M. M., Kennedy, M., Coelho, C., Ylvisaker, M., Turkstra, L., et al. Evidence-based practice guidelines for instructing individuals with neurogenic memory impairments: What have we learned in the past 20 years? Neuropsychol Rehabil 2008;18(3):300–42.Google Scholar
58.Baddeley, A. Implicit memory and errorless learning: A link between cognitive theory and neuropsychological rehabilitation? In Squire, L. R. and Butters, N., editors. Neuropsychology of Memory. 2nd ed. New York: Guilford Press; 1992.Google Scholar
59.Kessels, R. P. C., Haan, E. H. F. Implicit learning in memory rehabilitation: A meta-analysis on errorless learning and vanishing cues methods. J Clin Exp Neuropsychol 2003;25(6):805–14.Google Scholar
60.Baddeley, A., Wilson, B. A. When implicit learning fails – Amnesia and the problem of error elimination. Neuropsychologia 1994;32(1):5368.Google Scholar
61.Landis, J., Hanten, G., Levin, H. S., Li, X., Ewing-Cobbs, L., Duron, J., et al. Evaluation of the errorless learning technique in children with traumatic brain injury. Arch Phys Med Rehabil 2006;87(6):799805.Google Scholar
62.Evans, J. J., Wilson, B. A., Schuri, U., Andrade, J., Baddeley, A., Bruna, O., et al. A comparison of “errorless” and “trial-and-error” learning methods for teaching individuals with acquired memory deficits. Neuropsychol Rehabil 2000;10(1):67101.Google Scholar
63.Haslam, C, Bazen-Peters, C, Wright, I. Errorless learning improves memory performance in children with acquired brain injury: A controlled comparison of standard and self-generation techniques. Neuropsychol Rehabil 2012;22(5):697715.Google Scholar
64.Haslam, C., Wagner, J., Wegener, S., Malouf, T. Elaborative encoding through self-generation enhances outcomes with errorless learning: Findings from the Skypekids memory study. Neuropsychol Rehabil 2017;27(1):6079.Google Scholar
65.Boosman, H., Visser-Meily, J. M. A., Winkens, I., van Heugten, C. M. Clinicians’ views on learning in brain injury rehabilitation. Brain Inj 2013;27(6):685–8.Google Scholar
66.Jennings, K. D., Connors, R. E., Stegman, C. E. Does a physical handicap alter the development of mastery motivation during the preschool years? J Am Acad Child Adolesc Psychiatr 1988;27(3):312–7.Google Scholar
67.van den Broek, M. D. Why does neurorehabilitation fail? J Head Trauma Rehab 2005;20(5):464–73.Google Scholar
68.Tatla, S. K., Sauve, K., Jarus, T., Virji-Babul, N., Holsti, L. The effects of motivating interventions on rehabilitation outcomes in children and youth with acquired brain injuries: A systematic review. Brain Inj 2014;28(8):1022–35.Google Scholar
69.McCauley, S. R., Pedroza, C., Chapman, S. B., Cook, L. G., Hotz, G., Vasquez, A. C., et al. Event-based prospective memory performance during subacute recovery following moderate to severe traumatic brain injury in children: Effects of monetary incentives. J Int Neuropsychol Soc 2010;16(2):335–41.Google Scholar
70.McCauley, S. R., Pedroza, C., Chapman, S. B., Cook, L. G., Vásquez, A. C., Levin, H. S. Monetary incentive effects on event-based prospective memory three months after traumatic brain injury in children. J Clin Exp Neuropsychol 2011;33(6):639–46.Google Scholar
71.McCauley, S. R., McDaniel, M. A., Pedroza, C., Chapman, S. B., Levin, H. S. Incentive effects on event-based prospective memory performance in children and adolescents with traumatic brain injury. Neuropsychology 2009;23(2): 201–9.Google Scholar

References

1.Heilman, K. M., Watson, R. T., Valenstein, E. Neglect and related disorders. In: Heilman, K. M., Valenstein, E., editors. Clinical Neuropsychology. 4th ed. New York: Oxford University Press; 2003. p. 296.Google Scholar
2.Verfaellie, M., Heilman, K. M. Neglect syndromes. In: Synder, P. J., Nussbaum, P. D., Robins, D. L., editors. Clinical Neuropsychology: A Pocket Handbook for Assessment. 2nd ed. Washington DC: American Psychological Association; 2006. p. 489.Google Scholar
3.Corbetta, M. Hemispatial neglect: Clinic, pathogenesis, and treatment. Semin Neurol 2014;34(5):514523.Google Scholar
4.Barrett, A. M., Buxbaum, L. J., Coslett, H. B., Edwards, E., Heilman, K. M., Hillis, A. E., et al. Cognitive rehabilitation interventions for neglect and related disorders: Moving from bench to bedside in stroke patients. J Cogn Neurosci 2006 ;18(7):12231236.Google Scholar
5.Bowen, A., McKenna, K., Tallis, R. C. Reasons for variability in the reported rate of occurrence of unilateral spatial neglect after stroke. Stroke 1999;30(6):11961202.Google Scholar
6.Buxbaum, L. J., Ferraro, M. K., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., et al. Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology 2004;62(5):749756.Google Scholar
7.Yousefian, O., Ballantyne, A. O., Doo, A., Trauner, D. A. Clock drawing in children with perinatal stroke. Pediatr Neurol 2015;52(6):592598.Google Scholar
8.Trauner, D. A. Hemispatial neglect in young children with early unilateral brain damage. Dev Med Child Neurol 2003;45(3):160166.Google Scholar
9.Laurent-Vannier, A., Chevignard, M., Pradat-Diehl, P., Abada, G., De Agostini, M. Assessment of unilateral spatial neglect in children using the Teddy Bear Cancellation Test. Dev Med Child Neurol 2006;48(2):120125.Google Scholar
10.Laurent-Vannier, A., Pradat-Diehl, P., Chevignard, M., Abada, G., De Agostini, M. Spatial and motor neglect in children. Neurology 2003;60(2):202207.Google Scholar
11.Kleinman, J. T., Gailloud, P., Jordan, L. C. Recovery from spatial neglect and hemiplegia in a child despite a large anterior circulation stroke and Wallerian degeneration. J Child Neurol 2010;25(4):500503.Google Scholar
12.Thareja, T., Ballantyne, A. O., Trauner, D. A. Spatial analysis after perinatal stroke: patterns of neglect and exploration in extra-personal space. Brain Cogn 2012;79(2):107116.Google Scholar
13.Karnath, H. O., Rorden, C. The anatomy of spatial neglect. Neuropsychologia 2012;50(6):10101017.Google Scholar
14.Farne, A., Buxbaum, L. J., Ferraro, M., Frassinetti, F., Whyte, J., Veramonti, T., et al. Patterns of spontaneous recovery of neglect and associated disorders in acute right brain-damaged patients. J Neurol Neurosurg Psychiatry 2004; 75(10):14011410.Google Scholar
15.Ringman, J. M., Saver, J. L., Woolson, R. F., Clarke, W. R., Adams, H. P. Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology 2004;63(3):468474.Google Scholar
16.Thompson, N. M., Ewing-Cobbs, L., Fletcher, J. M., Miner, M. E., Levin, H. S. Left unilateral neglect in a preschool child. Dev Med Child Neurol 1991;33(7):640644.Google Scholar
17.Ferro, J. M., Martins, I. P., Tavora, L. Neglect in children. Ann Neurol 1984;15(3):281284.Google Scholar
18.Marsh, E. B., Newhart, M., Kleinman, J. T., Heidler-Gary, J., Vining, E. P., Freeman, J. M., et al. Hemispherectomy sustained before adulthood does not cause persistent hemispatial neglect. Cortex 2009;45(5):677685.Google Scholar
19.Katz, N., Hartman-Maeir, A., Ring, H., Soroker, N. Functional disability and rehabilitation outcome in right hemisphere damaged patients with and without unilateral spatial neglect. Arch Phys Med Rehabil 1999;80(4):379384.Google Scholar
20.Jehkonen, M., Laihosalo, M., Kettunen, J. E. Impact of neglect on functional outcome after stroke: a review of methodological issues and recent research findings. Restor Neurol Neurosci 2006;24(4–6):209215.Google Scholar
21.Azouvi, P., Samuel, C., Louis-Dreyfus, A., Bernati, T., Bartolomeo, P., Beis, J. M., et al. Sensitivity of clinical and behavioural tests of spatial neglect after right hemisphere stroke. J Neurol Neurosurg Psychiatry 2002 ;73(2):160166.Google Scholar
22.Mesulum, M. Principles of Behavioral and Cognitive Neurology. New York: Oxford University Press; 2000.Google Scholar
23.Albert, M. L. A simple test of visual neglect. Neurology 1973;23(6):658664.Google Scholar
24.Freedman, M., Leach, L., Kaplan, E., Winocur, G., Shulman, K. I., Delis, D. C. Clock Drawing: A Neuropsychological Analysis. New York: Oxford University Press; 1994.Google Scholar
25.Wilson, B. A., Cockburn, J., Halligan, P. Behavioural Inattention Test Manual. Fareham, UK: Thames Valley Test Company; 1987.Google Scholar
26.Hartman-Maeir, A., Katz, N. Validity of the Behavioral Inattention Test (BIT): Relationships with functional tasks. Am J Occup Ther 1995;49(6):507516.Google Scholar
27.Azouvi, P. Functional consequences and awareness of unilateral neglect: Study of an evaluation scale. Neuropsychol Rehabil 1996;6(2):133150.Google Scholar
28.Azouvi, P., Olivier, S., de Montety, G., Samuel, C., Louis-Dreyfus, A., Tesio, L. Behavioral assessment of unilateral neglect: Study of the psychometric properties of the Catherine Bergego Scale. Arch Phys Med Rehabil 2003;84(1):5157.Google Scholar
29.Cunningham, L. J., O’Rourke, K., Finlay, C., Gallagher, M. A preliminary investigation into the psychometric properties of the Dublin Extrapersonal Neglect Assessment (DENA): A novel screening tool for extrapersonal neglect. Neuropsychol Rehabil 2017;27(3):349368.Google Scholar
30.Cohen, M. J., Ricci, C. A., Kibby, M. Y., Edmonds, J. E. Developmental progression of clock face drawing in children. Child Neuropsychol 2000;6(1):6476.Google Scholar
31.Wechsler, D. Wechsler Intelligence Scale for Children - Fifth Edition (WISC-V). San Antonio, TX: Psychological Corporation; 2014.Google Scholar
32.Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence – Fourth Edition (WPPSI – IV). Psychological Corporation; 2012.Google Scholar
33.Delis, D. C., Kaplan, E., Kramer, J. H. Delis-Kaplan Executive Function System (D-KEFS). Psychological Corporation; 2001.Google Scholar
34.Rudel, R. G., Denckla, M. B., Broman, M. Rapid silent response to repeated target symbols by dyslexic and nondyslexic children. Brain Lang 1978;6(1):5262.Google Scholar
35.Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M., et al. Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil 2011;92(4):519530.Google Scholar
36.Bowen, A., Hazelton, C., Pollock, A., Lincoln, N. B. Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database Syst Rev 2013 1;(7):CD003586.Google Scholar
37.Azouvi, P., Jacquin-Courtois, S., Luaute, J. Rehabilitation of unilateral neglect: Evidence-based medicine. Ann Phys Rehabil Med 2016 60(3): 191197.Google Scholar
38.Riestra, A. R., Barrett, A. M. Rehabilitation of spatial neglect. Handb Clin Neurol 2013;110:34755.Google Scholar
39.Fasotti, L., van Kessel, M. Novel insights in the rehabilitation of neglect. Front Hum Neurosci 2013;7:780.Google Scholar
40.Kerkhoff, G., Schenk, T. Rehabilitation of neglect: An update. Neuropsychologia 2012;50(6):10721079.Google Scholar
41.Weinberg, J., Diller, L., Gordon, W. A., Gerstman, L. J., Lieberman, A., Lakin, P., et al. Visual scanning training effect on reading-related tasks in acquired right brain damage. Arch Phys Med Rehabil 1977;58(11):479486.Google Scholar
42.Diller, L., Weinberg, J. Hemi-inattention in rehabilitation: The evolution of a rational remediation program. Adv Neurol 1977;18:6382.Google Scholar
43.Haskins, E., Cicerone, K., Trexler, L. Cognitive Rehabilitation Manual. 1st ed. Reston, VA: American Congress of Rehabilitation Medicine Publishing; 2012.Google Scholar
44.Pizzamiglio, L., Antonucci, G., Judica, A., Montenero, P., Razzano, C., Zoccolotti, P. Cognitive rehabilitation of the hemineglect disorder in chronic patients with unilateral right brain damage. J Clin Exp Neuropsychol 1992;14(6):901923.Google Scholar
45.Niemeier, J. P. The Lighthouse Strategy: Use of a visual imagery technique to treat visual inattention in stroke patients. Brain Inj 1998;12(5):399406.Google Scholar
46.Niemeier, J. P., Cifu, D. X., Kishore, R. The lighthouse strategy: Improving the functional status of patients with unilateral neglect after stroke and brain injury using a visual imagery intervention. Top Stroke Rehabil 2001;8(2):1018.Google Scholar
47.Robertson, I. H., North, N. T., Geggie, C. Spatiomotor cueing in unilateral left neglect: Three case studies of its therapeutic effects. J Neurol Neurosurg Psychiatry 1992;55(9):799805.Google Scholar
48.Robertson, I. H., North, N. Active and passive activation of left limbs: influence on visual and sensory neglect. Neuropsychologia 1993;31(3):293300.Google Scholar
49.Kalra, L., Perez, I., Gupta, S., Wittink, M. The influence of visual neglect on stroke rehabilitation. Stroke 1997;28(7):13861391.Google Scholar
50.Robertson, I. H., North, N. Spatio-motor cueing in unilateral left neglect: The role of hemispace, hand and motor activation. Neuropsychologia 1992;30(6):553563.Google Scholar
51.Robertson, I. H., Hogg, K., McMillan, T. M. Rehabilitation of unilateral visual neglect: Improving function by contralesional limb activation. Neuropsychol Rehabil 1998;8(1):1929.Google Scholar
52.Maddicks, R., Marzillier, S. L., Parker, G. Rehabilitation of unilateral neglect in the acute recovery stage: The efficacy of limb activation therapy. Neuropsychol Rehabil 2003;13(3):391408.Google Scholar
53.Wilson, F. C., Manly, T., Coyle, D., Robertson, I. H. The effect of contralesional limb activation training and sustained attention training for self-care programmes in unilateral spatial neglect. Restor Neurol Neurosci 2000;16(1):14.Google Scholar
54.Samuel, C., Louis-Dreyfus, A., Kaschel, R., Makiela, E., Troubat, M., Aselmi, N., et al. Rehabilitation of very severe unilateral neglect by visuo-spatia l cueing: Two single case studies. Neuropsychol Rehabil 2000;10:385399.Google Scholar
55.Robertson, I. H., McMillan, T. M., McLeod, E., Edgeworth, J., Brock, D. Rehabilitation of unilateral neglect by limb activation: A randomised single blind controlled trial. Neuropsychol Rehabil 2002;12:439454.Google Scholar
56.O’Neill, B., McMillan Professor, T. M. The efficacy of contralesional limb activation in rehabilitation of unilateral hemiplegia and visual neglect: A baseline-intervention study Neuropsychol Rehabil 2004;14(4):437447.Google Scholar
57.Fong, K. N., Yang, N. Y., Chan, M. K., Chan, D. Y., Lau, A. F., Chan, D. Y., et al. Combined effects of sensory cueing and limb activation on unilateral neglect in subacute left hemiplegic stroke patients: A randomized controlled pilot study. Clin Rehabil 2013;27(7):628637.Google Scholar
58.Corbetta, D., Sirtori, V., Castellini, G., Moja, L., Gatti, R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev 2015 Oct 8;(10):CD004433.Google Scholar
59.Freeman, E. Unilateral spatial neglect: New treatment approaches with potential application to occupational therapy. Am J Occup Ther 2001;55(4):401408.Google Scholar
60.Taub, E., Griffin, A., Nick, J., Gammons, K., Uswatte, G., Law, C. R. Pediatric CI therapy for stroke-induced hemiparesis in young children. Dev Neurorehabil 2007;10(1):318.Google Scholar
61.van der Lee, J. H., Wagenaar, R. C., Lankhorst, G. J., Vogelaar, T. W., Deville, W. L., Bouter, L. M. Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke 1999;30(11):23692375.Google Scholar
62.Rossetti, Y., Rode, G., Pisella, L., Farne, A., Li, L., Boisson, D., et al. Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 1998;395(6698):166169.Google Scholar
63.Yang, N. Y., Zhou, D., Chung, R. C., Li-Tsang, C. W., Fong, K. N. Rehabilitation interventions for unilateral neglect after stroke: a systematic review from 1997 through 2012. Front Hum Neurosci 2013;7:187.Google Scholar
64.Rode, G., Lacour, S., Jacquin-Courtois, S., Pisella, L., Michel, C., Revol, P., et al. Long-term sensorimotor and therapeutical effects of a mild regime of prism adaptation in spatial neglect. A double-blind RCT essay. Ann Phys Rehabil Med 2015;58(2):4053.Google Scholar
65.Fasotti, L., van Kessel, M. Novel insights in the rehabilitation of neglect. Front Hum Neurosci 2013;7:780.Google Scholar
66.Van Vleet, T. M., DeGutis, J., Dabit, S., Chiu, C. Randomized control trial of computer-based rehabilitation of spatial neglect syndrome: The RESPONSE trial protocol. BMC Neurol 2014;14(25).Google Scholar
67.Song, W., Du, B., Xu, Q., Hu, J., Wang, M., Luo, Y. Low-frequency transcranial magnetic stimulation for visual spatial neglect: A pilot study. J Rehabil Med 2009;41(3):162165.Google Scholar
68.Lim, J. Y., Kang, E. K., Paik, N. J. Repetitive transcranial magnetic stimulation to hemispatial neglect in patients after stroke: An open-label pilot study. J Rehabil Med 2010;42(5):447452.Google Scholar
69.Cha, H. G., Kim, M. K. Effects of repetitive transcranial magnetic stimulation on arm function and decreasing unilateral spatial neglect in subacute stroke: A randomized controlled trial. Clin Rehabil 2016;30(7):649656.Google Scholar
70.Cazzoli, D., Muri, R. M., Schumacher, R., von Arx, S., Chaves, S., Gutbrod, K., et al. Theta burst stimulation reduces disability during the activities of daily living in spatial neglect. Brain 2012;135(Pt 11):34263439.Google Scholar
71.Ko, M. H., Han, S. H., Park, S. H., Seo, J. H., Kim, Y. H. Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neurosci Lett 2008;448(2):171174.Google Scholar
72.Kim, B. R., Chun, M. H., Kim, D. Y., Lee, S. J. Effect of high- and low-frequency repetitive transcranial magnetic stimulation on visuospatial neglect in patients with acute stroke: A double-blind, sham-controlled trial. Arch Phys Med Rehabil 2013;94(5):803807.Google Scholar
73.Priftis, K., Passarini, L., Pilosio, C., Meneghello, F., Pitteri, M. Visual scanning training, limb activation treatment, and prism adaptation for rehabilitating left neglect: Who is the winner? Front Hum Neurosci 2013;7:360.Google Scholar
74.Pitteri, M., Arcara, G., Passarini, L., Meneghello, F., Priftis, K. Is two better than one? Limb activation treatment combined with contralesional arm vibration to ameliorate signs of left neglect. Front Hum Neurosci 2013;7:460.Google Scholar
75.Tunnard, C., Wilson, B. A. Comparison of neuropsychological rehabilitation techniques for unilateral neglect: An ABACADAEAF single-case experimental design. Neuropsychol Rehabil 2014;24(3–4):382399.Google Scholar
76.van Wyk, A., Eksteen, C. A., Rheeder, P. The effect of visual scanning exercises integrated into physiotherapy in patients with unilateral spatial neglect poststroke: a matched-pair randomized control trial. Neurorehabil Neural Repair 2014;28(9):856873.Google Scholar
77.Luukkainen-Markkula, R., Tarkka, I. M., Pitkanen, K., Sivenius, J., Hamalainen, H. Rehabilitation of hemispatial neglect: A randomized study using either arm activation or visual scanning training. Restor Neurol Neurosci 2009;27(6):663672.Google Scholar
78.Novak, I., McIntyre, S., Morgan, C., Campbell, L., Dark, L., Morton, N., et al. A systematic review of interventions for children with cerebral palsy: State of the evidence. Dev Med Child Neurol 2013;55(10):885910.Google Scholar
79.Chen, Y. P., Pope, S., Tyler, D., Warren, G. L. Effectiveness of constraint-induced movement therapy on upper-extremity function in children with cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2014;28(10):939953.Google Scholar
80.Reidy, T. G., Naber, E., Viguers, E., Allison, K., Brady, K., Carney, J., et al. Outcomes of a clinic-based pediatric constraint-induced movement therapy program. Phys Occup Ther Pediatr 2012;32(4):355367.Google Scholar
81.Case-Smith, J., DeLuca, S. C., Stevenson, R., Ramey, S. L. Multicenter randomized controlled trial of pediatric constraint-induced movement therapy: 6-month follow-up. Am J Occup Ther 2012;66(1):1523.Google Scholar
82.Eliasson, A. C., Sjostrand, L., Ek, L., Krumlinde-Sundholm, L., Tedroff, K. Efficacy of baby-CIMT: Study protocol for a randomised controlled trial on infants below age 12 months, with clinical signs of unilateral CP. BMC Pediatr 2014;14: 141.Google Scholar
83.Huang, H. H., Fetters, L., Hale, J., McBride, A. Bound for success: A systematic review of constraint-induced movement therapy in children with cerebral palsy supports improved arm and hand use. Phys Ther 2009;89(11):11261141.Google Scholar
84.Deluca, S. C., Echols, K., Law, C. R., Ramey, S. L. Intensive pediatric constraint-induced therapy for children with cerebral palsy: Randomized, controlled, crossover trial. J Child Neurol 2006;21(11):931938.Google Scholar
85.Juenger, H., Kuhnke, N., Braun, C., Ummenhofer, F., Wilke, M., Walther, M., et al. Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study. Dev Med Child Neurol 2013;55(10):941951.Google Scholar
86.Sutcliffe, T. L., Gaetz, W. C., Logan, W. J., Cheyne, D. O., Fehlings, D. L. Cortical reorganization after modified constraint-induced movement therapy in pediatric hemiplegic cerebral palsy. J Child Neurol 2007;22 (11):12811287.Google Scholar
87.Bollea, L., Rosa, G. D., Gisondi, A., Guidi, P., Petrarca, M., Giannarelli, P., et al. Recovery from hemiparesis and unilateral spatial neglect after neonatal stroke. Case report and rehabilitation of an infant. Brain Inj 2007;21(1):8191.Google Scholar
88.Chevignard, M., Azzi, V., Abada, G., Lemesle, C., Bur, S., Toure, H., et al. The effectiveness of constraint-induced movement therapy for children with hemiplegia following acquired brain injury. Ann Readapt Med Phys 2008;51(4):238247.Google Scholar
89.Fong, K. N., Jim, E. S., Dong, V. A., Cheung, H. K.Remind to Move’: A pilot study on the effects of sensory cueing treatment on hemiplegic upper limb functions in children with unilateral cerebral palsy. Clin Rehabil 2013;27(1):8289.Google Scholar
90.Dong, V. A., Fong, K. N., Chen, Y. F., Tseng, S. S., Wong, L. M.Remind-to-Move” treatment versus constraint-induced movement therapy for children with hemiplegic cerebral palsy: A randomized controlled trial. Dev Med Child Neurol 2017;59(2):160167.Google Scholar
91.Krumlinde-Sundholm, L., Holmefur, M., Kottorp, A., Eliasson, A. C. The Assisting Hand Assessment: Current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol 2007;49(4):259264.Google Scholar
92.Riquelme, I., Henne, C., Flament, B., Legrain, V., Bleyenheuft, Y., Hatem, S. M. Use of prism adaptation in children with unilateral brain lesion: Is it feasible? Res Dev Disabil 2015;43–44:6171.Google Scholar

References

1.Anderson, P. Assessment and development of executive function (EF) during childhood. Child Neuropsychol 2002;8(2):7182.Google Scholar
2.Gioia, G. A., Isquith, P. K. Ecological assessment of executive function in traumatic brain injury. Dev Neuropsychol 2004;25(1–2):135–58.Google Scholar
3.Rabbitt, P. Methodologies and models in the study of executive function. In: Methodology of Frontal and Executive Functions [Internet]. East Sussex, UK: Psychology Press Ltd. P. Rabbitt; 1997 [cited July 30, 2012]. Available from: www.scribd.com/doc/50671857/Methodology-of-Frontal-and-Executive-FunctionsGoogle Scholar
4.Burgess, P. W., Simons, J. S. Theories of frontal lobe executive function: clinical applications. In: Halligan, P. W. and Wade, D. T., editors. The Effectiveness of Rehabilitation for Cognitive Deficits. Oxford: Oxford University Press. 2005.Google Scholar
5.Diamond, A. Executive functions. Annu Rev Psychol 2013;64(1):135–68.Google Scholar
6.Lehto, J. E., Juujärvi, P., Kooistra, L., Pulkkinen, L. Dimensions of executive functioning: Evidence from children. Br J Dev Psychol 2003;21(1):5980.Google Scholar
7.Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., Wager, T. D. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn Psychol 2000;41(1):49100.Google Scholar
8.Posner, M. I., DiGirolamo, G. J. Executive attention: Conflict, target detection, and cognitive control. In: Parasuraman, R., editor. The Attentive Brain. Cambridge, MA: MIT Press.1998. p. 401423.Google Scholar
9.Corbetta, M., Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002;3(3):201–15.Google Scholar
10.Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., Sweeney, J. A. Maturation of cognitive processes from late childhood to adulthood. Child Dev 2004;75(5):1357–72.Google Scholar
11.Baddeley, A. D., Hitch, G. J. Developments in the concept of working memory. Neuropsychology 1994;8(4):485–93.Google Scholar
12.Smith, E. E., Jonides, J. Storage and executive processes in the frontal lobes. Science 1999;283(5408):1657–61.Google Scholar
13.Davidson, M. C., Amso, D., Anderson, L. C., Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 2006;44(11):2037–78.Google Scholar
14.Diamond, A., Kirkham, N., Amso, D. Conditions under which young children can hold two rules in mind and inhibit a prepotent response. Dev Psychol 2002;38(3):352–62.Google Scholar
15.Collins, A., Koechlin, E. Reasoning, learning, and creativity: Frontal lobe function and human decision-making. PLoS Biol 2012;10(3):e1001293.Google Scholar
16.Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., DeFries, J. C., Hewitt, J. K. Not all executive functions are related to intelligence. Psychol Sci 2006;17(2):172–79.Google Scholar
17.Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., Fletcher, J. M. Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc. 2009;15(3):331–43.Google Scholar
18.Longaud-Valès, A., Chevignard, M., Dufour, C., Grill, J., Puget, S., Sainte-Rose, C., et al. Assessment of executive functioning in children and young adults treated for frontal lobe tumours using ecologically valid tests. Neuropsychol Rehabil 2015;14;126.Google Scholar
19.Duncan, J., Emslie, H., Williams, P., Johnson, R., Freer, C. Intelligence and the frontal lobe: The organization of goal-directed behavior. Cogn Psychol 1996;30(3):257303.Google Scholar
20.Duncan, J., Johnson, R., Swales, M., Freer, C. Frontal lobe deficits after head injury: Unity and diversity of function. Cogn Neuropsychol 1997;14(5):713–41.Google Scholar
21.Silver, C. H. Ecological validity of neuropsychological assessment in childhood traumatic brain injury. J Head Trauma Rehabil 2000;15(4):973–88.Google Scholar
22.Eslinger, P. J., Flaherty-Craig, C. V., Benton, A. L. Developmental outcomes after early prefrontal cortex damage. Brain Cogn 2004;55(1):84103.Google Scholar
23.Price, B. H., Daffner, K. R., Stowe, R. M., Mesulam, M. M. The compartmental learning disabilities of early frontal lobe damage. Brain 1990;113 (Pt 5):1383–93.Google Scholar
24.Vriezen, E. R., Pigott, S. E. The relationship between parental report on the BRIEF and performance-based measures of executive function in children with moderate to severe traumatic brain injury. Child Neuropsychol 2002;8(4):296303.Google Scholar
25.Eslinger, P. J., Biddle, K., Pennington, B., Page, R, B. Cognitive and behavioral development up to 4 years after early right frontal lobe lesion. Dev Neuropsychol 1999;15(2):157–91.Google Scholar
26.Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., Mikiewicz, O. Relationships between cognitive and behavioral measures of executive function in children with brain disease. Child Neuropsychol. 2002;8(4):231–40.Google Scholar
27.Gioia, G. A., Isquith, P. K., Guy, S. C., Kenworthy, L. Behavior Rating Inventory of Executive Function® (BRIEF®). Lutz, FL: Psychological Assessment Resources, Inc. PAR; 2000.Google Scholar
28.Roy, A., Fournet, N., Le Gall, D., Roulin, J-L. Behavior Rating Inventory of Executive Function® (BRIEF®). Adapted from Gioia, G. A., Isquith, P. K., Guy, S. C., Kenworthy, L. Hogrefe, France (French version edition); 2012.Google Scholar
29.Achenbach, T. Child Behavior Checklist. In: M. C.-Sophia, E., editor. Rotterdam, Netherlands. Volume adapted from French: C. Capron. F. C. Verhulst and J. van der Ende, 2001.Google Scholar
30.Emslie, H. Behavioural Assessment of the Dysexecutive Syndrome for Children: (BADS-C). Edmunds, UK: Thames Valley Test Company; 2003. 41 p.Google Scholar
31.Chevignard, M. P., Soo, C., Galvin, J., Catroppa, C., Eren, S. Ecological assessment of cognitive functions in children with acquired brain injury: A systematic review. Brain Inj 2012;26(9):1033–57.Google Scholar
32.Chevignard, M. P., Catroppa, C., Galvin, J., Anderson, V. Development and evaluation of an ecological task to assess executive functioning post childhood TBI: The children’s cooking task. Brain Impair 2010;11(2):125–43.Google Scholar
33.Chevignard, M. P., Servant, V., Mariller, A., Abada, G., Pradat-Diehl, P., Laurent-Vannier, A. Assessment of executive functioning in children after TBI with a naturalistic open-ended task: A pilot study. Develop Neurorehabil 2009;12(2):7691.Google Scholar
34.Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 2004;101(21):8174–9.Google Scholar
35.Blakemore, S.-J., Choudhury, S. Development of the adolescent brain: Implications for executive function and social cognition. J Child Psychol Psychiatry 2006;47(3–4):296312.Google Scholar
36.Krasny-Pacini, A., Limond, J., Evans, J., Hiebel, J., Bendjelida, K., Chevignard, M. Self-awareness assessment during cognitive rehabilitation in children with acquired brain injury: A feasibility study and proposed model of child anosognosia. Disabil Rehabil 2015;12;115.Google Scholar
37.Bjorklund, D. F., Dukes, C., Brown, R. D. The development of memory strategies. In: Courage, M. L., Cowan, N., editors. The Development of Memory in Infancy and Childhood (2nd ed). New York, NY: Psychology Press; 2009. p. 145–75. (Studies in developmental psychology).Google Scholar
38.Limond, J., Adlam, A-L.R., Cormack, M. A model for paediatric neurocognitive interventions: Considering the role of development and maturation in rehabilitation planning. Clin Neuropsychol 2014;28(2):181198.Google Scholar
39.Chevignard, M., Toure, H., Brugel, D. G., Poirier, J., Laurent-Vannier, A. A comprehensive model of care for rehabilitation of children with acquired brain injuries. Child Care Health Dev 2010;36(1):3143.Google Scholar
40.Jolles, D. D., Crone, E. A. Training the developing brain: a neurocognitive perspective. Front Hum Neurosci 2012;6:76.Google Scholar
41.Diamond, A. Activities and programs that improve children’s executive functions. Curr Dir Psychol Sci 2012;21(5): 335–41.Google Scholar
42.Diamond, A., Ling, D. S. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience [Internet]. 2015 Dec [cited December 15, 2015]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S1878929315300517Google Scholar
43.Ylvisaker, M, editor. Traumatic Brain Injury Rehabilitation: Children and Adolescents (2nd ed.). Vol. xiv. Woburn, MA: Butterworth-Heinemann; 1998. 479 p.Google Scholar
44.Braga, L. W., da Paz Júnior, A. C., Ylvisaker, M. Direct clinician-delivered versus indirect family-supported rehabilitation of children with traumatic brain injury: A randomized controlled trial. Brain Inj 2005;19(10):819–31.Google Scholar
45.Kenworthy, L., Anthony, L. G., Naiman, D. Q., Cannon, L., Wills, M. C., Luong-Tran, C., et al. Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum. J Child Psychol Psychiatry 2014;55(4):374–83.Google Scholar
46.Tamm, L., Nakonezny, P. A., Hughes, C. W. An open trial of a metacognitive executive function training for young children with ADHD. J Attention Disord [Internet]. 2012 May 29 [cited August 23, 2012]; Available from: www.ncbi.nlm.nih.gov/pubmed/22647287Google Scholar
47.Krasny-Pacini, A., Limond, J., Evans, J., Hiebel, J., Bendjelida, K., Chevignard, M. Context-sensitive goal management training for everyday executive dysfunction in children after severe traumatic brain injury. J Head Trauma Rehabil 2014;29(5):E49–64.Google Scholar
48.Antonini, T. N., Raj, S. P., Oberjohn, K. S., Cassedy, A., Makoroff, K. L., Fouladi, M., et al. A pilot randomized trial of an online parenting skills program for pediatric traumatic brain injury: improvements in parenting and child behavior. Behav Ther 2014;45(4):455–68.Google Scholar
49.Ylvisaker, M., Adelson, P. D., Braga, L. W., Burnett, S. M., Glang, A., Feeney, T., et al. Rehabilitation and ongoing support after pediatric TBI: Twenty years of progress. J Head Trauma Rehabil. 2005;20(1):95109.Google Scholar
50.Krasny-Pacini, A., Chevignard, M., Evans, J. Goal management training for rehabilitation of executive functions: A systematic review of effectivness in patients with acquired brain injury. Disabil Rehabil 2014;36(2):105–16.Google Scholar
51.Diamond, A., Lee, K. Interventions shown to aid executive function development in children 4–12 years old. Science 2011;333(6045):959–64.Google Scholar
52.Kennedy, M. R. T., Coelho, C., Turkstra, L., Ylvisaker, M., Moore Sohlberg, M., Yorkston, K., et al. Intervention for executive functions after traumatic brain injury: A systematic review, meta-analysis and clinical recommendations. Neuropsychol Rehabil 2008;18 (3):257–99.Google Scholar
53.Limond, J., Leeke, R. Practitioner review: Cognitive rehabilitation for children with acquired brain injury. J Child Psychol Psychiatry 2005;46(4):339352.Google Scholar
54.Robinson, K. E., Kaizar, E., Catroppa, C., Godfrey, C., Yeates, K. O. Systematic review and meta-analysis of cognitive interventions for children with central nervous system disorders and neurodevelopmental disorders. J PediatrPsychol. 2014;39(8):846–65.Google Scholar
55.Ross, K. A., Dorris, L., McMillan, T. A systematic review of psychological interventions to alleviate cognitive and psychosocial problems in children with acquired brain injury. Dev Med Child Neurol 2011;53(8):692701.Google Scholar
56.Slomine, B., Locascio, G. Cognitive rehabilitation for children with acquired brain injury. Dev Disabil Res Rev 2009;15(2):133143.Google Scholar
57.Brissart, H, Morèle, E, Daniel, F, Leroy, M. Prise en charge cognitive des fonctions exécutives: Livret du patient + Théorie et Corrigés des exercices. Marseille: Solal Editeurs; 2010.Google Scholar
58.Dawson, P, Guare, R. Smart but Scattered: The Revolutionary “Executive Skills” Approach to Helping Kids Reach Their Potential (1st ed.). New York: Guilford Press; 2009. 314 p.Google Scholar
59.Lussier, F. PiFAM: Programme d’Intervention sur les fonctions attentionalles et metacognitives [Internet]. Hogrefe; 2013 [cited January 14, 2016]. Available from: www.hogrefe.fr/produit/pifam-programme-dintervention-sur-les-fonctions-attentionnelles-et-metacognitives/Google Scholar
60.Tcherniack, V., Barielle, B., Kasprzak, S., Martinod, R. Travailler les fonctions exécutives: Exercices écologiques. Marseille: Solal Editeurs; 2007. 200 p.Google Scholar
61.Catroppa, C., Anderson, V. Planning, problem-solving and organizational abilities in children following traumatic brain injury: Intervention techniques. Dev Neurorehabil 2006;9(2):8997.Google Scholar
62.Wilson, B. A., Emslie, H. C., Quirk, K., Evans, J. J. Reducing everyday memory and planning problems by means of a paging system: A randomised control crossover study. J Neurol Neurosurg Psychiatry 2001;70(4):477–82.Google Scholar
63.Wilson, B. A., Emslie, H., Evans, J. J., Quirk, K., Watson, P., Fish, J. The NeuroPage system for children and adolescents with neurological deficits. Dev Neurorehabil 2009;12(6):421–6.Google Scholar
64.Dunning, D. L., Holmes, J. Does working memory training promote the use of strategies on untrained working memory tasks? Mem Cognit 2014;42(6):854–62.Google Scholar
65.Hilton, C. L., Cumpata, K., Klohr, C., Gaetke, S., Artner, A., Johnson, H., et al. Effects of exergaming on executive function and motor skills in children with autism spectrum disorder: a pilot study. Am J Occup Ther 2014;68(1):5765.Google Scholar
66.Holmes, J., Gathercole, S. E., Dunning, D. L. Adaptive training leads to sustained enhancement of poor working memory in children. Dev Sci 2009;12(4):F9–15.Google Scholar
67.Kesler, S. R., Lacayo, N. J., Jo, B. A pilot study of an online cognitive rehabilitation program for executive function skills in children with cancer-related brain injury. Brain Inj 2011;25(1):101–12.Google Scholar
68.Simpson, A., Riggs, K. J., Beck, S. R., Gorniak, S. L., Wu, Y., Abbott, D., et al. Refining the understanding of inhibitory processes: How response prepotency is created and overcome. Dev Sci 2012;15(1):6273.Google Scholar
69.Caselman, T. Impulse Control: Activities and Worksheets for Elementary School Students. Chapin, SC: YouthLight.; 2010.Google Scholar
70.Herpertz-Dahlmann, B., van Elburg, A., Castro-Fornieles, J., Schmidt, U. ESCAP Expert Paper: New developments in the diagnosis and treatment of adolescent anorexia nervosa – a European perspective. Eur Child Adolesc Psychiatry. 2015;24(10):1153–67.Google Scholar
71.Cicerone, K. D., Langenbahn, D. M., Braden, C., Malec, J. F., Kalmar, K., Fraas, M, et al. Evidence-based cognitive rehabilitation: Updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil 2011;92(4):519–30.Google Scholar
72.Beardmore, S. Does information and feedback improve children’s knowledge and awareness of deficits after traumatic brain injury? Neuropsychol Rehabil 1999;9(1):4562.Google Scholar
73.Missiuna, C., DeMatteo, C., Hanna, S., Mandich, A., Law, M., Mahoney, W., et al. Exploring the use of cognitive intervention for children with acquired brain injury. Phys Occupat Ther Pediatrics 2010;30(3):205–19.Google Scholar
74.Butler, R. W., Copeland, D. R., Fairclough, D. L., Mulhern, R. K., Katz, E. R., Kazak, A. E., et al. A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. J Consulting Clin Psychol. 2008;76(3):367–78.Google Scholar
75.Chan, D. Y. K., Fong, K. N. K. The effects of problem-solving skills training based on metacognitive principles for children with acquired brain injury attending mainstream schools: A controlled clinical trial. Disabil Rehabil 2011;33(21–22):2023–32.Google Scholar
76.Hacker, D. J. Definitions and empirical foundations. In: Dunlosky, J, Graesser, AC, editors. Metacognition in Educational Theory and Practice (The Educational Psychology Series, vol. xiv). Mahwah, NJ: Lawrence Erlbaum Associates; 1998.Google Scholar
77.Hessels, M. G. P., Hessels-Schlatter, C., Bosson, M. S., Balli, Y. Metacognitive teaching in a special education class. J Cogn Educ Psychol 2009;8(2):182201.Google Scholar
78.Feeney, T. J. Structured flexibility: The use of context-sensitive self-regulatory scripts to support young persons with acquired brain injury and behavioral difficulties. J Head Trauma Rehabil 2010;25(6): 416–25.Google Scholar
79.Feeney, T. J., Ylvisaker, M. Context-sensitive behavioral supports for young children with TBI: Short-term effects and long-term outcome. J Head Trauma Rehabil 2003;18(1):3351.Google Scholar
80.Feeney, T., Ylvisaker, M. Context-sensitive cognitive-behavioural supports for young children with TBI: A replication study. Brain In 2006;20(6):629–45.Google Scholar
81.Ylvisaker, M., DeBonis, D. Executive function impairment in adolescence: TBI and ADHD. Topics Language Disord 2000;20(2):2957.Google Scholar
82.Ylvisaker, M., Feeney, T. J. Collaborative Brain Injury Intervention: Positive Everyday Routines, vol. xii. San Diego, CA: Singular Publishing Group; 1998. 330 p.Google Scholar
83.Ylvisaker, M., editor. Cognitive rehabilitation: Executive functions. In: Traumatic Brain Injury Rehabilitation: Children and Adolescents (2nd ed). Woburn, MA: Butterworth-Heinemann; 1998. p. 247.Google Scholar
84.Polatajko, H. J., Mandich, A. D., Miller, L. T., Macnab, J. J. Cognitive Orientation to Daily Occupational Performance (CO-OP). Phys Occup Ther Pediatrics 2001;20(2–3):83106.Google Scholar
85.Levine, B., Robertson, I. H., Clare, L., Carter, G., Hong, J., Wilson, B. A., et al. Rehabilitation of executive functioning: An experimental-clinical validation of goal management training. J Int Neuropsychol Soc 2000;6(3):299312.Google Scholar
86.Miotto, E. C., Evans, J. J., Souza de Lucia, M. C. Rehabilitation of executive dysfunction: A controlled trial of an attention and problem solving treatment group. Neuropsychol Rehabil 2009;19(4):517–40.Google Scholar
87.Spikman, J. M., Boelen, D. H. E., Lamberts, K. F., Brouwer, W. H., Fasotti, L. Effects of a multifaceted treatment program for executive dysfunction after acquired brain injury on indications of executive functioning in daily life. J Int Neuropsychol Soc 2010;16(1):118–29.Google Scholar
88.von Cramon, D. Y., Cramon, G. M., Mai, N. Problem-solving deficits in brain-injured patients: A therapeutic approach. Neuropsychol Rehabil 1991;1(1):4564.Google Scholar
89.Bertens, D., Fasotti, L., Boelen, D. H. E., Kessels, R. P. C. A randomized controlled trial on errorless learning in goal management training: Study rationale and protocol. BMC Neurol 2013;13:64.Google Scholar
90.Bertens, D., Kessels, R. P. C., Fiorenzato, E., Boelen, D. H. E., Fasotti, L. Do old errors always lead to new truths? A randomized controlled trial of errorless goal management training in brain-injured patients. J Int Neuropsychol Soc 2015;21(8):639–49.Google Scholar
91.Feeney, T. J., Ylvisaker, M. Context-sensitive cognitive-behavioral supports for young children with TBI: A second replication study. J Positive Behavior Interv 2008;10(2):115–28.Google Scholar
92.Glang, A., Singer, G., Cooley, E., Tish, N. Tailoring direct instruction techniques for use with elementary students with brain injury. J Head Trauma Rehabil 1992;7(4):93108.Google Scholar
93.Suzman, K. B., Morris, R. D., Morris, M. K., Milan, M. A. Cognitive-behavioral remediation of problem solving deficits in children with acquired brain injury. J Behavior Ther Exp Psychiatry 1997;28(3):203–12.Google Scholar
94.Bettcher, B. M., Giovannetti, T., Macmullen, L., Libon, D. J. Error detection and correction patterns in dementia: A breakdown of error monitoring processes and their neuropsychological correlates. J Int Neuropsychol Soc 2008;14(2):199208.Google Scholar
95.Yochim, B. P., Baldo, J. V., Kane, K. D., Delis, D. C. D-KEFS Tower Test performance in patients with lateral prefrontal cortex lesions: The importance of error monitoring. J Clin Exp Neuropsychol 2009;31(6):658–63.Google Scholar
96.Ownsworth, T., Fleming, J., Tate, R., Shum, D. H., Griffin, J., Schmidt, J., et al. Comparison of error-based and errorless learning for people with severe traumatic brain injury: Study protocol for a randomized control trial. Trials 2013;14(1):369.Google Scholar
97.Ownsworth, T., Fleming, J., Desbois, J., Strong, J., Kuipers, P. A metacognitive contextual intervention to enhance error awareness and functional outcome following traumatic brain injury: A single-case experimental design. J Int Neuropsychol Soc 2006;12(01):5463.Google Scholar
98.Piolino, P, Hisland, M, Ruffeveille, I, Matuszewski, V, Jambaqué, I, Eustache, F. Do school-age children remember or know the personal past? Conscious Cogn 2007;16(1):84101.Google Scholar
99.Nelson, K., Fivush, R. The emergence of autobiographical memory: A social cultural developmental theory. Psychol Rev 2004;111(2):486511.Google Scholar
100.Perner, J., Dienes, Z. Developmental aspects of consciousness: How much theory of mind do you need to be consciously aware? Conscious Cogn. 2003;12(1):6382.Google Scholar
101.Levine, B., Schweizer, T. A., O’Connor, C., Turner, G., Gillingham, S., Stuss, D. T., et al. Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training. Front Hum Neurosci [Internet]. February 17, 2011 [cited July 27, 2012];5. Available from: www.ncbi.nlm.nih.gov/pmc/articles/PMC3043269/Google Scholar
102.Goverover, Y,, Johnston, M. V., Toglia, J., DeLuca, J. Treatment to improve self-awareness in persons with acquired brain injury. Brain Inj 2007;21(9):913–23.Google Scholar
103.Wade, S. L., Wolfe, C. R., Brown, T. M., Pestian, J. P. Can a Web-based family problem-solving intervention work for children with traumatic brain injury? Rehabil Psychol 2005;50(4):337–45.Google Scholar
104.Wade, S. L., Walz, N. C., Carey, J., Williams, K. M., Cass, J., Herren, L., et al. A randomized trial of teen online problem solving for improving executive function deficits following pediatric traumatic brain injury. J Head Trauma Rehabil 2010;25(6):409–15.Google Scholar
105.Wade, S. L., Taylor, H. G., Cassedy, A., Zhang, N., Kirkwood, M. W., Brown, T. M, et al. Long-term behavioral outcomes after a randomized, clinical trial of counselor-assisted problem solving for adolescents with complicated mild-to-severe traumatic brain injury. J Neurotrauma 2015;32(13):967–75.Google Scholar
106.Kurowski, B. G., Wade, S. L., Kirkwood, M. W., Brown, T. M., Stancin, T., Taylor, H. G. Online problem-solving therapy for executive dysfunction after child traumatic brain injury. Pediatrics 2013;132(1):e158166.Google Scholar
107.Kurowski, B. G., Wade, S. L., Kirkwood, M. W., Brown, T. M., Stancin, T., Taylor, H. G. Long-term benefits of an early online problem-solving intervention for executive dysfunction after traumatic brain injury in children: A randomized clinical trial. JAMA Pediatr 2014;168(6):523–31.Google Scholar
108.Parker, D. R., Boutelle, K. Executive function coaching for college students with learning disabilities and ADHD: A new approach for fostering self-determination. Learning Disabil Res Prac 2009;24(4):204–15.Google Scholar
109.Blair, C., Raver, C. C. Closing the achievement gap through modification of neurocognitive and neuroendocrine function: Results from a cluster randomized controlled trial of an innovative approach to the education of children in kindergarten. PLoS One [Internet]. 2014 Nov 12 [cited October 8, 2015];9(11). Available from: www.ncbi.nlm.nih.gov/pmc/articles/PMC4229187/Google Scholar
110.Lillard, A. The early years: Evaluating Montessori education. Science 2006;313(5795):1893–4.Google Scholar
111.Riggs, N. R., Greenberg, M. T., Kusché, C. A., Pentz, M. A. The mediational role of neurocognition in the behavioral outcomes of a social-emotional prevention program in elementary school students: Effects of the PATHS Curriculum. Prev Sci 2006;7(1):91102.Google Scholar
112.Raver, C. C., Jones, S. M., Li-Grining, C. P., Metzger, M., Champion, K. M., Sardin, L. Improving preschool classroom processes: Preliminary findings from a randomized trial implemented in Head Start settings. Early Childhood Res Quart 2008;23(1):1026.Google Scholar
113.Raver, C. C., Gershoff, E. T., Aber, J. L. Testing equivalence of mediating models of income, parenting, and school readiness for white, black, and hispanic children in a national sample. Child Dev 2007;78(1):96.Google Scholar
114.Diamond, A. Want to optimize executive functions and academic outcomes? Minn Symp Child Psychol 2014;37:205–32.Google Scholar
115.Jacob, R., Parkinson, J. The potential for school-based interventions that target executive function to improve academic achievement: A review. Rev Educat Res 2015;85(4):512–52.Google Scholar
116.Chaddock, L., Pontifex, M. B., Hillman, C. H., Kramer, A. F. A review of the relation of aerobic fitness and physical activity to brain structure and function in children. J Int Neuropsychol Soc 2011;17(6):975–85.Google Scholar
117.Hillman, C. H., Pontifex, M. B., Castelli, D. M., Khan, N. A., Raine, L. B., Scudder, M. R., et al. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014;134(4):e1063–71.Google Scholar
118.Hillman, C. H., Erickson, K. I., Kramer, A. F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat Rev Neurosci 2008;9(1):5865.Google Scholar
119.Khan, N. A., Hillman, C. H. The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatr Exerc Sci 2014;26(2):138–46.Google Scholar
120.Davis, C. L., Tomporowski, P. D., McDowell, J. E., Austin, B. P., Miller, P, H., Yanasak, N. E., et al. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol 2011;30(1):91–8.Google Scholar
121.Pontifex, M. B., Saliba, B. J., Raine, L. B., Picchietti, D. L., Hillman, C. H. Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J Pediatr 2013;162(3):543–51.Google Scholar
122.Crova, C., Struzzolino, I., Marchetti, R., Masci, I., Vannozzi, G,, Forte, R., et al. Cognitively challenging physical activity benefits executive function in overweight children. J Sports Sci 2014;32(3):201–11.Google Scholar
123.Lakes, K. D., Hoyt, W. T. Promoting self-regulation through school-based martial arts training. J Appl Dev Psychol 2004;25(3):283302.Google Scholar
124.Eisenberg, M. A., Meehan, W. P., Mannix, R. Duration and course of post-concussive symptoms. Pediatrics 2014;133(6):9991006.Google Scholar
125.Gagner, C., Landry-Roy, C., Lainé, F., Beauchamp, M. H. Sleep–wake disturbances and fatigue after pediatric traumatic brain injury: A systematic review of the literature. J Neurotrauma 2015;32(20):1539–52.Google Scholar
126.Bjorklund, D. F. Learning to think on their own: executive function, strategies and problem-solving. In: Children’s Thinking: Cognitive Development and Individual Differences. Belmont, CA: Wadsworth, Cengage Learning; 2011.Google Scholar
127.Selznick, L., Savage, R. C. Using self-monitoring procedures to increase on-task behavior with three adolescent boys with brain injury. Behav Interv 2000;15(3):243–60.Google Scholar
128.Walker, A. J., Onus, M., Doyle, M., Clare, J., McCarthy, K. Cognitive rehabilitation after severe traumatic brain injury: A pilot programme of goal planning and outdoor adventure course participation. Brain Inj 2005;19(14):1237–41.Google Scholar
129.Catroppa, C., Anderson, V., Muscara, F. Rehabilitation of executive skills post-childhood traumatic brain injury (TBI): A pilot intervention study. Dev Neurorehabil 2009;12(5):361–9.Google Scholar
130.Wade, S. L., Walz, N. C., Carey, J., McMullen, K. M., Cass, J., Mark, E., et al. Effect on behavior problems of teen online problem-solving for adolescent traumatic brain injury. Pediatrics 2011;128(4):e947953.Google Scholar
131.Hart, T. Treatment definition in complex rehabilitation interventions. Neuropsychol Rehabil 2009;19(6):824–40.Google Scholar
132.Borrelli, B., Sepinwall, D., Ernst, D., Bellg, A. J., Czajkowski, S., Breger, R., et al. A new tool to assess treatment fidelity and evaluation of treatment fidelity across 10 years of health behavior research. J Consult Clin Psychol 2005;73(5): 852–60.Google Scholar
133.MacLean, P. The Triune Brain in Evolution [Internet]. New York: Plenum Press. 1990 [cited May 3, 2017]. Available from: https://books.google.com/books/about/The_Triune_Brain_in_Evolution.html?hl=fr&id=4PmLFmNdHL0CGoogle Scholar
134.Toglia, J., Johnston, M. V., Goverover, Y., Dain, B. A multicontext approach to promoting transfer of strategy use and self regulation after brain injury: An exploratory study. Brain Inj 2010;24(4):664–77.Google Scholar
135.Toglia, J. P. Generalization of treatment: A multicontext approach to cognitive perceptual impairment in adults with brain injury. Am J Occup Ther 1991;45(6):505–16.Google Scholar
136.Baldwin, V. N., Powell, T. Google Calendar: A single case experimental design study of a man with severe memory problems. Neuropsychol Rehabil 2014 29;120.Google Scholar
137.Sokhadze, E. M., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., Casanova, M. F. Prefrontal neuromodulation using rTMS improves error monitoring and correction function in autism. Appl Psychophysiol Biofeedback 2012;37(2):91102.Google Scholar
138.Acosta, M. T., Leon-Sarmiento, F. E. Repetitive transcranial magnetic stimulation (rTMS): New tool, new therapy and new hope for ADHD. Curr Med Res Opin 2003;19(2): 125–30.Google Scholar
139.Glang, A., Todis, B., Sublette, P., Brown, B. E., Vaccaro, M. Professional development in TBI for educators: The importance of context. J Head Trauma Rehabil 2010;25(6):426–32.Google Scholar

References

1.Nickels, K. C., Zaccariello, M. J., Hamiwka, L. D., et al. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol 2016;12(8):465–76.Google Scholar
2.Annett, R. D., Patel, S. K., Phipps, S. Monitoring and assessment of neuropsychological outcomes as a standard of care in pediatric oncology. Pediatr Blood Cancer 2015;62(S5):S460513.Google Scholar
3.Li, L., Liu, J. The effect of pediatric traumatic brain injury on behavioral outcomes: A systematic review. Dev Med Child Neurol 2013;55(1):3745.Google Scholar
4.Rashid, M., Goez, H. R., Mabood, N., et al. The impact of pediatric traumatic brain injury (TBI) on family functioning: a systematic review. J Pediatr Rehabil Med 2014;7(3):241.Google Scholar
5.Yeates, K. O. Mild traumatic brain injury and postconcussive symptoms in children and adolescents. J Int Neuropsychol Soc 2010;16(6):953–60.Google Scholar
6.Wade, S. L., Taylor, H. G., Yeates, K. O., et al. Long-term parental and family adaptation following pediatric brain injury. J Pediatr Psychol 2006;31(10):1072–83.Google Scholar
7.Wade, S. L., Taylor, H. G., Drotar, D., et al. Family burden and adaptation during the initial year after traumatic brain injury in children. Pediatrics 1998;102(1 Pt 1): 110–6.Google Scholar
8.Hawley, C. A., Ward, A. B., Magnay, A. R., et al. Parental stress and burden following traumatic brain injury amongst children and adolescents. Brain Inj 2003;17(1):123.Google Scholar
9.Narad, M. E., Yeates, K. O., Taylor, H. G., et al. Maternal and paternal distress and coping over time following pediatric traumatic brain injury. J Pediatr Psychol 2016;42(3): 30414.Google Scholar
10.Wade, S. L., Walz, N. C., Cassedy, A., et al. Caregiver functioning following early childhood TBI: Do moms and dads respond differently? NeuroRehabilitation 2010;27(1):6372.Google Scholar
11.Wade, S. L., Michaud, L., Brown, T. M. Putting the pieces together: preliminary efficacy of a family problem-solving intervention for children with traumatic brain injury. J Head Trauma Rehabil 2006;21(1):5767.Google Scholar
12.Bendikas, E. A., Wade, S. L., Cassedy, A., et al. Mothers report more child-rearing disagreements following early brain injury than do fathers. Rehabil Psychol 2011;56(4):374–82.Google Scholar
13.Sambuco, M., Brookes, N., Lah, S. Paediatric traumatic brain injury: a review of siblings’ outcome. Brain Inj 2008;22(1):717.Google Scholar
14.Sambuco, M., Brookes, N., Catroppa, C., et al. Predictors of long-term sibling behavioral outcome and self-esteem following pediatric traumatic brain injury. J Head Trauma Rehabil 2012;27(6):413.Google Scholar
15.Swift, E. E., Taylor, H. G., Kaugars, A. S., et al. Sibling relationships and behavior after pediatric traumatic brain injury. J Dev Behav Pediatr 2003;24(1):2431.Google Scholar
16.Wade, S. L., Zhang, N., Yeates, K. O., et al. Social environmental moderators of long-term functional outcomes of early childhood brain injury. JAMA Pediatrics 2016;170(4):343–9.Google Scholar
17.Hooper, L., Huw, Williams W., Sarah, E. W., et al. Caregiver distress, coping and parenting styles in cases of childhood encephalitis. Neuropsychol Rehabil 2007;17(4–5):621–37.Google Scholar
18.Aitken, M. E., McCarthy, M. L., Slomine, B. S., et al. Family burden after traumatic brain injury in children. Pediatrics 2009;123(1):199206.Google Scholar
19.Wade, S. L., Cassedy, A., Walz, N. C., et al. The relationship of parental warm responsiveness and negativity to emerging behavior problems following traumatic brain injury in young children. Dev Neuropsychol 2011;47(1):119–33.Google Scholar
20.Kurowski, B. G., Taylor, H. G., Yeates, K. O., et al. Caregiver ratings of long-term executive dysfunction and attention problems after early childhood traumatic brain injury: Family functioning is important. PM R 2011;3(9):836–45.Google Scholar
21.Potter, J. L., Wade, S. L., Walz, N. C., et al. Parenting style is related to executive dysfunction after brain injury in children. Rehabil Psychol 2011;56(4):351–8.Google Scholar
22.Micklewright, J. L., King, T. Z., O’Toole, K., Henrich, C., Floyd, F. J. Parental distress, parenting practices, and child adaptive outcomes following traumatic brain injury. J Int Neuropsychol Soc 2012;18(2): 343–50.Google Scholar
23.Gerring, J. P., Wade, S. L. The essential role of psychosocial risk and protective factors in pediatric traumatic brain injury research. J Neurotrauma 2012;29(4):621–8.Google Scholar
24.Wade, S. L., Zhang, N., Yeates, K. O. Social environmental moderators of long-term functional outcomes of early childhood brain injury. JAMA Pediatrics 2016;170(4):343–9.Google Scholar
25.Ach, E., Gerhardt, C. A., Barrera, M., et al. Family factors associated with academic achievement deficits in pediatric brain tumor survivors. Psychooncology 2013;22(8):1731–7.Google Scholar
26.Singer, G. S., Glang, A., Nixon, C., et al. A comparison of two psychosocial interventions for parents of children with acquired brain injury: An exploratory study. J Head Trauma Rehabil 1994;9(4):3849.Google Scholar
27.Shilling, V., Morris, C., Thompson‐Coon, J., et al. Peer support for parents of children with chronic disabling conditions: A systematic review of quantitative and qualitative studies. Dev Med Child Neurol 2013;55(7):602–9.Google Scholar
28.Wade, S. L., Walz, N. C., Carey, J., et al. Effect on behavior problems of teen online problem-solving for adolescent traumatic brain injury. Pediatrics 2011;128(4):e947–53.Google Scholar
29.Wade, S. L., Carey, J., Wolfe, C. R. The efficacy of an online cognitive-behavioral family intervention in improving child behavior and social competence following pediatric brain injury. Rehabil Psychol 2006;51(3):179–89.Google Scholar
30.Wade, S. L., Carey, J., Wolfe, C. R. An online family intervention to reduce parental distress following pediatric brain injury. J Consult Clin Psychol 2006;74(3):445–54.Google Scholar
31.Raj, S. P., Antonini, T. N., Oberjohn, K. S., et al. Web-based parenting skills program for pediatric traumatic brain injury reduces psychological distress among lower-income parents. J Head Trauma Rehabil 2015;30(5):347.Google Scholar
32.Antonini, T. N., Raj, S. P., Oberjohn, K. S., et al. An online positive parenting skills programme for paediatric traumatic brain injury: Feasibility and parental satisfaction. J Telemed Telecare 2012;18(6):333–8.Google Scholar
33.Antonini, T. N., Raj, S. P., Oberjohn, K. S., et al. A pilot randomized trial of an online parenting skills program for pediatric traumatic brain injury: Improvements in parenting and child behavior. Behav Ther 2014;45(4):455–68.Google Scholar
34.Wade, S. L., Walz, N. C., Carey, J., et al. A randomized trial of teen online problem solving: Efficacy in improving caregiver outcomes after brain injury. Health Psychol 2012;31(6):767–76.Google Scholar
35.Glang, A., McLaughlin, K., Schroeder, S. Using interactive multimedia to teach parent advocacy skills: An exploratory study. J Head Trauma Rehabil 2007;22(3):198205.Google Scholar
36.Sahler, O. Z., Fairclough, D. L., Phipps, S., et al. Using problem-solving skills training to reduce negative affectivity in mothers of children with newly diagnosed cancer: Report of a multisite randomized trial. J Consult Clin Psychol 2005;73(2):272–83.Google Scholar
37.Sahler, O. Z., Dolgin, M. J., Phipps, S., et al. Specificity of problem-solving skills training in mothers of children newly diagnosed with cancer: Results of a multisite randomized clinical trial. J Clin Oncol 2013;31(10):1329–35.Google Scholar
38.Mullins, L. L., Fedele, D. A., Chaffin, M., et al. A clinic-based interdisciplinary intervention for mothers of children newly diagnosed with cancer: A pilot study. J Pediatr Psychol 2012;37(10):1104–15.Google Scholar
39.Fedele, D. A., Hullmann, S. E., Chaffin, M., et al. Impact of a parent-based interdisciplinary intervention for mothers on adjustment in children newly diagnosed with cancer. J Pediatr Psychol 2013;38(5):531–40.Google Scholar
40.Narad, M. E., Minich, N., Taylor, H. G., et al. Effects of a web-based intervention on family functioning following pediatric traumatic brain injury. J Dev Behav Pediatr 2015;36(9): 700–7.Google Scholar
41.Wade, S. L., Kurowski, B. G., Kirkwood, M. W., et al. Online problem-solving therapy after traumatic brain injury: A randomized controlled trial. Pediatrics 2015;135(2):e495.Google Scholar
42.Kurowski, B. G., Wade, S. L., Kirkwood, M. W., et al. Long-term benefits of an early online problem-solving intervention for executive dysfunction after traumatic brain injury in children: A randomized clinical trial. JAMA Pediatrics 2014;168(6):523–31.Google Scholar
43.Wade, S. L., Taylor, H. G., Cassedy, A., et al. Long-term behavioral outcomes after a randomized, clinical trial of counselor-assisted problem solving for adolescents with complicated mild-to-severe traumatic brain injury. J Neurotrauma 2015;32(13):967–75.Google Scholar
44.Tlustos, S. J., Kirkwood, M. W., Taylor, G. H., et al. A randomized problem-solving trial for adolescent brain injury: Changes in social competence. Rehabil Psychol 2016;61(4):347–57.Google Scholar
45.Wade, S. L., Karver, C. L., Taylor, H. G., et al. Counselor-assisted problem solving improves caregiver efficacy following adolescent brain injury. Rehabil Psychol 2014;59(1):19.Google Scholar
46.Petranovich, C. L., Wade, S. L., Taylor, H. G., et al. Long-term caregiver mental health outcomes following a predominately online intervention for adolescents with complicated mild to severe traumatic brain injury. J Pediatr Psychol 2015;40(7):680–8.Google Scholar
47.Nezu, A. M., Nezu, C. M., D’Zurilla, T. J. Solving Life’s Problems: A 5-Step Guide to Enhanced Well-Being. New York, NY: Springer, 2007.Google Scholar
48.Ylvisaker, M., Feeney, T. Collaborative Brain Injury Intervention: Positive Everyday Routines. San Diego, CA: Singular Publishing Group, Inc, 1998.Google Scholar
49.Gan, C., Gargaro, J., Kreutzer, J. S., et al. Development and preliminary evaluation of a structured family system intervention for adolescents with brain injury and their families. Brain Inj 2010;24(4):651–63.Google Scholar
50.Gan, C., Ballantyne, M. Brain injury family intervention for adolescents: A solution-focused approach. NeuroRehabilitation 2016;38(3):231.Google Scholar
51.Eyberg, S. Parent–child interaction therapy: Integration of traditional and behavioral concerns. Child Fam Behav Ther. 1988;10(1):3346.Google Scholar
52.Wiggins, T. L., Sofronoff, K., Sanders, M. R.. Pathways Triple P-positive parenting program: Effects on parent–child relationships and child behavior problems. Fam Process 2009;48(4):517–30.Google Scholar
53.WebsterStratton, C., Jamila Reid M., Stoolmiller, M. Preventing conduct problems and improving school readiness: evaluation of the Incredible Years Teacher and Child Training Programs in high-risk schools. J Child Psychol Psychiatry 2008;49(5):471–88.Google Scholar
54.Woods, D. T., Catroppa, C., Giallo, R., et al. Feasibility and consumer satisfaction ratings following an intervention for families who have a child with acquired brain injury. NeuroRehabilitation 2012;30(3):189.Google Scholar
55.Brown, F. L., Whittingham, K., McKinlay, L., et al. Efficacy of stepping stones triple P plus a stress management adjunct for parents of children with an acquired brain injury: The protocol of a randomised controlled trial. Brain Impair 2013;14(2):253–69.Google Scholar
56.Brown, F. L., Whittingham, K., Boyd, R. N., et al. Improving child and parenting outcomes following paediatric acquired brain injury: A randomised controlled trial of Stepping Stones Triple P plus Acceptance and Commitment Therapy. J Child Psychol Psychiatry 2014;55(10):1172–83.Google Scholar
57.Brown, F. L., Whittingham, K., Boyd, R. N., et al. Does Stepping Stones Triple P plus Acceptance and Commitment Therapy improve parent, couple, and family adjustment following paediatric acquired brain injury? A randomised controlled trial. Behav Res Ther 2015;73:5866.Google Scholar
58.Cohen, M. L., Heaton, S. C., Ginn, N., et al. Parent-child interaction therapy as a family-oriented approach to behavioral management following pediatric traumatic brain injury: A case report. J Pediatr Psychol 2012;37(3):251.Google Scholar
59.Hayes, S. C., Strosahl, K. D., Wilson, K. G. Acceptance and Commitment Therapy: An Experiential Approach to Behavior Change. New York: Guilford Publications. 1999.Google Scholar
60.Glueckauf, R. L., Fritz, S. P., Ecklund-Johnson, E. P., et al. Videoconferencing-based family counseling for rural teenagers with epilepsy: Phase 1 findings. Rehabil Psychol 2002;47(1):4972.Google Scholar
61.Nelson, E. L., Bui, T. N., Velasquez, S. E. Telepsychology: Research and practice overview. Child Adolesc Psychiatr Clin N Am 2011;20(1):6779.Google Scholar
62.Rayner, M., Muscara, F., Dimovski, A., et al. Take A Breath: Study protocol for a randomized controlled trial of an online group intervention to reduce traumatic stress in parents of children with a life threatening illness or injury. BMC Psychiatr 2016;16(1):169.Google Scholar
63.Wade, S. L., Oberjohn, K., Conaway, K., et al. Live coaching of parenting skills using the internet: Implications for clinical practice. Prof Psychol Res Pract 2011;42:487–93.Google Scholar
64.Faul, M., Xu, L., Wald, M. M., et al. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. 2010. www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf. (Accessed December 12, 2016.)Google Scholar
65.Slomine, B. S., McCarthy, M. L., Ding, R., et al. Health care utilization and needs after pediatric traumatic brain injury. Pediatrics 2006;117(4):E663E74.Google Scholar
66.Karver, C. L., Kurowski, B., Semple, E. A., et al. Utilization of behavioral therapy services long-term after traumatic brain injury in young children. Arch Phys Med Rehabil 2014;95(8):1556–63.Google Scholar

References

1.Tukstra, L. S., McDonald, S. D. R. Social information processing in adolescents: data from normally developing adolescents and preliminary data from their peers with TBI. J Head Trauma Rehabil 2001;16(5):469–83.Google Scholar
2.Krause, M., Byom, L., Meulenbroek, P., Richards, S., O’Brien, K., Sacrey, L-A. R., et al. The Social Communication Intervention Project: A randomized controlled trial of the effectiveness of speech and language therapy for school-age children who have pragmatic and social communication problems with or without autism spectrum disorder. Am J Speech-Language Pathol 2015;17(3):115.Google Scholar
3.World Health Organization. ICF-CY: International Classification of Functioning, Disability and Health: Children & Youth Version. Geneva; 2007.Google Scholar
4.World Health Organization. Health Promotion Glossary. Geneva; 1998.Google Scholar
5.World Health Organization. Constitution of the World Health Organization: Principles. Geneva; 2016.Google Scholar
6.Nippold, M. A. Later Language Development School-age Children, Adolescents and Young Adults. 4th ed. Pro-ED; 2016.Google Scholar
7.Hanen Centre. More Than Words® – The Hanen Program® for Parents of Children With Autism Spectrum Disorder. Hanen Centre.Google Scholar
8.Hanen Centre. It Takes Two to Talk® – The Hanen Program® for Parents of Children with Language Delays. Hanen Centre.Google Scholar
9.Starling, J., Munro, N., Togher, L., Arciuli, J. Training secondary school teachers in instructional language modification techniques to support adolescents with language impairment: A randomized controlled trial. Lang Speech Hear Serv Sch 2012;43:474–95.Google Scholar
10.Togher, L., McDonald, S., Tate, R., Rietdijk, R., Power, E. The effectiveness of social communication partner training for adults with severe chronic TBI and their families using a measure of perceived communication ability. NeuroRehabilitation 2016;38(3):243–55.Google Scholar
11.Lyons, J. Language and Linguistics. Cambridge: Cambridge University Press; 1981.Google Scholar
12.Robertson, A. What is language and how can we define it? Lang Learn Teach Blog. 2007. http://languagelearningandteaching.blogspot.com/2008/04/what-is-language-and-how-can-we-define.htmlGoogle Scholar
13.American Speech-Language-Hearing Association. Components of Social Communication. Washington, DC: ASHA.Google Scholar
14.MacDonald, S, Wiseman-Hakes, C. Knowledge translation in ABI rehabilitation: A model for consolidating and applying the evidence for cognitive-communication interventions. Brain Inj 2010;24(3):486508.Google Scholar
15.American Speech-Language-Hearing Association. Roles of speech language pathologists in the identification diagnosis and treatment of individuals with cognitive-communication disorders. Position statement. ASHA. 2005.Google Scholar
16.Ryan, N. P., Catroppa, C., Beare, R., Silk, T. J., Crossley, L., Beauchamp, M. H., et al. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury. Soc Cogn Affect Neurosci 2016;11(4):683–92.Google Scholar
17.Turkstra, L. S., Dixon, T. M., Baker, K. K. Theory of mind and social beliefs in adolescents with traumatic brain injury. NeuroRehabilitation 2004;19(3):245–56.Google Scholar
19.Threats, T. T. The ICF and speech-language pathology: Aspiring to a fuller realization of ethical and moral issues. Int J Speech Lang Pathol 2010;12(2):8793.Google Scholar
20.Westby, C. Application of the ICF in children with language impairments. Semin Speech Lang 2007;28:265–72.Google Scholar
21.Malec, J. F., Smigielski, J. S., DePompolo, R. W. Goal attainment scaling and outcome measurement in postacute brain injury rehabilitation. Arch Phys Med Rehabil [Internet]. 1991 Feb [cited November 28, 2016];72(2):138–43. Available from: www.ncbi.nlm.nih.gov/pubmed/1991015Google Scholar
22.Menon, D. K., Schwab, K., Wright, D. W., Maas, A. I. Position statement: Definition of traumatic brain injury. Archives of Physical Medicine and Rehabilitation. 2010.Google Scholar
23.Hudspeth, W. J., Pribram, K. H. Stages of brain and cognitive maturation. J Educ Psychol 1990;82(4):881–4.Google Scholar
24.Kaiser, A. P., Roberts, M. Y. Advances in early communication and language intervention. J Early Interv 2011;33(4):298309.Google Scholar
25.Webb, S. J., Jones, E. J. H., Kelly, J., Dawson, G. The motivation for very early intervention for infants at high risk for autism spectrum disorders. Int J Speech Lang Pathol 2014;16(1):3642.Google Scholar
26.Brian, J. A., Bryson, S. E., Zwaigenbaum, L. Autism spectrum disorder in infancy: Developmental considerations in treatment targets. Curr Opin Neurol 2015;28:117–23.Google Scholar
27.Beaudoin, A. J., Sébire, G., Couture, M. Parent training interventions for toddlers with autism spectrum disorder. Autism Res Treat 2014:839890. Available from: www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4033505&tool=pmcentrez&rendertype=abstractGoogle Scholar
28.Ewing-Cobbs, L., Prasad, M. R., Swank, P., Kramer, L., Mendez, D., Treble, A., et al. Social communication in young children with traumatic brain injury: Relations with corpus callosum morphometry. Int J Dev Neurosci 2012;30(3):247–54.Google Scholar
29.Greenham, M., Spencer-Smith, M. M., Anderson, P. J., Coleman, L., Anderson, V. A. Social functioning in children with brain insult. Front Hum Neurosci 2010;4(March):22.Google Scholar
30.Ciurea, A. V., Gorgan, M. R., Tascu, A., Sandu, A. M., Rizea, R. E. Traumatic brain injury in infants and toddlers, 0–3 years old. J Med Life 2011;4(3):234–43.Google Scholar
31.Sax, N., Weston, E. Language Development Milestones. Master’s thesis. 2007.Google Scholar
32.Hudspeth, W. J., Pribram, K. H. Psychophysiological indices of cerebral maturation. Int J Psychophysiol 1992;12(1):1929.Google Scholar
33.Med Health Net. Cognitive developmental milestones [Internet]. Cognitive developmental milestones. 2016 [cited September 3, 2016]. Available from: www.med-health.net/Cognitive-Developmental-Milestones.htmlGoogle Scholar
34.American Speech-Language-Hearing Association. Social communication benchmarks [Internet]. Social communication benchmarks. 2016 [cited October 11, 2016]. Available from: www.asha.org/uploadGoogle Scholar
35.Houghton, K., Schuchard, J., Lewis, C., Thompson, C. K. Promoting child-initiated social-communication in children with autism: Son-Rise Program intervention effects. J Commun Disord 2013;46(5–6):495506.Google Scholar
36.Brian, J. A., Smith, I. M., Zwaigenbaum, L., Roberts, W., Bryson, S. E. The Social ABCs caregiver-mediated intervention for toddlers with autism spectrum disorder: Feasibility, acceptability, and evidence of promise from a multisite study. Autism Res 2016;9(8)899912.Google Scholar
37.Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J., et al. Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model. Pediatrics 2010;125(1):e1723.Google Scholar
38.Carter, A. S., Messinger, D. S., Stone, W. L., Celimli, S., Nahmias, A. S., Yoder, P. A randomized controlled trial of Hanen’s ‘More Than Words’ in toddlers with early autism symptoms. J Child Psychol Psychiatry 2011;52(74152).Google Scholar
39.Girolametto, L., Pearce, P. S., Weitzman, E. Interactive focused stimulation for toddlers with expressive vocabulary delays. J Speech Lang Hear Res 1996;39(6):12741283.Google Scholar
40.Pennington, L., James, P. The Hanen program for parents of preschool children with cerebral palsy: Findings from an exploratory study. J Speech Lang Hear Res 2014;52(5):1121–38.Google Scholar
41.Wetherby, A. M., Guthrie, W., Woods, J., Schatschneider, C., Holland, R. D., Morgan, L., et al. Parent-implemented social intervention for toddlers with autism: An RCT. Pediatrics 2014;134(6):1084–93.Google Scholar
42.Wong, C., Odom, S. L., Hume, K. A., Cox, A. W., Fettig, A., Kucharczyk, S., et al. Evidence-based practices for children, youth, and young adults with autism spectrum disorder: A comprehensive review. J Autism Dev Disord 2015;45(7):1951–66.Google Scholar
43.Hart, S. L., Banda, D. R. Picture exchange communication system with individuals with developmental disabilities: A meta-analysis of single subject studies. Remedial Spec Educ 2010;31(6):476–88.Google Scholar
44.Smith, T., Iadarola, S. Evidence base update for autism spectrum disorder. J Clin Child Adolesc Psychol 2015;44(6):897922.Google Scholar
47.Katz, E., Girolametto, L. Peer-mediated intervention for pre-schoolers with ASD: Effects on responses and initiations. Int J Speech Lang Pathol 2015;17(6):565–76.Google Scholar
45.Miller, SA. Social-cognitive development in early childhood. In: Zelazo, PD, topic ed. Tremblay, RE, Boivin, M, Peters, RDeV, editors. Encyclopedia of Early Childhood Development [online]. Centre of Excellence for Early Childhood Development; 2010. p. 16. Available at: www.childencyclopedia.com/documents/MillerANGxp.pdf. (Accessed February 23, 2018.)Google Scholar
46.Best, J., Miller, P. A developmental perspective on executive function. Child Dev 2010;81(6):1641–60.Google Scholar
48.NasoudiGharehBolagh, R., Zahednezhad, H., VosoughiIlkhchi, S. The effectiveness of treatment-education methods in children with autism disorders. Procedia – Soc Behav Sci 2013;84:1679–83.Google Scholar
49.Thiemann-Bourque, K., Brady, N., McGuff, S., Stump, K., Naylor, A. Picture exchange communication system and pals: A peer-mediated augmentative and alternative communication intervention for minimally verbal preschoolers with autism. J Speech Lang Hear Res 2016;59(5):1133–45.Google Scholar
50.Barber, A. B., Saffo, R. W., Gilpin, A. T., Craft, L. D., Goldstein, H. Peers as clinicians: Examining the impact of Stay Play Talk on social communication in young preschoolers with autism. J Commun Disord 2016;59:115.Google Scholar
51.Morin, A. Developmental Milestones for Typical Second and Third Graders [Internet]. Understood. 2016 [cited October 11, 2016]. Available from: www.understood.org/en/learning-attention-issues/signs-symptoms/developmental-milestones/developmental-milestones-for-typical-second-and-third-gradersGoogle Scholar
52.Baron-cohen, S., Riordan, M. O., Stone, V., Jones, R., Plaisted, K. A new test of social sensitivity: Detection of faux pas in normal children and children with Asperger syndrome: J Autism Dev Disord 1999;29:407–18.Google Scholar
53.Turkstra, L. S., Politis, A. M., Forsyth, R. Cognitive-communication disorders in children with traumatic brain injury. Dev Med Child Neurol 2015;57(3):217–22.Google Scholar
54.McDonald, S., Honan, C., Kelly, M., Byom, L., Rushby, J. Disorders of social cognition and social behaviour following severe TBI. In: McDonald, S, Togher, L, Code, C, editors. Social and Communication Disorders Following Traumatic Brain Injury. 2nd ed. New York: Psychology Press; 2014.Google Scholar
55.DePompei, R., Hotz, G. Pediatric speech and language disorders following TBI. J Head Trauma Rehabil 2001;15(5):vivii.Google Scholar
56.Virues-Ortega, J., Julio, F. M., Pastor-Barriuso, R. The TEACCH program for children and adults with autism: A meta-analysis of intervention studies. Clin Psychol Rev 2013;33(8):940–53.Google Scholar
57.Petersen, D. B., Gillam, S. L., Spencer, T., Gillam, R. B. The effects of literate narrative intervention on children with neurologically based language inpairments.pdf. J Speech, Lang Hear Res 2010;53:961–81.Google Scholar
58.Marks, I., Stokes, S. F. Narrative-based intervention for word-finding difficulties: A case study. Int J Lang Commun Disord 2010;45(5):586–99.Google Scholar
59.Owens, G., Granader, Y., Humphrey, A., Baron-Cohen, S. LEGO® therapy and the social use of language programme: An evaluation of two social skills interventions for children with high functioning autism and Asperger syndrome. J Autism Dev Disord 2008;38(10):1944–57.Google Scholar
60.Adams, C., Lockton, E., Freed, J., Gaile, J., Earl, G., McBean, K., et al. The Social Communication Intervention Project: a randomized controlled trial of the effectiveness of speech and language therapy for school-age children who have pragmatic and social communication problems with or without autism spectrum disorder. Int J Lang Commun Disord 2012;47(3):233–44.Google Scholar
61.Müller, E., Cannon, L. R., Kornblum, C., Clark, J., Powers, M. Description and preliminary evaluation of a curriculum for teaching conversational skills to children with high-functioning autism and other social cognition challenges. Lang Speech Hear Serv Sch 2016;47(3):191208.Google Scholar
62.Reichow, B., Servili, C., Yasamy, M. T., Barbui, C., Saxena, S. Non-specialist psychosocial interventions for children and adolescents with intellectual disability or lower-functioning autism spectrum disorders: A systematic review. PLoS Med 2013;10(12):127.Google Scholar
63.Ciccia, A. H., Meulenbroek, P., Turkstra, L. S. Adolescent brain and cognitive developments. Top Lang Disord 2009;29(3):249–65.Google Scholar
64.Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat 2013;9:449–61.Google Scholar
65.Kail, R. V., Ferrer, E. Processing speed in childhood and adolescence: Longitudinal models for examining developmental change. Child Dev 2007;78(6):1760–70.Google Scholar
66.Stichter, J. P., Herzog, M. J., Visovsky, K., Schmidt, C., Randolph, J., Schultz, T., et al. Social competence intervention for youth with Asperger syndrome and high-functioning autism: An initial investigation. J Autism Dev Disord 2010;40(9):1067–79.Google Scholar
67.Steinberg, L., Morris, A. S. Adolescent Development. Annu Rev Psychol [Internet]. 2001;52(1):83110.Google Scholar
68.Krause, M., Byom, L., Meulenbroek, P., Richards, S., O’Brien, K. Supporting the literacy skills of adolescents with traumatic brain injury. Semin Speech Lang 2015;36(1):6073.Google Scholar
69.Anderson, P. Assessment and development of executive function (EF) during childhood. Child Neurospsychol 2002;8(2):7182.Google Scholar
70.Choudhury, S., Blakemore, S.-J., Charman, T. Social cognitive development during adolescence. Soc Cogn Affect Neurosci 2006;1(3):165–74.Google Scholar
71.Reid, R., Lienemann, T. O. Self-regulated strategy development for written expression with students with attention deficit/hyperactivity disorder. Except Child 2006;73:5368.Google Scholar
72.Graham, S., Harris, K. R. Students with learning disabilities and the process of writing: A meta-analysis of SRSD studies. In: Swanson, H. L., Harris, K. R., Graham, S., editors. Handbook of Learning Disabilities. New York: Guilford Press; 2003. p. 323–44.Google Scholar
73.Kennedy, M. R. T., Coelho, C., Turkstra, L., Ylvisaker, M., Moore Sohlberg, M., Yorkston, K., et al. Intervention for executive functions after traumatic brain injury: A systematic review, meta-analysis and clinical recommendations. Neuropsychol Rehabil 2008;18(3):257–99.Google Scholar
74.Berkeley, S., Scruggs, T. E., Mastropieri, M. A. Reading comprehension instruction for students with learning disabilities, 1995–2006: a meta-analysis. Remedial Spec Educ 2010;31(6):423–36.Google Scholar
75.Oberg, L., Turkstra, L. S. Use of elaborative encoding to facilitate verbal learning after adolescent traumatic brain injury. J Head Trauma Rehabil 1998;13(3):4462.Google Scholar
76.Cook, L. G., Chapman, S. B., Elliott, A. C., Evenson, N. N., Vinton, K. Cognitive gains from gist reasoning training in adolescents with chronic-stage traumatic brain injury. Front Neurol 2014;5:19.Google Scholar
77.Sohlberg, A., Perlewitz, M., Johansen, P. G., Schultz, A., Johnson, J., Hartry, L. Improving Pragmatic Skills in Persons with Head Injury. Tuscon, AZ: Communication Skillbuilders; 1992.Google Scholar
78.Wiseman-Hakes, C., Stewart, M. L., Wassertnan, R., Schuller, R. Peer group training of pragmatic skills in adolescents with acquired brain injury. J Head Trauma Rehabil 1998;13(6):2338.Google Scholar
79.Agnihotri, S., Gray, J., Colantonio, A., Polatajko, H., Cameron, D,, Wiseman-Hakes, C., et al. Arts-based social skills interventions for adolescents with acquired brain injuries: Five case reports. Dev Neurorehabil 2014;17(1):4463.Google Scholar
80.Tse, J., Strulovitch, J., Tagalakis, V,, Meng, L., Fombonne, E. Social skills training for adolescents with Asperger syndrome and high-functioning autism. J Autism Dev Disord [Internet]. October 17, 2007 [cited November 28, 2016];37(10):1960–8. Available from: http://link.springer.com/10.1007/s10803-006-0343-3Google Scholar
81.Dahlberg, C. A., Cusick, C. P., Hawley, L. A., Newman, J. K., Morey, C. E., Harrison-Felix, C. L., et al. Treatment efficacy of social communication skills training after traumatic brain injury: A randomized treatment and deferred treatment controlled trial. Arch Phys Med Rehabil 2007;88(12):1561–73.Google Scholar
82.Hawley, L., Newman, J. Social Skills and Traumatic Brain Injury: A Workbook for Group Treatment. Denver; 2006 (unpublished).Google Scholar
83.Kandalaft, M. R., Didehbani, N., Krawczyk, D. C., Allen, T. T., Chapman, S. B. Virtual reality social cognition training for young adults with high-functioning autism. J Autism Dev Disord 2013;43(1):3444.Google Scholar
84.Togher, L., McDonald, S., Tate, R., Power, E., Rietdijk, R. TBI Express Partner Training. Sydney: The University of Sydney. 2002.Google Scholar
85.Fullerton, H. J., Wu, Y. W., Zhao, S., Johnston, S. C. Risk of stroke in children: Ethnic and gender disparities. Neurology 2003;61(2):189–94.Google Scholar
86.Brady, M. C., Kelly, H., Godwin, J., Enderby, P., Campbell, P. Speech and language therapy for aphasia following stroke. Brady, M. C., editor. Cochrane Database Syst Rev. June 2016.Google Scholar
87.Breitenstein, C., Grewe, T., Flöel, A., Ziegler, W., Springer, L., Martus, P., et al. Intensive speech and language therapy in patients with chronic aphasia after stroke: A randomised, open-label, blinded-endpoint, controlled trial in a health-care setting. Lancet 2017;389(10078):1528–38.Google Scholar
88.Cherney, L. R., Patterson, J. P., Raymer, A., Frymark, T., Schooling, T. Evidence-based systematic review: Effects of intensity of treatment and constraint-induced language therapy for individuals with stroke-induced aphasia. J Speech Lang Hear Res 2008;51(5):1282–99Google Scholar
89.Kagan, A., Simmons‐Mackie, N., Rowland, A., Huijbregts, M., Shumway, E., McEwen, S., et al. Counting what counts: A framework for capturing real‐life outcomes of aphasia intervention. Aphasiology 2008;22(3):258–80.Google Scholar
90.Oono, I. P., Honey, E. J., McConachie, H. Parent-mediated early intervention for young children with autism spectrum disorders (ASD). In: McConachie, H., editor. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd; 2013.Google Scholar
91.Dahl, R. Adolescent brain development: A period of vulnerabilities and opportunities. Keynote address. Ann N Y Acad Sci 2004;1021:122.Google Scholar

References

1.Brauner, J. V., Johansen, L. M., Roesbjerg, T., Pagsberg, A. K. Off-label prescription of psychopharmacological drugs in child and adolescent psychiatry. J Clin Psychopharmacol 2016;36(5):5007.Google Scholar
2.Rumore, M. M. Medication repurposing in pediatric patients: Teaching old drugs new tricks. J Pediatr Pharmacol Ther 2016;21(1):3653.Google Scholar
3.Eapen, B. C., Georgekutty, J., Subbarao, B., Bavishi, S., Cifu, D. X. Disorders of consciousness. Phys Med Rehabil Clin N Am 2017 May;28(2):24558.Google Scholar
4.Giacino, J. T., Whyte, J., Bagiella, E., Kalmar, K., Childs, N., Khademi, A., et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 2012 Mar 1;366(9):81926.Google Scholar
5.McMahon, M. A., Vargus-Adams, J. N., Michaud, L. J., Bean, J. Effects of amantadine in children with impaired consciousness caused by acquired brain injury: A pilot study. Am J Phys Med Rehabil 2009;88(7):52532.Google Scholar
6.Patrick, P. D., Blackman, J. A., Mabry, J. L., Buck, M. L., Gurka, M. J., Conaway, M. R. Dopamine agonist therapy in low-response children following traumatic brain injury. J Child Neurol 2006;21(10):87985.Google Scholar
7.Ugoya, S. O., Akinyemi, R. O. The place of L-dopa/carbidopa in persistent vegetative state. Clin Neuropharmacol 2010;33(6):27984.Google Scholar
8.Cossu, G. Therapeutic options to enhance coma arousal after traumatic brain injury: State of the art of current treatments to improve coma recovery. Br J Neurosurg 2014;28(2):18798.Google Scholar
9.Yeh, N., Slomine, B., Suskauer, S. Response to neurostimulant trials in a clinical sample of children with acquired brain injury and disorders of consciousness. Brain Injury 2017;31(6–7):779780.Google Scholar
10.Meyer, M. J., Megyesi, J., Meythaler, J., Murie-Fernandez, M., Aubut, J. A., Foley, N., et al. Acute management of acquired brain injury. Part II: An evidence-based review of pharmacological interventions. Brain Inj 2010;24(5):70621.Google Scholar
11.Bogner, J., Barrett, R. S., Hammond, F. M., Horn, S. D., Corrigan, J. D., Rosenthal, J., et al. Predictors of agitated behavior during inpatient rehabilitation for traumatic brain injury. Arch Phys Med Rehabil 2015;96(8 Suppl):S274–81.e4.Google Scholar
12.Singh, R., Venkateshwara, G., Nair, K. P., Khan, M., Saad, R. Agitation after traumatic brain injury and predictors of outcome. Brain Inj 2014;28(3):33640.Google Scholar
13.Plantier, D., Luaute, J., SOFMER group. Drugs for behavior disorders after traumatic brain injury: Systematic review and expert consensus leading to French recommendations for good practice. Ann Phys Rehabil Med 2016;59(1):4257.Google Scholar
14.Williamson, D. R., Frenette, A. J., Burry, L., Perreault, M. M., Charbonney, E., Lamontagne, F., et al. Pharmacological interventions for agitation in patients with traumatic brain injury: Protocol for a systematic review and meta-analysis. Syst Rev 2016;5(1):193.Google Scholar
15.Parmelee, D. X., O’Shanick, G. J. Carbamazepine-lithium toxicity in brain-damaged adolescents. Brain Inj 1988;2(4):3058.Google Scholar
16.Brooke, M. M., Patterson, D. R., Questad, K. A., Cardenas, D., Farrel-Roberts, L. The treatment of agitation during initial hospitalization after traumatic brain injury. Arch Phys Med Rehabil 1992;73(10):91721.Google Scholar
17.King, B. H., Wright, D. M., Handen, B. L., Sikich, L., Zimmerman, A. W., McMahon, W., et al. Double-blind, placebo-controlled study of amantadine hydrochloride in the treatment of children with autistic disorder. J Am Acad Child Adolesc Psychiatry 2001;40(6):65865.Google Scholar
18.Green, L. B., Hornyak, J, E., Hurvitz, E, A. Amantadine in pediatric patients with traumatic brain injury: A retrospective, case-controlled study. Am J Phys Med Rehabil 2004;83(12):8937.Google Scholar
19.McGrane, I, R., Loveland, J, G. Pharmacogenetics of cytochrome P450 enzymes in American Indian and Caucasian children admitted to a psychiatric hospital. J Child Adolesc Psychopharmacol 2016;26(4):3959.Google Scholar
20.Attard, A., Ranjith, G., Taylor, D. Delirium and its treatment. CNS Drugs 2008;22(8):63144.Google Scholar
21.Eisendrath, S. J., Shim, J. J. Management of psychiatric problems in critically ill patients. Am J Med 2006;119(1):229.Google Scholar
22.Rao, N., Jellinek, H. M., Woolston, D. C. Agitation in closed head injury: Haloperidol effects on rehabilitation outcome. Arch Phys Med Rehabil 1985;66(1):304.Google Scholar
23.Phelps, T. I., Bondi, C. O., Ahmed, R. H., Olugbade, Y. T., Kline, A. E. Divergent long-term consequences of chronic treatment with haloperidol, risperidone, and bromocriptine on traumatic brain injury-induced cognitive deficits. J Neurotrauma 2015;32(8):5907.Google Scholar
24.Scott, L. K., Green, R., McCarthy, P. J., Conrad, S. A. Agitation and/or aggression after traumatic brain injury in the pediatric population treated with ziprasidone. Clinical article. J Neurosurg Pediatr 2009;3(6):4847.Google Scholar
25.Yap, J. L., Wachtel, L. E., Ahn, E. S., Sanz, J. H., Slomine, B. S., Pidcock, F. S. Treatment of cerebellar cognitive affective syndrome with aripiprazole. J Pediatr Rehabil Med 2012;5(3):2338.Google Scholar
26.Johnson, A. R., DeMatt, E., Salorio, C. F. Predictors of outcome following acquired brain injury in children. Dev Disabil Res Rev 2009;15(2):12432.Google Scholar
27.Visser, J. C., Rommelse, N. N., Greven, C. U., Buitelaar, J. K. Autism spectrum disorder and attention-deficit/hyperactivity disorder in early childhood: A review of unique and shared characteristics and developmental antecedents. Neurosci Biobehav Rev 2016;65:22963.Google Scholar
28.Huss, M., Duhan, P., Gandhi, P., Chen, C. W., Spannhuth, C., Kumar, V. Methylphenidate dose optimization for ADHD treatment: Review of safety, efficacy, and clinical necessity. Neuropsychiatr Dis Treat 2017;13:1741–51.Google Scholar
29.The MTA Cooperative Group. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Multimodal Treatment Study of Children with ADHD. Arch Gen Psychiatry 1999;56(12):1073–86.Google Scholar
30.Donfrancesco, R., Calderoni, D., Vitiello, B. Open-label amantadine in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2007;17(5):65764.Google Scholar
31.Mohammadi, M. R., Kazemi, M. R., Zia, E., Rezazadeh, S. A., Tabrizi, M., Akhondzadeh, S. Amantadine versus methylphenidate in children and adolescents with attention deficit/hyperactivity disorder: a randomized, double-blind trial. Hum Psychopharmacol 2010;25(7–8):5605.Google Scholar
32.Ekinci, O., Direk, M. C., Gunes, S., Teke, H., Ekinci, N., Yildirim, F., et al. Short-term efficacy and tolerability of methylphenidate in children with traumatic brain injury and attention problems. Brain Dev 2017;39(4):32736.Google Scholar
33.Zhang, W. T., Wang, Y. F. Efficacy of methylphenidate for the treatment of mental sequelae after traumatic brain injury. Medicine (Baltimore) 2017;96(25):e6960.Google Scholar
34.Neurobehavioral Guidelines Working Group, Warden, D. L., Gordon, B., McAllister, T. W., Silver, J. M., Barth, J. T., et al. Guidelines for the pharmacologic treatment of neurobehavioral sequelae of traumatic brain injury. J Neurotrauma 2006;23(10):1468–501.Google Scholar
35.Schneider, W. N., Drew-Cates, J., Wong, T. M., Dombovy, M. L. Cognitive and behavioural efficacy of amantadine in acute traumatic brain injury: An initial double-blind placebo-controlled study. Brain Inj 1999;13(11):86372.Google Scholar
36.Whyte, J., Vaccaro, M., Grieb-Neff, P., Hart, T., Polansky, M., Coslett, H. B. The effects of bromocriptine on attention deficits after traumatic brain injury: A placebo-controlled pilot study. Am J Phys Med Rehabil 2008;87(2):8599.Google Scholar
37.McDowell, S., Whyte, J., D’Esposito, M. Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients. Brain 1998;121 (Pt 6):1155–64.Google Scholar
38.Doyle, R. L., Frazier, J., Spencer, T. J., Geller, D., Biederman, J., Wilens, T. Donepezil in the treatment of ADHD-like symptoms in youths with pervasive developmental disorder: A case series. J Atten Disord 2006;9(3):5439.Google Scholar
39.Handen, B. L., Johnson, C. R., McAuliffe-Bellin, S., Murray, P. J., Hardan, A. Y. Safety and efficacy of donepezil in children and adolescents with autism: Neuropsychological measures. J Child Adolesc Psychopharmacol 2011;21(1):4350.Google Scholar
40.Zhang, L., Plotkin, R. C., Wang, G., Sandel, M, E., Lee, S. Cholinergic augmentation with donepezil enhances recovery in short-term memory and sustained attention after traumatic brain injury. Arch Phys Med Rehabil 2004;85(7):1050–55.Google Scholar
41.Trovato, M., Slomine, B., Pidcock, F., Christensen, J. The efficacy of donepezil hydrochloride on memory functioning in three adolescents with severe traumatic brain injury. Brain Inj 2006;20(3):33943.Google Scholar
42.Max, J. E., Keatley, E., Wilde, E. A., Bigler, E. D., Schachar, R. J., Saunders, A. E., et al. Depression in children and adolescents in the first 6 months after traumatic brain injury. Int J Dev Neurosci 2012;30(3):23945.Google Scholar
43.Vasa, R. A., Gerring, J. P., Grados, M., Slomine, B., Christensen, J. R., Rising, W., et al. Anxiety after severe pediatric closed head injury. J Am Acad Child Adolesc Psychiatry 2002;41(2):14856.Google Scholar
44.Gerring, J. P., Grados, M. A., Slomine, B., Christensen, J. R., Salorio, C. F., Cole, W. R., et al. Disruptive behaviour disorders and disruptive symptoms after severe paediatric traumatic brain injury. Brain Inj 2009;23(12):94455.Google Scholar
45.Cole, W. R., Gerring, J. P., Gray, R. M., Vasa, R. A., Salorio, C. F., Grados, M., et al. Prevalence of aggressive behaviour after severe paediatric traumatic brain injury. Brain Inj 2008;22(12):9329.Google Scholar
46.Vasa, R. A., Suskauer, S. J., Thorn, J. M., Kalb, L., Grados, M. A., Slomine, B. S., et al. Prevalence and predictors of affective liability after paediatric traumatic brain injury. Brain Inj 2015;29(7–8):9218.Google Scholar
47.Wagner, S., Muller, C., Helmreich, I., Huss, M., Tadic, A. A meta-analysis of cognitive functions in children and adolescents with major depressive disorder. Eur Child Adolesc Psychiatry 2015;24(1):519.Google Scholar
48.Southammakosane, C., Schmitz, K. Pediatric Psychopharmacology for Treatment of ADHD, Depression, and Anxiety. Pediatrics 2015;136(2):3519.Google Scholar
49.Cipriani, A., La Ferla, T., Furukawa, T. A., Signoretti, A., Nakagawa, A., Churchill, R., et al. Sertraline versus other antidepressive agents for depression. Cochrane Database Syst Rev 2009 15;(2):CD006117. doi(2):CD006117.Google Scholar
50.Centers for Medicare and Medicaid Services. Antidepressant Medications: Us in Pediatric Patients. 2015; Available at: https://www.cms.gov/Medicare-Medicaid-Coordination/Fraud-Prevention/Medicaid-Integrity-Education/Pharmacy-Education-Materials/Downloads/ad-pediatric-factsheet11-14.pdf. (Accessed August 17, 2017.)Google Scholar
51.Andersen, G., Stylsvig, M., Sunde, N. Citalopram treatment of traumatic brain damage in a 6-year-old boy. J Neurotrauma 1999;16(4):3414.Google Scholar
52.Mead, G. E., Hsieh, C. F., Lee, R., Kutlubaev, M., Claxton, A., Hankey, G. J., et al. Selective serotonin reuptake inhibitors for stroke recovery: A systematic review and meta-analysis. Stroke 2013;44(3):84450.Google Scholar
53.Ashman, T. A., Cantor, J. B., Gordon, W. A., Spielman, L., Flanagan, S., Ginsberg, A., et al. A randomized controlled trial of sertraline for the treatment of depression in persons with traumatic brain injury. Arch Phys Med Rehabil 2009;90(5):73340.Google Scholar
54.Jorge, R. E., Acion, L., Burin, D. I., Robinson, R. G. Sertraline for preventing mood disorders following traumatic brain injury: A randomized clinical trial. JAMA Psychiatry 2016;73(10):1041–47.Google Scholar
55.Gagner, C., Landry-Roy, C., Laine, F., Beauchamp, M. H. Sleep–wake disturbances and fatigue after pediatric traumatic brain injury: A systematic review of the literature. J Neurotrauma 2015;32(20):1539–52.Google Scholar
56.Ramtekkar, U. P. DSM-5 changes in attention deficit hyperactivity disorder and autism spectrum disorder: Implications for comorbid sleep issues. Children (Basel) 2017;4(8):10.3390/children4080062.Google Scholar
57.Beebe, D. W. Cognitive, behavioral, and functional consequences of inadequate sleep in children and adolescents. Pediatr Clin North Am 2011;58(3):64965.Google Scholar
58.Allen, S. L., Howlett, M. D., Coulombe, J. A., Corkum, P. V. ABCs of SLEEPING: A review of the evidence behind pediatric sleep practice recommendations. Sleep Med Rev 2016;29:114.Google Scholar
59.Larson, E. B., Zollman, F. S. The effect of sleep medications on cognitive recovery from traumatic brain injury. J Head Trauma Rehabil 2010;25(1):617.Google Scholar
60.Whyte, J., Rajan, R., Rosenbaum, A., Katz, D., Kalmar, K., Seel, R., et al. Zolpidem and restoration of consciousness. Am J Phys Med Rehabil 2014;93(2):10113.Google Scholar
61.Keegan, L. J., Reed-Berendt, R., Neilly, E., Morrall, M. C., Murdoch-Eaton, D. Effectiveness of melatonin for sleep impairment post paediatric acquired brain injury: Evidence from a systematic review. Dev Neurorehabil 2014;17(5):35562.Google Scholar
62.Mittur, A. Trazodone: Properties and utility in multiple disorders. Expert Rev Clin Pharmacol 2011;4(2):18196.Google Scholar
63.Sheng, P., Hou, L., Wang, X., Wang, X., Huang, C., Yu, M., et al. Efficacy of modafinil on fatigue and excessive daytime sleepiness associated with neurological disorders: a systematic review and meta-analysis. PLoS One 2013;8(12):e81802.Google Scholar
64.PROVIGIL® (modafinil) Tablets [C-IV]. 2007; Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2007/020717s020s013s018lbl.pdf. (Accessed August 17, 2017.)Google Scholar
65.NUVIGIL™ (armodafinil) Tablets [C-IV]. 2007; Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021875lbl.pdf. (Accessed August 17, 2017.)Google Scholar
66.Kumar, R. Approved and investigational uses of modafinil: An evidence-based review. Drugs 2008;68(13):18031839.Google Scholar
67.Kotagal, S. Treatment of narcolepsy and other organic hypersomnias in children. Paediatr Respir Rev 2018;25:1924.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×