Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: February 2013

Chapter 12 - Translational cognitive neuroscience of schizophrenia: bridging neurocognitive and computational approaches toward understanding cognitive deficits

from Section 3 - Genetic and biological contributions to cognitive impairment

Summary

This chapter discusses associations between neurocognition and functional outcome that are typically stronger than those found between psychotic symptoms and functional outcome, and sometimes even stronger than those between negative symptoms and outcome. Research in social cognition in schizophrenia has tended to cluster around four types of social cognitive processes: emotion processing, social perception, attributional style, and mental state attribution. Neurocognitive and social cognitive tasks often share cognitive demands, such as working memory and perception. Negative symptoms reflect a decrease or absence of normal functions within two broad domains: internal experience-related impairments, including diminished emotional experience, motivation to engage in productive activities, and desire for social affiliation; expressive or communicative impairments, including diminished facial expressivity, gestures, prosody, and speech production. It has been known for a long time that, neurocognition, negative symptoms are consistent predictors of daily functioning.

References

Achim, A. M. & Lepage, M. (2003). Is associative recognition more impaired than item recognition memory in schizophrenia? A meta-analysis. Brain and Cognition, 53, 121–124.
Addington, J., Addington, D., & Gasbarre, L. (1997). Distractibility and symptoms in schizophrenia. Journal of Psychiatry and Neuroscience, 22, 180–184.
Adell, A., Jiménez-Sánchez, L., López-Gil, X., et al. (2011). Is the acute NMDA receptor hypofunction a valid model of schizophrenia?Schizophrenia Bulletin, 38, 9–14.
Adler, C. M., Malhotra, A. K., Goldberg, T., et al. (1998). A Comparison of Ketamine-induced and Schizophrenic Thought Disorder. 53rd Annual Convention, Society of Biological Psychiatry, Toronto:Canada.
Alain, C., McNeely, H. E., & Yu, H., et al. (2002). Neurophysiological evidence of error monitoring deficits in patients with schizophrenia. Cerebral Cortex, 12, 840–846.
Aleman, A., Hijman, R., de Haan, E. H., et al. (1999). Memory impairment in schizophrenia: a meta-analysis. American Journal of Psychiatry, 156, 1358–1366.
Alexander, W. H. & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338–1344.
Alkire, M. T., Haier, R. J., Fallon, J. H., et al. (1998). Hippocampal, but not amygdala, activity at encoding correlates with long-term, free recall of nonemotional information. Proceedings of the National Academy of Sciences of the United States of America, 95, 14506–14510.
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., et al. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322–335.
Anticevic, A., Repovs, G., & Barch, D. M. (2011a). Working memory encoding and maintenance deficits in schizophrenia: neural evidence for activation and deactivation abnormalities. Schizophrenia Bulletin [Epub ahead of print].
Anticevic, A., Repovs, G., Shulman, G. L., et al. (2010). When less is more: TPJ and default network deactivation during encoding predicts working memory performance. NeuroImage, 49, 2638–2648.
Anticevic, A., Repovs, G., Corlett, P. R., et al. (2011b). Negative and non-emotional interference with visual working memory in schizophrenia. Biological Psychiatry, 70, 1159–1168.
Badcock, J. C., Badcock, D. R., Read, C., et al. (2008). Examining encoding imprecision in spatial working memory in schizophrenia. Schizophrenia Research, 100, 144–152.
Baddeley, A. D. (2000). The episodic buffer: a new component of working memory?Trends in Cognitive Sciences, 4, 417–423.
Baddeley, A. D. & Hitch, G. J. (1974). Working memory. In G. Bower (ed.), The Psychology of Learning and Motivation. New York, NY:Academic Press, pp. 47–89.
Baker, J. T., Sanders, A. L., Maccotta, L., et al. (2001). Neural correlates of verbal memory encoding during semantic and structural processing tasks. Neuroreport, 12, 1251–1256.
Barbalat, G., Chambon, V., Franck, N., et al. (2009). Organization of cognitive control within the lateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 66, 377–386.
Barch, D. M. (2005a). The cognitive neuroscience of schizophrenia. In T. Cannon & S. Mineka (eds.), Annual Review of Clinical Psychology. Washington, DC: American Psychological Association, pp. 321–353.
Barch, D. M. (2005b). The relationships among cognition, motivation, and emotion in schizophrenia: how much and how little we know. Schizophrenia Bulletin, 31, 875–881.
Barch, D. M. & Braver, T. S. (2007). Cognitive control in schizophrenia: psychological and neural mechanisms. In R. W. Engle, G. Sedek, U. von Hecker, et al. (eds.), Cognitive Limitations in Aging and Psychopathology. Cambridge:Cambridge University Press, pp. 122–159.
Barch, D. M., Carter, C. S., Braver, T. S., et al. (2001). Selective deficits in prefrontal cortex regions in medication naive schizophrenia patients. Archives of General Psychiatry, 50, 280–288.
Barch, D. M., Carter, C. S., & Cohen, J. D. (2003). Context processing deficit in schizophrenia: diagnostic specificity, 4-week course, and relationships to clinical symptoms. Journal of Abnormal Psychology, 112, 132–143.
Barch, D. M., Carter, C., Perlstein, W., et al. (1999). Increased Stroop facilitation effects in schizophrenia are not due to increased automatic spreading activation. Schizophrenia Research, 39, 51–64.
Barch, D. M., Sheline, Y. I., Csernansky, J. G., et al. (2003). Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression. Biological Psychiatry, 53, 376–384.
Barch, D. M. & Smith, E. (2008). The cognitive neuroscience of working memory: relevance to CNTRICS and schizophrenia. Biological Psychiatry, 64, 11–17.
Bates, A. T., Kiehl, K. A., Laurens, K. R., et al. (2002). Error-related negativity and correct response negativity in schizophrenia. Clinical Neurophysiology, 113, 1454–1463.
Bates, A. T., Liddle, P. F., Kiehl, K. A., et al. (2004). State dependent changes in error monitoring in schizophrenia. Journal of Psychiatric Research, 38, 347–356.
Becerril, K. E., Repovs, G., & Barch, D. M. (2011). Error processing network dynamics in schizophrenia. NeuroImage, 54, 1495–1505.
Benes, F. M., McSparren, J., Bird, E. D., et al. (1991). Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry, 48, 996–1001.
Blanchard, J. J. & Neale, J. M. (1994). The neuropsychological signature of schizophrenia: generalized or differential deficit. American Journal of Psychiatry, 151, 40–48.
Blumenfeld, R. S., Parks, C. M., Yonelinas, A. P., et al. (2011). Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. Journal of Cognitive Neuroscience, 23, 257–265.
Bonner-Jackson, A. & Barch, D. M. (2011). Strategic manipulations for associative memory and the role of verbal processing abilities in schizophrenia. Journal of the International Neuropsychological Society, 17, 796–806.
Bonner-Jackson, A., Yodkovik, N., Csernansky, J. G., et al. (2008). Episodic memory in schizophrenia: the influence of strategy use on behavior and brain activation. Psychiatry Research, 164, 1–15.
Botvinick, M. M., Braver, T. S., Barch, D. M., et al. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.
Bowles, B., Crupi, C., Pigott, S., et al. (2010). Double dissociation of selective recollection and familiarity impairments following two different surgical treatments for temporal-lobe epilepsy. Neuropsychologia, 48, 2640–2647.
Braver, T. S. (2012). The variable nature of cognitive control: a dual-mechanisms framework. Trends in Cognitive Sciences, 16, 106–113.
Braver, T. S., Barch, D. M., & Cohen, J. D. (1999). Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biological Psychiatry, 46, 312–328.
Braver, T. S. & Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: the gating model. Progress in Brain Research, 121, 327–349.
Braver, T. S., Cohen, J. D., Nystrom, L. E., et al. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49–62.
Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. In A. R. Conway, C. Jarrold, M. J. Kane, et al. (eds.), Variation in Working Memory. Oxford:Oxford University Press, pp. 76–106.
Braver, T. S., Paxton, J. L., Locke, H. S., et al. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106, 7351–7356.
Breier, A., Malhotra, A. K., Pinals, D. A., et al. (1997). Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. American Journal of Psychiatry, 154, 805–811.
Brewer, J., Zhao, Z. H., & Gabrieli, J. D. E. (1998a). Parahippocampal and frontal responses to single events predict whether those events are remembered or forgotten. Science, 281, 1185–1187.
Brewer, J. B., Zhao, Z., Glover, G. H., et al. (1998b). Making memories: brain activity that predicts how well visual experience will be remembered. Science, 281, 1185–1187.
Brown, J. W. & Braver, T. S. (2005). Learned predictions of error likelihood in the anterior cingulate cortex. Science, 307, 1118–1121.
Brunel, N. & Wang, X. J.(2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11, 63–85.
Buchanan, R. W., Javitt, D. C., Marder, S. R., et al. (2007). The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. American Journal of Psychiatry, 164, 1593–1602.
Buchanan, R. W., Strauss, M. E., Kirkpatrick, B., et al. (1994). Neuropsychological impairments in deficit vs nondeficit forms of schizophrenia. Archives of General Psychiatry, 51, 804–811.
Callicott, J. H., Bertolino, A., Mattay, V. S., et al. (2000). Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex, 10, 1078–1092.
Callicott, J. H., Mattay, V. S., Verchinski, B. A., et al. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. American Journal of Psychiatry, 160, 2209–2215.
Callicott, J. H., Ramsey, N. F., Tallent, K., et al. (1998). Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology, 18, 186–196.
Cameron, K. A., Yashar, S., Wilson, C. L., et al. (2001). Human hippocampal neurons predict how well word pairs will be remembered. Neuron, 30, 289–298.
Camperi, M. & Wang, X. J. (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. Journal of Computational Neuroscience, 5, 383–405.
Carter, C. S., MacDonald, A. W. 3rd., Ross, L.L., et al. (2001). Anterior cingulate cortex activity and impaired self-monitoring of performance in patients with schizophrenia: an event-related fMRI study. American Journal of Psychiatry, 158, 1423–1428.
Cellard, C., Tremblay, S., Lehoux, C., et al. (2007). Processing spatial-temporal information in recent-onset schizophrenia: the study of short-term memory and its susceptibility to distraction. Brain and Cognition, 64, 201–207.
Chapman, L. J. & Chapman, J. P. (1978). The measurement of differential deficit. Journal of Psychiatric Research, 14, 303–311.
Cohen, J. D., Barch, D. M., Carter, C., et al. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108, 120–133.
Cohen, N. J. & Eichenbaum, H. (2001). From Conditioning to Conscious Recollection. New York: Oxford University Press.
Cohen, J. D. & Servan-Schreiber, D. (1992). Context, cortex and dopamine: a connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99, 45–77.
Coleman, M. J., Titone, D., Krastoshevsky, O., et al. (2010). Reinforcement ambiguity and novelty do not account for transitive inference deficits in schizophrenia. Schizophrenia Bulletin, 36, 1187–1200.
Compte, A., Brunel, N., Goldman-Rakic, P. S., et al. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10, 910–923.
Constantinidis, C. & Wang, X.-J. (2004). A neural circuit basis for spatial working memory. Neuroscientist, 10, 553–565.
Corkin, S. (1984). Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H. M. Seminars in Neurology, 4, 249–259.
Corlett, P. R., Honey, G. D., Aitken, M. R. F., et al. (2006). Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis. Archives of General Psychiatry, 63, 611–621.
Cornblatt, B., ObuchowskiM., RobertsS., et al. (1999) Cognitive and behavioral precursors of schizophrenia. Developmental Psychopathology, 11, 487–508.
Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.
Cowan, N. (2008) What are the differences between long-term, short-term, and working memory? In W. S. Sossin, J.-C. Lacaille, V. F. Castellucci, et al. (eds.), Progress in Brain Research, Vol. 169. Essence of Memory. Amsterdam: Elsevier, pp. 323–338.
Curtis, C. E., Rao, V. Y., & D’Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24, 3944–3952.
Danion, J. M., Cuervo, C., Piolino, P., et al. (2005). Conscious recollection in autobiographical memory: an investigation in schizophrenia. Consciousness and Cognition, 14, 535–547.
Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16, 693–700.
Delawalla, Z., Barch, D. M., Fisher-Eastep, J. L., et al. (2006). Factors mediating cognitive deficits and psychopathology among siblings of individuals with schizophrenia. Schizophrenia Bulletin, 32, 525–537.
D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 362, 761–772.
D’Esposito, M., Aguirre, G. K., Zarahn, E., et al. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13.
Dickinson, D., Ragland, J. D., Gold, J. M., et al. (2008). General and specific cognitive deficits in schizophrenia: Goliath defeats David?Biological Psychiatry, 64, 823–827.
Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532–542.
Dosenbach, N. U., Fair, D. A., Cohen, A. L., et al. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99–105.
Dreher, J. C., Banquet, J. P., Allilaire, J. F., et al. (2001). Temporal order and spatial memory in schizophrenia: a parametric study. Schizophrenia Research, 51, 137–147.
Driesen, N. R., Leung, H. C., Calhoun, V. D., et al. (2008). Impairment of working memory maintenance and response in schizophrenia: functional magnetic resonance imaging evidence. Biological Psychiatry, 64, 1026–1034.
D’Souza, D. C., Perry, E., MacDougall, L., et al., (2004). The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology, 29, 1558–1572.
Durstewitz, D., Kelc, M., & Gunturkun, O. (1999). A neurocomputational theory of the dopaminergic modulation of working memory functions. Journal of Neuroscience, 19, 2807–2822.
Durstewitz, D. & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Networks, 15, 561–572.
Durstewitz, D. & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biological Psychiatry, 64, 739–749.
Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83, 1733–1750.
Edwards, B. G., Barch, D. M., & Braver, T. S. (2010). Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Frontiers in Human Neuroscience, 4, 32.
Elvevåg, B. & Goldberg, T. E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Critical Reviews in Neurobiology, 14, 1–21.
Enticott, P. G., Upton, D. J., Bradshaw, J. L., et al. (2011). Stop task after-effects in schizophrenia: behavioral control adjustments and repetition priming. Neurocase [Epub ahead of print].
Finkelstein, J. R., Cannon, T. D., Gur, R. E., et al. (1997). Attentional dysfunctions in neuroleptic-naive and neuroleptic-withdrawn schizophrenic patients and their siblings. Journal of Abnormal Psychology, 106, 203–212.
Fleming, K., Goldberg, T. E., Binks, S., et al. (1997). Visuospatial working memory in patients with schizophrenia. Biological Psychiatry, 41, 43–49.
Fletcher, P. C. (2011). Hurry up and wait: action, distraction, and inhibition in schizophrenia. Biological Psychiatry, 70, 1104–1106.
Fox, M. D., Snyder, A. Z., Vincent, J. L., et al. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349.
Fusar-Poli, P., Perez, J., Broome, M., et al. (2007). Neurofunctional correlates of vulnerability to psychosis: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 31, 465–484.
Giovanello, K. S., Schnyer, D. M., & Verfaellie, M. (2004). A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus, 14, 5–8.
Glahn, D. C., Ragland, J. D., Abramoff, A., et al. (2005). Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapping, 25, 60–69.
Glahn, D. C., Therman, S., Manninen, M., et al. (2003). Spatial working memory as an endophenotype for schizophrenia. Biological Psychiatry, 53, 624–626.
Goldman-Rakic, P. S. (1984). Modular organization of prefrontal cortex. Trends in Neurosciences, 7, 419–424.
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum & V. Mountcastle (eds.), Handbook of Physiology: The Nervous System V. Bethesda, MD: American Physiological Society, pp. 373–417.
Goldman-Rakic, P. S. (1988). Topography of cognition: parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137–156.
Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia. Journal of Neuropsychiatry, 6, 348–357.
Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14, 477–485.
Goldman-Rakic, P. S. (1996). The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (eds.), The Prefrontal Cortex: Executive and Cognitive Functions. Oxford: Oxford University Press, pp. 87–103.
Goldman-Rakic, P. S., Castner, S. A., Svensson, T. H., et al. (2004). Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl), 174, 3–16.
Goldman-Rakic, P. S. & Friedman, H. R. (1991) . The circuitry of working memory revealed by anatomy and metabolic imaging. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (eds.). Frontal Lobe Function and Dysfunction. New York, NY: Oxford University Press, pp. 72–91.
Goldman-Rakic, P. S., Muly, E. C., & Williams, G. V. (2000). D1 receptors in prefrontal cells and circuits. Brain Research Reviews, 31, 295–301.
Green, M. F. (2006). Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. Journal of Clinical Psychiatry, 67, e12.
Greene, R. (2001). Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus, 11, 569–577.
Gur, R. C., Ragland, J. D., Moberg, P. J., et al. (2001). Computerized neurocognitive scanning: II. The profile of schizophrenia. Neuropsychopharmacology, 25, 777–788.
Haddon, J. E. & Killcross, S. (2007). Contextual control of choice performance: behavioral, neurobiological, and neurochemical influences. Annals of the New York Academy of Sciences, 1104, 250–269.
Hahn, B., Robinson, B. M., Kaiser, S. T., et al. (2010). Failure of schizophrenia patients to overcome salient distractors during working memory encoding. Biological Psychiatry, 68, 603–609.
Hanlon, F. M., Houck, J. M., Pyeatt, C. J., et al. (2011). Bilateral hippocampal dysfunction in schizophrenia. NeuroImage, 58, 1158–1168.
Hanlon, F. M., Weisend, M. P., Yeo, R. A., et al. (2005). A specific test of hippocampal deficit in schizophrenia. Behavioral Neuroscience, 119, 863–875.
Hannula, D. E. & Ranganath, C. (2008). Medial temporal lobe activity predicts successful relational memory binding. Journal of Neuroscience, 28, 116–124.
Hannula, D. E. & Ranganath, C. (2009). The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron, 63, 592–599.
Hannula, D. E., Ranganath, C., Ramsay, I. S., et al. (2010). Use of eye movement monitoring to examine item and relational memory in schizophrenia. Biological Psychiatry, 68, 610–616.
Hardoy, M. C., Carta, M. G., Catena, M., et al. (2004). Impairment in visual and spatial perception in schizophrenia and delusional disorder. Psychiatry Research, 127, 163–166.
Hartman, M., Steketee, M. C., Silva, S., et al. (2003). Working memory and schizophrenia: evidence for slowed encoding. Schizophrenia Research, 59, 99–113.
Harvey, P. D. & Pedley, M. (1989). Auditory and visual distractibility in schizophrenia. Clinical and medication status correlations. Schizophrenia Research, 2, 295–300.
Heaton, R., Gladsjo, V., Palmer, B. W., et al. (2001). Stability and course of neuropsychological deficits in schizophrenia. Archives of General Psychiatry, 58, 24–32.
Heckers, S. & Konradi, C. (2010). Hippocampal pathology in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 529–553.
Heckers, S., Rauch, S. L., Goff, D., et al. (1998). Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience, 1, 318–323.
Heckers, S., Zalesak, M., Weiss, A. P., et al. (2004). Hippocampal activation during transitive inference in humans. Hippocampus, 14, 153–162.
Heinrichs, R. W. & Zakzanis, K. K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 12, 426–445.
Holmes, A. J., MacDonald, A. 3rd., Carter, C.S., et al. (2005). Prefrontal functioning during context processing in schizophrenia and major depression: an event-related fMRI study. Schizophrenia Research, 76, 199–206.
Holroyd, C. B. & Coles, M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709.
Homayoun, H. & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience, 27, 11496–11500.
Honey, G. & Bullmore, E. (2004). Human pharmacological MRI. Trends in Pharmacological Sciences, 25, 366–374.
Honey, G. D., Bullmore, E. T., & Sharma, T. (2002). De-coupling of cognitive performance and cerebral functional response during working memory in schizophrenia. Schizophrenia Research, 53, 45–56.
Honey, G. D., Corlett, P. R., Absalom, A. R., et al. (2008). Individual differences in psychotic effects of ketamine are predicted by brain function measured under placebo. Journal of Neuroscience, 28, 6295–6303.
Honey, R. A., Honey, G. D., O’Loughlin, C., et al. (2004). Acute ketamine administration alters the brain responses to executive demands in a verbal working memory task: an fMRI study. Neuropsychopharmacology, 29, 1203–1204.
Horan, W. P., Braff, D. L., Nuechterlein, K. H., et al. (2008). Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: findings from the Consortium on the Genetics of Schizophrenia. Schizophrenia Research, 103, 218–228.
Horan, W. P., Foti, D., Hajcak, G., et al. (2012). Impaired neural response to internal but not external feedback in schizophrenia. Psychological Medicine, 42, 1637–1647.
Irani, F., Kalkstein, S., Moberg, E. A., et al. (2011). Neuropsychological performance in older patients with schizophrenia: a meta-analysis of cross-sectional and longitudinal studies. Schizophrenia Bulletin, 37, 1318–1326.
Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., et al. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience, 103, 548–560.
Javitt, D. C., Strous, R. D., Grochowski, S., et al. (1997). Impaired precision, but normal retention, of auditory sensory (“echoic”) memory information in schizophrenia. Journal of Abnormal Psychology, 106, 315–324.
Johnson, M. R., Morris, N. A., Astur, R. S., et al. (2006). A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biological Psychiatry, 60, 11–21.
Jonides, J., Lewis, R. L., Nee, D. E., et al. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224.
Kee, K. S., Green, M. F., Mintz, J., et al. (2003). Is emotion processing a predictor of functional outcome in schizophrenia?Schizophrenia Bulletin, 29, 487–497.
Kerns, J. G., Cohen, J. D., MacDonald, A. W. 3rd., et al., (2005), Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162, 1833–1839.
Kirchhoff, B. A., Wagner, A. D., Maril, A., et al. (2000). Prefrontal-temporal circuitry for episodic encoding and subsequent memory. Journal of Neuroscience, 20, 6173–6180.
Koh, S. D. & Peterson, R. A. (1978). Encoding orientation and the remembering of schizophrenic young adults. Journal of Abnormal Psychology, 87, 303–313.
Konkel, A. & Cohen, N. J. (2009). Relational memory and the hippocampus: representations and methods. Frontiers in Neuroscience, 3, 166–174.
Kopp, B. & Rist, F. (1994). Error-correcting behavior in schizophrenic patients. Schizophrenia Research, 13, 11–22.
Kopp, B. & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. Journal of Abnormal Psychology, 108, 337–346.
Kotermanski, S. E. & Johnson, J. W. (2009). Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. Journal of Neuroscience, 29, 2774–2779.
Kraeplin, E. (1950). Dementia Praecox and Paraphrenia. New York, NY: International Universities Press.
Krawitz, A., Braver, T. S., Barch, D. M., et al. (2011). Impaired error-likelihood prediction in medial prefrontal cortex in schizophrenia. NeuroImage, 54, 1506–1517.
Krystal, J. H., Anand, A., & Moghaddam, B. (2002). Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Archives of General Psychiatry, 59, 663–664.
Krystal, J. H., D’Souza, D. C., Karper, L. P., et al. (1999). Interactive effects of subanesthetic ketamine and haloperidol. Psychopharmacology (Berl), 145, 193–204.
Krystal, J. H., D’Souza, D. C., Mathalon, D., et al. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl), 169, 215–233.
Krystal, J. H., Karper, L. P., Bennett, A., et al. (1998). Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology (Berl), 135, 213–229.
Krystal, J. H., Karper, L. P., Seibyl, J. P., et al. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry, 51, 199–214.
Lahti, A. C., Holcomb, H. H., Medoff, D. R., et al. (1995a). Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport, 6, 869–872.
Lahti, A. C., Holcomb, H. H., Medoff, D. R., et al. (2002). Abnormal patterns of regional cerebral blood flow in schizophrenia with primary negative symptoms during an effortful auditory recognition task. American Journal of Psychiatry, 158, 1797–1808.
Lahti, A. C., Koffel, B., LaPorte, D., et al. (1995b). Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology, 13, 9–19.
Lahti, A. C., Weiler, M. A., Tamara Michaelidis, B. A., et al. (2001). Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology, 25, 455–467.
Laurens, K. R., Ngan, E. T., Bates, A. T., et al. (2003). Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. Brain, 126, 610–622.
Lee, J. & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 114, 599–611.
Leiderman, E. A. & Strejilevich, S. A. (2004). Visuospatial deficits in schizophrenia: central executive and memory subsystems impairments. Schizophrenia Research, 68, 217–223.
Lencz, T., Bilder, R. M., Turkel, E., et al. (2003). Impairments in perceptual competency and maintenance on a visual delayed match-to-sample test in first-episode schizophrenia. Archives of General Psychiatry, 60, 238–243.
Leung, H. -C., Gore, J. C., Goldman-Rakic, P. S. (2002). Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. Journal of Cognitive Neuroscience, 14, 659–671.
Lewis, D. A., Curley, A. A., Glausier, J. R., et al. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35, 57–67.
Lewis, D. A., Hashimoto, T., & Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nature Reviews. Neuroscience, 6, 312–324.
Lewis, D. A. & Moghaddam, B. (2006). Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Archives of Neurology, 63, 1372–1376.
Lewis, D. A., Volk, D. W., Hashimoto, T. (2004). Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl), 174, 143–150.
Lezak, M. D. (1995). Neuropsychological Assessment. 3rd ed. New York, NY: Oxford University Press.
Luck, D., Danion, J. M., Marrer, C., et al. (2010). Abnormal medial temporal activity for bound information during working memory maintenance in patients with schizophrenia. Hippocampus, 20, 936–948.
MacDonald, A. W. 3rd., Becker, T. M., & Carter, C.S. (2006). Functional magnetic resonance imaging study of cognitive control in the healthy relatives of schizophrenia patients. Biological Psychiatry, 60, 1241–1249.
MacDonald, A., Carter, C. S., Kerns, J. G., et al. (2005). Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in a never medicated first-episode psychotic sample. American Journal of Psychiatry, 162, 475–484.
MacDonald, A. W. 3rd., Goghari, V. M., Hicks, B. M., et al. (2005). A convergent-divergent approach to context processing, general intellectual functioning, and the genetic liability to schizophrenia. Neuropsychology, 19, 814–821.
MacDonald, A. W., Pogue-Geile, M. F., Johnson, M. K., et al. (2003). A specific deficit in context processing in the unaffected siblings of patients with schizophrenia. Archives of General Psychiatry, 60, 57–65.
MacDonald, A. W. 3rd., Thermenos, H. W., Barch, D. M., et al. (2009). Imaging genetic liability to schizophrenia: systematic review of fMRI studies of patients’ nonpsychotic relatives. Schizophrenia Bulletin, 35, 1142–1162.
Malhotra, A. K., Pinals, D. A., Adler, C. M., et al. (1997). Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology, 17, 141–150.
Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research, 60, 285–298.
Manoach, D. S., Gollub, R. L., Benson, E. S., et al. (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry, 48, 99–109.
Manoach, D. S., Greve, D. N., Lindgren, K. A., et al. (2003). Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. NeuroImage, 20, 1670–1684.
Manoach, D. S., Press, D. Z., Thangaraj, V., et al. (1999). Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biological Psychiatry, 45, 1128–1137.
Marin, O. (2012). Interneuron dysfunction in psychiatric disorders. Nature Reviews. Neuroscience, 13, 107–120.
Mathalon, D. H., Dedor, M., Faustman, W. O., et al. (2002). Response-monitoring dysfunction in schizophrenia: an event-related brain potential study. Journal of Abnormal Psychology, 111, 22–41.
Mathalon, D. H., Jorgensen, K. W., Roach, B. J., et al. (2009). Error detection failures in schizophrenia: ERPs and FMRI. International Journal of Psychophysiology, 73, 109–117.
Mathews, J. R. & Barch, D. M. (2004). Episodic memory for emotional and nonemotional words in schizophrenia. Cognition and Emotion, 18, 721–740.
McClelland, J. L., McNaughton, B. L., O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.
Metzak, P. D., Riley, J. D., Wang, L., et al. (2011). Decreased efficiency of task-positive and task-negative networks during working memory in schizophrenia. Schizophrenia bulletin [Epub ahead of print].
Miller, B. T. & D’Esposito, M. (2005). Searching for “the top” in top-down control. Neuron, 48, 535–538.
Minzenberg, M. J., Laird, A. R., Thelen, S., et al. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66, 811–822.
Mitchell, K. J. & Johnson, M. K. (2009). Source monitoring 15 years later: what have we learned from fMRI about the neural mechanisms of source memory?Psychological Bulletin, 135, 638–677.
Moghaddam, B. & Javitt, D. (2012). From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37, 4–15.
Montague, P. R., Dolan, R. J., Friston, K. J., et al. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16, 72–80.
Moran, R. J., Symmonds, M., Stephan, K. E., et al. (2011). An in vivo assay of synaptic function mediating human cognition. Current Biology, 21, 1320–1325.
Morgan, C. J. & Curran, H. V. (2006). Acute and chronic effects of ketamine upon human memory: a review. Psychopharmacology (Berl), 188, 408–424.
Morris, S. E., Yee, C. M., & Nuechterlein, K. H. (2006). Electrophysiological analysis of error monitoring in schizophrenia. Journal of Abnormal Psychology, 115, 239–250.
Murray, E. A. (1996). What have ablation studies told us about neural substrates of stimulus memory?Seminars in the Neurosciences, 8, 13–22.
Murray, L. J. & Ranganath, C. (2007). The dorsolateral prefrontal cortex contributes to successful relational memory encoding. Journal of Neuroscience, 27, 5515–5522.
Neill, J. C., Barnes, S., Cook, S., et al. (2010). Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacology and Therapeutics, 128, 419–432.
Neufeld, R. W. J. (2007). On the centrality and significance of stimulus-encoding deficit in schizophrenia. Schizophrenia Bulletin, 33, 982–993.
Newcomer, J. W., Farber, N. B., Jevtovic-Todorovic, V., et al. (1999). Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology, 20, 106–118.
Niendam, T. A., Bearden, C. E., Rosso, I. M., et al. (2003). A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. American Journal of Psychiatry, 160, 2060–2062.
Oltmanns, T. F. & Neale, J. M. (1975). Schizophrenic performance when distractors are present: attentional deficit or differential task difficulty?Journal of Abnormal Psychology, 84, 205–209.
Oltmanns, T. F., Ohayon, J., & Neale, J. M. (1978). The effect of anti-psychotic medication and diagnostic criteria on distractibility in schizophrenia. Journal of Psychiatric Research, 14, 81–91.
Ongur, D., Cullen, T. J., Wolf, D. H., et al. (2006). The neural basis of relational memory deficits in schizophrenia. Archives of General Psychiatry, 63, 356–365.
Otten, L. J., Henson, R. N. A., & Rugg, M. D. (2001). Depth of processing effects on neural correlates of memory encoding. Brain, 124, 399–412.
Owen, A. M., McMillan, K. M., Laird, A. R., et al. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59.
Oye, I., Paulsen, O., & Maurset, A. (1992). Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. Journal of Pharmacology and Experimental Therapeutics, 260, 1209–1213.
Park, S. & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49, 975–982.
Perez, V. B., Ford, J. M., Roach, B. J., et al. (2012). Error monitoring dysfunction across the illness course of schizophrenia. Journal of Abnormal Psychology, 121, 372–387.
Polli, F. E., Barton, J. J., Thakkar, K. N., et al. (2008). Reduced error-related activation in two anterior cingulate circuits is related to impaired performance in schizophrenia. Brain, 131, 971–986.
Polli, F. E., Barton, J. J., Vangel, M., et al. (2006). Schizophrenia patients show intact immediate error-related performance adjustments on an antisaccade task. Schizophrenia Research, 82, 191–201.
Postle, B. R. (2005). Delay-period activity in the prefrontal cortex: one function is sensory gating. Journal of Cognitive Neuroscience, 17, 1679–1690.
Potkin, S. G., Turner, J. A., Brown, G. G., et al. (2009). Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study. Schizophrenia Bulletin, 35, 19–31.
Pukrop, R., Matuschek, E., Ruhrmann, S., et al. (2003). Dimensions of working memory dysfunction in schizophrenia. Schizophrenia Research, 62, 259–268.
Ragland, J. D., Blumenfeld, R. S., Ramsay, I. S., et al. (2012). Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. NeuroImage, 59, 1719–1726.
Ragland, J. D., Gur, R. C., Valdez, J. N., et al. (2005). Levels-of-processing effect on frontotemporal function in schizophrenia during word encoding and recognition. American Journal of Psychiatry, 162, 1840–1848.
Ragland, J. D., Laird, A. R., Ranganath, C., et al. (2009). Prefrontal activation deficits during episodic memory in schizophrenia. American Journal of Psychiatry, 166, 863–874.
Ragland, J. D., Moelter, S. T., McGrath, C., et al. (2003). Levels-of-processing effect on word recognition in schizophrenia. Biological Psychiatry, 54, 1154–1161.
Ragland, J. D., Ranganath, C., Barch, D. M., et al. (2012). Relational and Item-Specific Encoding (RISE): task development and psychometric characteristics. Schizophrenia Bulletin, 38, 114–124.
Ragland, J. D., Yoon, J., Minzenberg, M. J., et al. (2007). Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. International Review of Psychiatry, 19, 417–427.
Rao, S. G., Williams, G. V., & Goldman-Rakic, P. S. (2000). Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. Journal of Neuroscience, 20, 485–494.
Reichenberg, A. & HarveyP. D. (2007). Neuropsychological impairments in schizophrenia: integration of performance-based and brain imaging findings. Psychological Bulletin, 133, 833–858.
Ryan, J. D. & Cohen, N. J. (2004). Processing and short-term retention of relational information in amnesia. Neuropsychologia, 42, 497–511.
Sakai, K., Rowe, J. B., & Passingham, R. E. (2002). Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nature Neuroscience, 5, 479–484.
Saperstein, A. M., Fuller, R. L., Avila, M. T., et al. (2006). Spatial working memory as a cognitive endophenotype of schizophrenia: assessing risk for pathophysiological dysfunction. Schizophrenia Bulletin, 32, 498–506.
Schlösser, R. G. M., Koch, K., Wagner, G., et al. (2008). Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: an fMRI study. Neuropsychologia, 46, 336–347.
Scoville, W. B. & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.
Shadlen, M. N. & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569–579.
Shimamura, A. P. (2010). Hierarchical relational binding in the medial temporal lobe: the strong get stronger. Hippocampus, 20, 1206–1216.
Shulman, G. L., Corbetta, M., Buckner, R. L., et al. (1997). Common blood flow changes across visual tasks: I. Increases in subcortical structures and cerebellum but not in nonvisual cortex. Journal of Cognitive Neuroscience, 9, 624–647.
Snitz, B. E., Macdonald, A. W., & Carter, C. S. (2006). Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophrenia Bulletin, 32, 179–194.
Spaniol, J., Davidson, P. S., Kim, A. S., et al. (2009). Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia, 47, 1765–1779.
Sperling, R. A., Bates, J. F., Cocchiarella, A. J., et al. (2001). Encoding novel face-name associations: a functional MRI study. Human Brain Mapping, 14, 129–139.
Squire, L. R. (1987).Memory and Brain. New York, NY: Oxford University Press.
Squire, L. R. & Knowlton, B. J. (1995). Memory, hippocampus, and brain systems. In M. Gazzaniga (ed.), The Cognitive Neurosciences. Cambridge, MA:MIT Press, pp. 825–837.
Tek, C., Gold, J., Blaxton, T., et al. (2002). Visual perceptual and working memory impairments in schizophrenia. Archives of General Psychiatry, 59, 146–153.
Thompson-Schill, S. L., Jonides, J., Marshuetz, C., et al. (2002). Effects of frontal lobe damage on interference effects in working memory. Cognitive, Affective and Behavioral Neuroscience, 2, 109–120.
Titone, D., Ditman, T., Holzman, P. S., et al. (2004). Transitive inference in schizophrenia: impairments in relational memory organization. Schizophrenia Research, 68, 235–247.
Treccani, B., Torri, T., & Cubelli, R. (2005). Is judgment of line orientation selectively impaired in right brain damaged patients?Neuropsychologia, 43, 598–608.
Turken, A. U., Vuilleumier, P., Mathalon, D. H., et al. (2003). Are impairments of action monitoring and executive control true dissociative dysfunctions in patients with schizophrenia?American Journal of Psychiatry, 160, 1881–1883.
Van Erp, T. G., Lesh, T. A., Knowlton, B. J., et al. (2008). Remember and know judgments during recognition in chronic schizophrenia. Schizophrenia Research, 100, 181–190.
Van Snellenberg, J. X., Torres, I. J., & Thornton, A. E. (2006). Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology, 20, 497–510.
Vollenweider, F. X., Leenders, K. L., Scharfetter, C., et al. (1997). Metabolic hyperfrontality and psychopathology in the ketamine model of psychosis using positron emission tomography (PET) and [18F]fluorodeoxyglucose (FDG). European Neuropsychopharmacology, 7, 9–24.
Vollenweider, F. X., Vontobel, P., Oye, I., et al. (2000). Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans. Journal of Psychiatric Research, 34, 35–43.
Wagner, A. D., Schacter, D., Rotte, M., et al. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1191.
Wager, T. D. & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective and Behavioral Neuroscience, 3, 255–274.
Walker, E., Kestler, L., Bollini, A., et al. (2004). Schizophrenia: etiology and course. Annual Review of Psychology, 55, 401–430.
Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24, 455–463.
Wang, X.-J. (2006). Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia. Pharmacopsychiatry, 39, S80–S87.
Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Review, 90, 1195–1268.
Wang, H., Stradtman, G. G., Wang, X.-J., et al. (2008). A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 105, 16791–16796.
Wang, X.-J., Tegnér, J., Constantinidis, C., et al. (2004). Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proceedings of the National Academy of Sciences of the United States of America, 101, 1368–1373.
Weiss, A. P., Schacter, D. L., Goff, D. C., et al. (2003). Impaired hippocampal recruitment during normal modulation of memory performance in schizophrenia. Biological Psychiatry, 53, 48–55.
Wendelken, C. & Bunge, S. A. (2010). Transitive inference: distinct contributions of rostrolateral prefrontal cortex and the hippocampus. Journal of Cognitive Neuroscience, 22, 837–847.
Whitfield-Gabrieli, S., Thermenos, H., Milanovic, S., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106, 1279–1284.
Williams, L. E., Must, A., Avery, S., et al. (2010). Eye-movement behavior reveals relational memory impairment in schizophrenia. Biological Psychiatry, 68, 617–624.
Yizhar, O., Fenno, L. E., Prigge, M., et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477, 171–178.
Zakzanis, K. K. & Heinrichs, R. W. (1999). Schizophrenia and the frontal brain: a quantitative review. Journal of the International Neuropsychological Society, 5, 556–566.