Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: May 2013

2 - Dynamic susceptibility contrast MRI: acquisition and analysis techniques

from Section 1 - Techniques



From the early start in history man employed “contrast media” to measure flow: Hero of Alexandria proposed for example in 62 AD the use of debris in combination with a sundial to calculate the velocity of the water in Egyptian rivers. Leonardo da Vinci improved this method by using a pig's bladder attached to a stick with a stone on the other side. Early implementations to measure cerebral blood flow similarly introduced a tracer upstream from the brain, such as nitrous oxide or xenon gas. Even before these early blood flow measurements, functional brain experiments were introduced by monitoring changes in brain volume upon functional activity as an indicator and proof of vasodilatation [1]. It is therefore not surprising that when contrast agents for MRI based on gadolinium chelates were introduced, blood flow measurements were among the first applications. Interestingly, in 1990, for the first time the possibility of localization of neuronal activation was shown using repeated injections of a bolus of contrast agent [2], two years before the BOLD (blood oxygenation level-dependent) effect emerged as the prime tool for functional MRI (fMRI) [3].

Related content

Powered by UNSILO
Sherrington, C, Roy, C.On the regulation of the blood-supply of the brain. J Physiol 1890;11(1–2):85–108.
Belliveau, J, Rosen, B, Kantor, H, et al. Functional cerebral imaging by susceptibility contrast NMR. Magn Reson Med 1990;14:538–46.
Ogawa, S, Tank, DW, Menon, R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89:5951–5.
Fahraeus, R, Lindquist, T.The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931;96:562–8.
Zierler, K.Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962;10:393–407.
Weinmann, HJ, Brasch, RC, Press, WR, Wesbey, GE.Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 1984;142:619–24.
Runge, VM.Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 2000;12(2):205–13.
Grobner, T.Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?Nephrol Dial Transplant 2006;21(4):1104–8.
Administration USFaD. New Warnings for Using Gadolinium-based Contrast Agents in Patients with Kidney Dysfunction. 2010; Available from: .
Wang, Y, Alkasab, TK, Narin, O, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 2011;260(1):105–11.
Pintaske, J, Martirosian, P, Graf, H, et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 2006;41(3):213–21.
Porkka, I, Neuder, M, Hunter, G, et al., editors. Arterial input function measurement with MRI. Proc Intl Soc Magn Reson MedSan Francisco, USA, 1991;120.
Akbudak, E, Hsu, R, Li, Y, Conturo, T, editors. Delta R2* or delta phase contrast effects in blood. Proc Intl Soc Magn Reson Med, Sydney, Australia, 1998; 1197.
Conturo, TE, Akbudak, E, Kotys, MS, et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 2005;22(6):697–703.
van Osch, MJ, Vonken, EJ, Viergever, MA, van der Grond, J, Bakker, CJ.Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49(6):1067–76.
Paganelli, CV, Solomon, AK.The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol 1957; 41(2):259–77.
Manka, C, Traber, F, Gieseke, J, Schild, HH, Kuhl, CK.Three-dimensional dynamic susceptibility-weighted perfusion MR imaging at 3.0 T: feasibility and contrast agent dose. Radiology 2005;234(3):869–77.
Ellinger, R, Kremser, C, Schocke, MF, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 2000;24(6):942–8.
Perman, W, Gado, M, Larson, K, Perlmutter, J.Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 1992;28:74–83.
Vonken, EJ, van Osch, MJ, Bakker, CJ, Viergever, MA.Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999; 10(2):109–17.
Newbould, RD, Skare, ST, Jochimsen, TH, et al. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58(1):70–81.
Bleeker, EJ, van Buchem, MA, van Osch, MJ.Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 2009; 29(4):840–52.
Bleeker, EJ, van Buchem, MA, Webb, AG, van Osch, MJ.Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 2010;64(2):358–68.
Kjolby, BF, Mikkelsen, IK, Pedersen, M, Ostergaard, L, Kiselev, VG.Analysis of partial volume effects on arterial input functions using gradient echo: a simulation study. Magn Reson Med 2009; 61(6):1300–9.
Thornton, RJ, Jones, JY, Wang, ZJ.Correcting the effects of background microcirculation in the measurement of arterial input functions using dynamic susceptibility contrast MRI of the brain. Magn Reson Imaging 2006; 24(5):619–23.
Reichenbach, JR, Hacklander, T, Harth, T, et al. 1H T1 and T2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA BMA at 1.5T. Eur Radiol 1997;7(2):264–74.
Albert, M, Huang, WE, Lee, J, Patlak, C, Springer, C.Susceptibility changes following bolus injections. Magn Reson Med 1993;29:700–8.
Boxerman, J, Hamberg, L, Rosen, B, Weisskoff, R.MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555–66.
Kennan, R, Zhong, J, Gore, J.Intravascular susceptibility contrast mechanisms in tissues. Mag Reson Med 1994;31(1):9–21.
Buxton, RB.Introduction to Functional Magnetic Resonance Imaging. New York: Cambridge University Press, 2002.
Kiselev, VG.On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46(6):1113–22.
Kjølby, BF, Østergaard, L, Kiselev, VG.Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006;56(1):187–97.
Yablonskiy, D, Haacke, E.Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994;32:749–63.
Jensen, JH, Chandra, R.NMR relaxation in tissues with weak magnetic inhomogeneities. Magn Reson Med 2000;44(1):144–56.
van Osch, MJ, Vonken, EJ, Wu, O, et al. Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 2003; 50(3):614–22.
Knutsson, L, Stahlberg, F, Wirestam, R.Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study. Magn Reson Imaging 2004; 22(6):789–98.
Klarhofer, M, Dilharreguy, B, van Gelderen, P, Moonen, CT.A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted 3D MRI time series. Magn Reson Med 2003;50(4):830–8.
Ostergaard, L, Weisskoff, RM, Chesler, DA, Glydensted, C, Rosen, BR.High resolution measurement of cerebral blood flow using intravascular tracer passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–25.
Wu, O, Ostergaard, L, Weisskoff, RM, et al. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50(1):164–74.
Murase, K, Shinohara, M, Yamazaki, Y.Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 2001;46(12):3147–59.
Knutsson, L, Stahlberg, F, Wirestam, R.Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 2010;23(1):1–21.
Rempp, KA, Brix, G, Wenz, F, et al. Quantitation of cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41.
Vonken, EP, Beekman, FJ, Bakker, CJ, Viergever, MA.Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999; 41(2):343–50.
Willats, L, Connelly, A, Calamante, F.Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 2006;56(1):146–56.
Andersen, IK, Szymkowiak, A, Rasmussen, CE, et al. Perfusion quantification using Gaussian process deconvolution. Magn Reson Med 2002;48(2):351–61.
Dennie, J, Mandeville, JB, Boxerman, JL, et al. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998;40:793–9.
Sakaie, KE, Shin, W, Curtin, KR, et al. Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 2005;21(5):512–19.
Lin, W, Celik, A, Derdeyn, C, et al. Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 2001;14(6):659–67.
Zaharchuk, G, Straka, M, Marks, MP, et al. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010;63(6):1548–56.
Bonekamp, D, Degaonkar, M, Barker, PB.Quantitative cerebral blood flow in dynamic susceptibility contrast MRI using total cerebral flow from phase contrast magnetic resonance angiography. Magn Reson Med 2011; 66(1):57–66.
Weisskoff, RM, Chesler, D, Boxerman, JL, Rosen, BR.Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?Magn Reson Med 1993;29(4):553–8.
Perthen, JE, Calamante, F, Gadian, DG, Connelly, A.Is quantification of bolus tracking MRI reliable without deconvolution?Magn Reson Med 2002; 47(1):61–7.
Alsop, DC, Wedmid, A, Schlaug, G, editors. Defining a local arterial input function for perfusion quantification with bolus contrast MRI. Proceedings of the International Society for Magnetic Resonance in MedicineHonolulu, Hawai'i, 2002.
Calamante, F, Morup, M, Hansen, LK.Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52(4):789–97.
Vonken, EP, van Osch, MJ, Bakker, CJ, Viergever, MA.Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 2000;43(6):820–7.
Pannetier, N, Debacker, C, Mauconduit, F, Christen, T, Barbier, E, editors. Does R2* increase or decrease when contrast agent extravasates?Proceedings of the International Society for Magnetic Resonance in Medicine, Montreal, Canada, 2011; 3916.
Sorensen, AG, Reimer, P.Cerebral MR Perfusion Imaging. Stuttgart New York: Thieme, 2000.
Leite, FP, Tsao, D, Vanduffel, W, et al. Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. Neuroimage 2002;16(2):283–94.
Qiu, D, Zaharchuk, G, Christen, T, Ni, WW, Moseley, ME.Contrast-enhanced functional blood volume imaging (CE-fBVI): Enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. Neuroimage 2012;62(3):1726–31.