ReferencesJackson, A, Buckley, DL, Parker, GJ.Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Berlin: Springer, 2004.
Tofts, PS.Quantitative MRI of the Brain: Measuring Changes Caused by Disease. New York: Wiley, 2003.
Tofts, PS, Brix, G, Buckley, DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–32.
Leach, MO, Brindle, KM, Evelhoch, JL, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005;92:1599–610.
Tofts, PS, Kermode, AG.Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357–67.
Naish, JH, McGrath, DM, Bains, LJ, et al. Comparison of dynamic contrast-enhanced MRI and dynamic contrast-enhanced CT biomarkers in bladder cancer. Magn Reson Med 2011; 66: 219–26.
Yang, C, Stadler, WM, Karczmar, GS, et al. Comparison of quantitative parameters in cervix cancer measured by dynamic contrast-enhanced MRI and CT.Magn Reson Med 2010;63:1601–9.
Tofts, PS, Shuter, B, Pope, JM.Ni-DTPA doped agarose gel–a phantom material for Gd-DTPA enhancement measurements. Magn Reson Imaging 1993;11:125–33.
Shuter, B, Tofts, PS, Wang, SC, Pope, JM.The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat. Magn Reson Imaging 1996;14:243–53.
Stanisz, GJ, Henkelman, RM.Gd-DTPA relaxivity depends on macromolecular content. Magn Reson Med 2000;44:665–7.
Spees, WM, Yablonskiy, DA, Oswood, MC, Ackerman, JJ.Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med 2001;45:533–42.
Boron, WF, Boulpaep, EL.Medical Physiology. Philadelphia: Saunders, 2008.
Roberts, C, Hughes, S, Naish, JH, et al. Individually Measured Hematocrit in DCE-MRI studies. Proc Intl Soc Magn Reson Med, Montreal, Canada, 2011; 1078.
Teorell, T.Kinetics of distribution of substances admitted to the body. I. The extravascular modes of administration. Arch Int Pharmacodyn Ther 1937;57:205–25.
Kety, SS.The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 1951;3:1–41.
Weinmann, HJ, Laniado, M, Mutzel, W.Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 1984;16:167–72.
Parker, GJ, Roberts, C, Macdonald, A,et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 2006;56:993–1000.
Horsfield, MA, Thornton, JS, Gill, A, et al. A functional form for injected MRI Gd-chelate contrast agent concentration incorporating recirculation, extravasation and excretion. Phys Med Biol 2009;54:2933–49.
Tofts, PS.Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91–101.
Sourbron, SP, Buckley, DL.On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med 2011;66:735–45.
Sourbron, SP, Buckley, DL.Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol 2012; 57:R1–33.
Pries, AR, Ley, K, Gaehtgens, P.Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 1986;251:H1324–32.
Crystal, GJ, Downey, HF, Bashour, FA.Small vessel and total coronary blood volume during intracoronary adenosine. Am J Physiol 1981;241:H194–201.
Sakai, F, Nakazawa, K, Tazaki, Y, et al. Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab 1985;5:207–13.
Rempp, KA, Brix, G, Wenz, F, et al.Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637–41.
Gaehtgens, P.Flow of blood through narrow capillaries: rheological mechanisms determining capillary hematocrit and apparent viscosity. Biorheology 1980;17:183–9.
Tofts, PS, Cutajar, M, Mendichovszky, IA, Gordon, I.Accurate and precise measurement of renal filtration and vascular parameters using DCE-MRI and a 3-compartment model. Proc Intl Soc Magn Reson Med, Stockholm, Sweden, 2010; 326.
Tofts, PS, Cutajar, M, Mendichovszky, IA, Peters, AM, Gordon, I.Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur Radiol 2012;22:1320–30.
Lawrence, KS, Lee, TY.An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 1998;18:1365–77.
Donaldson, SB, West, CM, Davidson, SE, et al. A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix. Magn Reson Med 2010;63:691–700.
Hatabu, H, Tadamura, E, Levin, DL, et al. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI.Magn Reson Med 1999;42:1033–8.
Ohno, Y, Hatabu, H, Murase, K, et al. Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: preliminary experience in 40 subjects. J Magn Reson Imaging 2004;20:353–65.
Jerosch-Herold, M.Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010;12:57.
Naish, JH, Kershaw, LE, Buckley, DL, et al. Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med 2009;61:1507–14.
Brix, G, Kiessling, F, Lucht, R, et al.Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 2004;52:420–9.
Sourbron, S, Ingrisch, M, Siefert, A, Reiser, M, Herrmann, K.Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med 2009;62:205–17.
Brix, G, Zwick, S, Kiessling, F, Griebel, J.Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys 2009;36:2923–33.
Johnson, JA, Wilson, TA.A model for capillary exchange. Am J Physiol 1966;210:1299–303.
Koh, TS, Zeman, V, Darko, J, et al.The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow. Phys Med Biol 2001;46:1519–38.
Tofts, PS.QA: quality assurance, accuracy, precision and phantoms. In: Tofts, P, editor, Quantitative MRI of the Brain: Measuring Changes Caused by Disease. Chichester: John Wiley, 2003;55–81.
Buonaccorsi, GA, O'Connor, , JP, Caunce, , A, et al. Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 2007;58:1010–19.
Henderson, E, Rutt, BK, Lee, TY.Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 1998;16:1057–73.
Kostler, H, Ritter, C, Lipp, M, et al.Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 2004;52:296–9.
Risse, F, Semmler, W, Kauczor, HU, Fink, C.Dual-bolus approach to quantitative measurement of pulmonary perfusion by contrast-enhanced MRI. J Magn Reson Imaging 2006;24:1284–90.
Korporaal, JG, van den Berg, CA, van Osch, MJ, et al. Phase-based arterial input function measurements in the femoral arteries for quantification of dynamic contrast-enhanced (DCE) MRI and comparison with DCE-CT. Magn Reson Med 2011; 66:1267–74.
Yankeelov, TE, Luci, JJ, Lepage, M, et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging 2005;23:519–29.
Roberts, C, Little, R, Watson, Y, et al. The effect of blood inflow and B(1)-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magn Reson Med 2011;65:108–19.
Buckley, DL, Shurrab, AE, Cheung, CM, et al. Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 2006;24:1117–23.
Barker, GJ, Simmons, A, Arridge, SR, Tofts, PS.A simple method for investigating the effects of non-uniformity of radiofrequency transmission and radiofrequency reception in MRI. Br J Radiol 1998;71:59–67.
Brookes, JA, Redpath, TW, Gilbert, FJ, Murray, AD, Staff, RT.Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging 1999;9:163–71.
Parker, GJ, Barker, GJ, Tofts, PS.Accurate multislice gradient echo T(1) measurement in the presence of non-ideal RF pulse shape and RF field nonuniformity. Magn Reson Med 2001;45:838–45.
Dowell, NG, Tofts, PS.Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med 2007;58:622–30.
Tofts, PS, Berkowitz, B, Schnall, MD.Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 1995;33:564–8.
Fritz-Hansen, T, Rostrup, E, Larsson, HB, Sondergaard, L, Ring, P, Henriksen, O.Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 1996;36:225–31.
O'Connor, JP, Jayson, GC, Jackson, A,et al. Enhancing fraction predicts clinical outcome following first-line chemotherapy in patients with epithelial ovarian carcinoma. Clin Cancer Res 2007;13:6130–5.
Donaldson, SB, Buckley, DL, O'Connor, JP, et al. Enhancing fraction measured using dynamic contrast-enhanced MRI predicts disease-free survival in patients with carcinoma of the cervix. Br J Cancer 2010;102:23–6.
Mills, SJ, Soh, C, O'Connor, JP, et al. Tumour enhancing fraction (EnF) in glioma: relationship to tumour grade. Eur Radiol 2009;19:1489–98.
Bagher-Ebadian, H, Jain, R, Nejad-Davarani, SP, et al. Model selection for DCE-T1 studies in glioblastoma. Magn Reson Med 2011;68:241–51.
Rose, CJ, Mills, SJ, O'Connor, JP, et al. Quantifying spatial heterogeneity in dynamic contrast-enhanced MRI parameter maps. Magn Reson Med 2009;62:488–99.
Canuto, HC, McLachlan, C, Kettunen, MI, et al. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent. Magn Reson Med 2009;61:1218–24.
Tofts, PS, Davies, GR, Dehmeshki, J.Histograms: measuring subtle diffuse disease. In: Tofts, P, editor. Quantitative MRI of the Brain: Measuring Changes Caused by Disease. Chichester: John Wiley, 2003;581–610.
Tofts, PS, Benton, CE, Weil, RS, et al. Quantitative analysis of whole-tumor Gd enhancement histograms predicts malignant transformation in low-grade gliomas. J Magn Reson Imaging 2007;25:208–14.
Dehmeshki, J, Ruto, AC, Arridge, S, et al. Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 2001;46:600–9.
Tofts PS, Stoyanova R. Fast modelling of slow DCE data from prostate: rate constant (kep) and extracellular extravascular space (EES: ve) both distinguish hypoxic regions in the tumour. European Society for Magnetic Resonance in Medicine and Biology Congress Leipzig 2011; 27.
Buckley, DL, Roberts, C, Parker, GJ, Logue, JP, Hutchinson, CE.Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging–initial experience. Radiology 2004;233:709–15.
Hodgson, RJ, Barnes, T, Connolly, S, et al. Changes underlying the dynamic contrast-enhanced MRI response to treatment in rheumatoid arthritis. Skeletal Radiol 2008;37:201–7.