Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T21:12:17.987Z Has data issue: false hasContentIssue false

2 - Pulse sequences and protocol design

Published online by Cambridge University Press:  04 August 2010

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Alberto Bizzi
Affiliation:
Istituto Neurologico Carlo Besta, Milan
Nicola De Stefano
Affiliation:
Università degli Studi, Siena
Rao Gullapalli
Affiliation:
University of Maryland, Baltimore
Doris D. M. Lin
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Clinical MR Spectroscopy
Techniques and Applications
, pp. 19 - 33
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frahm, J. Localized proton spectroscopy using stimulated echoes. J Magn Reson 1987; 72(3): 502–08.Google Scholar
Frahm, J, Bruhn, H, Gyngell, ML, Merboldt, KD, Hanicke, W, Sauter, R. Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 1989; 11: 47–63.CrossRefGoogle ScholarPubMed
Frahm, J, Bruhn, H, Gyngell, ML, Merboldt, KD, Hanicke, W, Sauter, R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 1989; 9: 79–93.CrossRefGoogle ScholarPubMed
Bottomley, PA, inventor General Electric Company, assignee. Selective volume method for performing localized NMR spectroscopy. USA patent 4480228. 1984 October 30th 1984.
Ordidge, RJ, Gordon, RE, inventors; Oxford Research Systems Limited, assignee. Methods and apparatus of obtaining NMR spectra. United States patent 4531094. 1983.
Duijn, JH, Matson, GB, Maudsley, AA, Weiner, MW. 3D phase encoding 1 H spectroscopic imaging of human brain. Magn Reson Imaging 1992; 10: 315–9.CrossRefGoogle ScholarPubMed
Moonen, CT W, Sobering, G, Zijl, PC M, Gillen, J, Kienlin, M, Bizzi, A. Proton spectroscopic imaging of human brain. J Magn Reson 1992; 98: 556–75.Google Scholar
Spielman, D, Meyer, C, Macovski, A, Enzmann, D. 1 H spectroscopic imaging using a spectral-spatial excitation pulse. Magn Reson Med 1991; 18: 269–79.CrossRefGoogle ScholarPubMed
Zijl, PC, Moonen, CT, Alger, JR, Cohen, JS, Chesnick, SA. High field localized proton spectroscopy in small volumes: greatly improved localization and shimming using shielded strong gradients. Magn Reson Med 1989; 10: 256–65.CrossRefGoogle ScholarPubMed
Duyn, JH, Gillen, J, Sobering, G, Zijl, PC, Moonen, CT. Multisection proton MR spectroscopic imaging of the brain. Radiology 1993; 188: 277–82.CrossRefGoogle Scholar
Ordidge, RJ. Random noise selective excitation pulses. Magn Reson Med 1987; 5: 93–8.CrossRefGoogle ScholarPubMed
Moonen, CT, Kienlin, M, Zijl, PC, Cohen, J, Gillen, J, Daly, P, et al. Comparison of single-shot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed 1989; 2: 201–08.CrossRefGoogle ScholarPubMed
Tkac, I, Andersen, P, Adriany, G, Merkle, H, Ugurbil, K, Gruetter, R. In vivo 1 H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001;46: 451–6.CrossRefGoogle Scholar
Brown, TR, Kincaid, BM, Ugurbil, K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 1982; 79: 3523–6.CrossRefGoogle ScholarPubMed
Petroff, OA, Graham, GD, Blamire, AM, al-Rayess, M, Rothman, DL, Fayad, PB, et al. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology 1992; 42: 1349–54.CrossRefGoogle ScholarPubMed
Luyten, PR, Marien, AJ, Heindel, W, Gerwen, PH, Herholz, K, Hollander, JA, et al. Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. Radiology 1990; 176: 791–9.CrossRefGoogle ScholarPubMed
Nelson, SJ. Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med 2001; 46: 228–39.CrossRefGoogle Scholar
Tran, TK, Vigneron, DB, Sailasuta, N, Tropp, J, Roux, P, Kurhanewicz, J, et al. Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 2000; 43: 23–33.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Maudsley, AA, Matson, GB, Hugg, JW, Weiner, MW. Reduced phase encoding in spectroscopic imaging. Magn Reson Med 1994; 31: 645–51.CrossRefGoogle ScholarPubMed
Golay, X, Gillen, J, Zijl, PC, Barker, PB. Scan time reduction in proton magnetic resonance spectroscopic imaging of the human brain. Magn Reson Med 2002; 47: 384–7.CrossRefGoogle ScholarPubMed
Pohmann, R, Kienlin, M, Haase, A. Theoretical evaluation and comparison of fast chemical shift imaging methods. J Magn Reson 1997; 129: 145–60.CrossRefGoogle ScholarPubMed
Mansfield, P. Spatial mapping of chemical shift in NMR. Magn Reson Med 1984; 1: 370–86.CrossRefGoogle ScholarPubMed
Posse, S, Tedeschi, G, Risinger, R, Ogg, R, Bihan, D. High speed 1 H spectroscopic imaging in human brain by echo planar spatial-spectral encoding. Magn Reson Med 1995; 33: 34–40.CrossRefGoogle Scholar
Ebel, A, Maudsley, AA. Improved spectral quality for 3D MR spectroscopic imaging using a high spatial resolution acquisition strategy. Magn Reson Imaging 2003; 21: 113–20.CrossRefGoogle ScholarPubMed
Adalsteinsson, E, Irarrazabal, P, Topp, S, Meyer, C, Macovski, A, Spielman, DM. Volumetric spectroscopic imaging with spiral-based k-space trajectories. Magn Reson Med 1998; 39: 889–98.CrossRefGoogle ScholarPubMed
Ebel, A, Soher, BJ, Maudsley, AA. Assessment of 3D proton MR echo-planar spectroscopic imaging using automated spectral analysis. Magn Reson Med 2001; 46: 1072–8.CrossRefGoogle ScholarPubMed
Pelletier, D, Nelson, SJ, Grenier, D, Lu, Y, Genain, C, Goodkin, . 3-D echo planar (1)HMRS imaging in MS: metabolite comparison from supratentorial vs. central brain. Magn Reson Imaging 2002; 20: 599–606.CrossRefGoogle ScholarPubMed
Govindaraju, V, Gauger, GE, Manley, GT, Ebel, A, Meeker, M, Maudsley, AA. Volumetric proton spectroscopic imaging of mild traumatic brain injury. Am J Neuroradiol 2004; 25: 730–7.Google ScholarPubMed
Block, KT, Frahm, J. Spiral imaging: a critical appraisal. J Magn Reson Imaging 2005; 21: 657–68.CrossRefGoogle ScholarPubMed
Adalsteinsson, E, Langer-Gould, A, Homer, RJ, Rao, A, Sullivan, EV, Lima, CA, et al. Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis. Am J Neuroradiol 2003; 24: 1941–5.Google Scholar
Dydak, U, Weiger, M, Pruessmann, KP, Meier, D, Boesiger, P. Sensitivity-encoded spectroscopic imaging. Magn Reson Med 2001; 46: 713–22.CrossRefGoogle ScholarPubMed
Pruessmann, KP, Weiger, M, Scheidegger, MB, Boesiger, P. SENSE: Sensitivity Encoding for fast MRI. Magn Reson Med 1999; 42: 952–62.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Sodickson, DK, Manning, WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591–603.CrossRefGoogle ScholarPubMed
Jakob, PM, Griswold, MA, Edelman, RR, Sodickson, DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. Magma 1998; 7: 42–54.CrossRefGoogle ScholarPubMed
McKenzie, CA, Yeh, EN, Ohliger, MA, Price, MD, Sodickson, DK. Self-calibrating parallel imaging with automatic coil sensitivity extraction. Magn Reson Med 2002; 47: 529–38.CrossRefGoogle ScholarPubMed
Griswold, MA, Jakob, PM, Heidemann, RM, Nittka, M, Jellus, V, Wang, J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202–10.CrossRefGoogle Scholar
Haase, A, Frahm, J, Hanicke, W, Matthei, D. 1H NMR chemical shift selective imaging. Phys Med Biol 1985; 30: 341–4.CrossRefGoogle Scholar
Moonen, CTW, Zijl, PCM. Highly efficient water suppression for in vivo proton NMR spectroscopy. J Magn Reson 1990; 88: 28–41.Google Scholar
Ogg, RJ. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1 H NMR spectroscopy. J Magn Reson B 1994; 104: 1–10.CrossRefGoogle Scholar
Tkac, I, Starcuk, Z, Choi, IY, Gruetter, R. In vivo 1 H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 1999; 41: 649–56.3.0.CO;2-G>CrossRefGoogle Scholar
Mescher, M, Merkle, H, Kirsch, J, Garwood, M, Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed 1998; 11: 266–72.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Star-Lack, J, Nelson, SJ, Kurhanewicz, J, Huang, LR, Vigneron, DB. Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 1997; 38: 311–21.CrossRefGoogle Scholar
Spielman, DM, Pauly, JM, Macovski, A, Glover, GH, Enzmann, DR. Lipid-suppressed single- and multisection proton spectroscopic imaging of the human brain. J Magn Reson Imaging 1992; 2: 253–62.CrossRefGoogle ScholarPubMed
Hetherington, HP, Mason, GF, Pan, JW, Ponder, SL, Vaughan, JT, Twieg, DB, et al. Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1 T. Magn Reson Med 1994; 32: 565–71.CrossRefGoogle Scholar
Hetherington, HP, Pan, JW, Mason, GF, Ponder, SL, Twieg, DB, Deutsch, G, et al. 2D 1 H spectroscopic imaging of the human brain at 4.1 T. Magn Reson Med 1994; 32: 530–4.CrossRefGoogle Scholar
Haupt, CI, Schuff, N, Weiner, MW, Maudsley, AA. Removal of lipid artifacts in 1 H spectroscopic imaging by data extrapolation. Magn Reson Med 1996; 35: 678–87.CrossRefGoogle Scholar
Smith, MA, Gillen, J, McMahon, MT, Barker, PB, Golay, X. Simultaneous water and lipid suppression for in vivo brain spectroscopy in humans. Magn Reson Med 2005; 54: 691–6.CrossRefGoogle ScholarPubMed
Star-Lack, J, Vigneron, DB, Pauly, J, Kurhanewicz, J, Nelson, SJ. Improved solvent suppression and increased spatial excitation bandwidths for three-dimensional PRESS CSI using phase-compensating spectral/spatial spin-echo pulses. J Magn Reson Imaging 1997; 7: 745–57.CrossRefGoogle ScholarPubMed
Rothman, DL, Petroff, OA, Behar, KL, Mattson, RH. Localized 1 H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 1993; 90: 5662–6.CrossRefGoogle ScholarPubMed
Trabesinger, AH, Boesiger, P. Improved selectivity of double quantum coherence filtering for the detection of glutathione in the human brain in vivo. Magn Reson Med 2001; 45: 708–10.CrossRefGoogle ScholarPubMed
Freeman, DM, Sotak, CH, Muller, HH, Young, SW, Hurd, RE. A double quantum coherence transfer proton NMR spectroscopy technique for monitoring steady-state tumor lactic acid levels in vivo. Magn Reson Med 1990; 14: 321–9.CrossRefGoogle ScholarPubMed
Barker, PB, Hearshen, , Boska, MD. Single-voxel proton MRS of the human brain at 1.5 T and 3.0 T. Magn Reson Med 2001; 45: 765–9.CrossRefGoogle Scholar
Gonen, O, Gruber, S, Li, BS, Mlynarik, V, Moser, E. Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. Am J Neuroradiol 2001; 22: 1727–31.Google Scholar
Roemer, PB, Edelstein, WA, Hayes, CE, Souza, SP, Mueller, OM. The NMR phased array. Magn Reson Med 1990; 16: 192–225.CrossRefGoogle ScholarPubMed
Brown, MA. Time-domain combination of MR spectroscopy data acquired using phased-array coils. Magn Reson Med 2004; 52: 1207–13.CrossRefGoogle ScholarPubMed
Natt, O, Bezkorovaynyy, V, Michaelis, T, Frahm, J. Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med 2005; 53: 3–8.CrossRefGoogle ScholarPubMed
Wald, LL, Moyher, SE, Day, MR, Nelson, SJ, Vigneron, DB. Proton spectroscopic imaging of the human brain using phased array detectors. Magn Reson Med 1995; 34: 440–5.CrossRefGoogle ScholarPubMed
Wiggins, GC, Triantafyllou, C, Potthast, A, Reykowski, A, Nittka, M, Wald, LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006; 56: 216–23.CrossRefGoogle ScholarPubMed
Sukumar, S, Johnson, MO, Hurd, RE, Zijl, PC. Automated shimming for deuterated solvents using field profiling. J Magn Reson 1997; 125: 159–62.CrossRefGoogle ScholarPubMed
Gruetter, R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 1993; 29: 804–11.CrossRefGoogle ScholarPubMed
Spielman, DM, Adalsteinsson, E, Lim, KO. Quantitative assessment of improved homogeneity using higher-order shims for spectroscopic imaging of the brain. Magn Reson Med 1998; 40: 376–82.CrossRefGoogle Scholar
Kreis, R, Ross, BD, Farrow, NA, Ackerman, Z. Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 1992; 182: 19–27.CrossRefGoogle ScholarPubMed
Maudsley, AA, Darkazanli, A, Alger, JR, Hall, LO, Schuff, N, Studholme, C, et al. Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 2006; 19: 492–503.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×