Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T00:05:47.122Z Has data issue: false hasContentIssue false

Part II - Climate Risk to Human and Natural Systems

Published online by Cambridge University Press:  17 March 2022

Qiuhong Tang
Affiliation:
Chinese Academy of Sciences, Beijing
Guoyong Leng
Affiliation:
Oxford University Centre for the Environment
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Benson‐Lira, V., Georgescu, M., Kaplan, S., & Vivoni, E. R. (2015). Loss of a lake system in a megacity: The impact of urban expansion on seasonal meteorology in Mexico City. Journal of Geophysical Research: Atmospheres 121(7): 30793099.Google Scholar
Burian, S. J., & Shepherd, J. M. (2005). Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrological Processes 19(5): 10891103.CrossRefGoogle Scholar
Changnon, S. A. (1979). Rainfall changes in summer caused by St. Louis. Science 205(4404): 402404.Google Scholar
Changnon, S. A., Shealy, R. T., & Scott, R. W. (1991). Precipitation changes in fall, winter, and spring caused by St. Louis. Journal of Applied Meteorology 30(1): 126134.Google Scholar
Changnon, S. A., & Westcott, N. E. (2002). Heavy rainstorms in Chicago: Increasing frequency, altered impacts and future implications. Journal of the American Water Resources Association 38(5): 14671475.Google Scholar
Easterling, D. R., Horton, B., Jones, P. D., et al. (1997). Maximum and minimum temperature trends for the globe. Science 277(5324): 364367.Google Scholar
Gallo, K. P., Easterling, D. R., & Peterson, T. C. (1996). The influence of land use/land cover on climatological values of the diurnal temperature range. Journal of Climate 9(11): 29412944.Google Scholar
Gallo, K. P., Owen, T. W., Easterling, D. R., & Jamason, P. F. (1999). Temperature trends of the US historical climatology network based on satellite-designated land use/land cover. Journal of Climate 12(5): 13441348.Google Scholar
Georgescu, M., Moustaoui, M., Mahalov, A., & Dudhia, J. (2011). An alternative explanation of the semiarid urban area “oasis effect”. Journal of Geophysical Research: Atmospheres 116(D24): 113125.CrossRefGoogle Scholar
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., et al. (2008). Global change and the ecology of cities. Science 319(5864): 756760.CrossRefGoogle ScholarPubMed
Hansen, J., Ruedy, R., Sato, M., et al. (2001). A closer look at United States and global surface temperature change. Journal of Geophysical Research: Atmospheres 106(D20): 2394723963.CrossRefGoogle Scholar
Huang, S., Taniguchi, M., Yamano, M., & Wang, C.-H. (2009). Detecting urbanization effects on surface and subsurface thermal environment – A case study of Osaka. Science of the Total Environment 407(9): 31423152.Google Scholar
Huff, F. A., & Changnon, S. A. (1972). Climatological assessment of urban effects on precipitation at St. Louis. Journal of Applied Meteorology 11(5): 823842.Google Scholar
Jauregui, E., & Romales, E. (1996). Urban effects on convective precipitation in Mexico city. Atmospheric Environment 30(20): 33833389.CrossRefGoogle Scholar
Jones, P., Kelly, P., Goodess, C., & Karl, T. (1989). The effect of urban warming on the Northern Hemisphere temperature average. Journal of Climate 2(3): 285290.Google Scholar
Jones, P. D., Groisman, P. Y., Coughlan, M., et al. (1990). Assessment of urbanization effects in time series of surface air temperature over land. Nature 347: 169172.Google Scholar
Jones, P. D., Lister, D. H., & Li, Q. (2008). Urbanization effects in large-scale temperature records, with an emphasis on China. Journal of Geophysical Research Atmospheres 113(16): D16122.CrossRefGoogle Scholar
Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature 423: 528531.Google Scholar
Kanamitsu, M., Ebisuzaki, W., Woollen, J., et al. (2002). NCEP-DOE AMIP-II reanalysis (R-2). Bulletin of the American Meteorological Society 83(11): 16311643.Google Scholar
Kataoka, K., Matsumoto, F., Ichinose, T., & Taniguchi, M. (2009). Urban warming trends in several large Asian cities over the last 100 years. Science of the Total Environment 407(9): 31123119.Google Scholar
Kaufmann, R. K., Seto, K. C., Schneider, A., et al. (2007). Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. Journal of Climate 20(10): 22992306.Google Scholar
Kendall, M. G. (1955). Rank Correlation Methods. London: Griffin.Google Scholar
Kishtawal, C. M., Niyogi, D., Tewari, M., Pielke, R. A. Sr, & Shepherd, J. M. (2009). Urbanization signature in the observed heavy rainfall climatology over India. International Journal of Climatology 30(13): 19081916.Google Scholar
Kistler, R., Kalnay, E., Collins, W., et al. (2001). The NCEP_NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society 82(2): 247268.Google Scholar
Li, Q., Liu, X., & Zhang, H. (2004). Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. Advances in Atmospheric Sciences 21(2): 260268.Google Scholar
Li, W., Chen, S., Chen, G., et al. (2011). Urbanization signatures in strong versus weak precipitation over the Pearl River Delta metropolitan regions of China. Environmental Research Letters 6(3): 034020.Google Scholar
Li, Y., Zhu, L., Zhao, X., Li, S., & Yan, Y. (2013). Urbanization impact on temperature change in China with emphasis on land cover change and human activity. Journal of Climate 26(22): 87658780.Google Scholar
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica 13(3): 245259.Google Scholar
Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study Urban Heat Island – Abilities and limitations. Building and Environment 45(10): 21922201.Google Scholar
Mote, T. L., Lacke, M. C., & Shepherd, J. M. (2007). Radar signatures of the urban effect on precipitation distribution: A case study for Atlanta, Georgia. Geophysical Research Letters 34(20): L20710.CrossRefGoogle Scholar
National Bureau of Statistics of China (2011). China Statistical Yearbook. Beijing: China Statistics Press.Google Scholar
Nie, W., Zaitchik, B. F., Ni, G., & Sun, T. (2017). Impacts of anthropogenic heat on summertime rainfall in Beijing. Journal of Hydrometeorology 18(3): 693712.CrossRefGoogle Scholar
Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108(455): 124.Google Scholar
Peterson, T. C. (2003). Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. Journal of Climate 16(18): 29412959.Google Scholar
Ren, G., & Zhou, Y. (2014). Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. Journal of Climate 27(6): 23402360.Google Scholar
Ren, G., Zhou, Y., Chu, Z., et al. (2008). Urbanization effects on observed surface air temperature trends in North China. Journal of Climate 21(6): 13331348.Google Scholar
Rizwan, A. M., Dennis, Y. C., & Liu, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences 20(1): 120128.Google Scholar
Rosenfeld, A. H., Akbari, H., & Romm, J. J. (1998). Cool communities: Strategies for heat island mitigation and smog reduction. Energy and Building 28(1): 5162.Google Scholar
Rosenfeld, D. (2000). Suppression of rain and snow by urban and industrial air pollution. Science 287(5459): 17931796.CrossRefGoogle Scholar
Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of the Total Environment 512–513: 582298.Google Scholar
Sarrat, C., Lemonsu, A., Masson, V., & Guedalia, D. (2006). Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment 40(10): 17431758.Google Scholar
Schatz, J., & Kucharik, C. J. (2014). Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology 53(10): 23712386.Google Scholar
Schatz, J., & Kucharik, C. J. (2015). Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environmental Research Letters 10(9): 094024.Google Scholar
Shepherd, J. (2006). Evidence of urban-induced precipitation variability in arid climate regimes. Journal of Arid Environments 67: 607628.CrossRefGoogle Scholar
Shepherd, J., Stallins, J., Jin, M., & Mote, T. (2010). Urbanization: Impacts on clouds, precipitation, and lightning. In Aitkenhead-Peterson, J., & Volder, A. (eds.), Urban Ecosystem Ecology (pp. 127). Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.Google Scholar
Sun, Y., Zhang, X., Ren, G., Zwiers, F. W., & Hu, T. (2016). Contribution of urbanization to warming in China. Nature Climate Change 6: 706710.CrossRefGoogle Scholar
Tao, W.-K., Chen, J. P., Li, Z., Wang, C., & Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics 50(2): RG2001.Google Scholar
Tao, W.-K., Li, X., Khain, A., et al. (2007). Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. Journal of Geophysical Research 112(D24): D24S18.Google Scholar
United Nations (UN) (2014). World Urbanization Prospects: The 2014 Revision, Highlights. New York: UN.Google Scholar
Wang, F., & Ge, Q. (2012). Estimation of urbanization bias in observed surface temperature change in China from 1980 to 2009 using satellite land-use data. Chinese Science Bulletin 57(14): 17081715.CrossRefGoogle Scholar
Wang, J. A., Hutrya, L. R., Li, D., & Friedl, M. A. (2017). Gradients of atmospheric temperature and humidity controlled by local urban land use intensity in Boston. Journal of Applied Meteorology and Climatology 56(4): 817831.Google Scholar
Wang, W.-C., Zeng, Z., & Karl, T. R. (1990). Urban heat islands in China. Geophysical Research Letters 17(12): 23772380.CrossRefGoogle Scholar
Yang, X., Zhang, Y., Liu, L., et al. (2009). Sensitivity of surface air temperature change to land use/cover types in China. Science in China Series D. Earth Sciences 52(8): 1207.Google Scholar
Zhang, J., Dong, W., Wu, L., et al. (2005). Impact of land use changes on surface warming in China. Advances in Atmospheric Sciences 22(3): 343348.Google Scholar
Zhou, L., Dickinson, R. E., Tian, Y., et al. (2004). Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences (USA) 101(26): 95409544.CrossRefGoogle ScholarPubMed

References

Bajracharya, S., Maharjan, S., Shrestha, F., Bajracharya, O., & Baidya, S. (2014). Glacier Status in Nepal and Decedal Changes from 1980 to 2010 based on Landsat data (p. 88). Kathmandu, Nepal: ICIMOD.Google Scholar
Baniya, B., Tang, Q., Huang, Z., Sun, S., & Techato, K.-A. (2018) Spatial and temporal variation of NDVI in response to climate change and the implication for carbon dynamics in Nepal. Forest 9(6): 329.Google Scholar
Baniya, B., Tan, Q., Xu, X., Haile, G. G., & Chhipi-Shrestha, G. (2019). Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982–2015. Sensors 19(2): 430.CrossRefGoogle ScholarPubMed
Bhandari, S., Speer, J. H., Thapa, U. K., et al. (2019). A 307-year tree-ring SPEI reconstruction indicates modern drought in Western Nepal Himalayas. Tree-Ring Research 75(2): 73.Google Scholar
CBS (2011). Population Monograph of Nepal. Kathmandu, Nepal: National Planning Commission Secretariat, Central Bureau of Statistics (CBS), Government of Nepal Population Dynamics.Google Scholar
Chapagain, P. S., Rai, M. K., & Paudel, B. (2018). Land use land cover change and its pathways in Sidin VDC, Panchthar district, Nepal. Geographical Journal of Nepal 11: 7794.Google Scholar
Chhetri, P. K., & Cairns, D. M. (2016) Dendroclimatic response of Abies spectabilis at treeline ecotone of Barun Valley, eastern Nepal Himalaya. Journal of Forestry Research 27(5): 11631170.Google Scholar
Dahal, P., Shrestha, M., Panthi, J., & Pradhanang, S. M. (2015). Drought risk assessment in central Nepal: Temporal and spatial analysis. Natural Hazards 80: 19131932.Google Scholar
DHM (2015). Study of Climate and Climatic Variation over Nepal. Kathmandu, Nepal: Department of Hydrology and Meteorology (DHM).Google Scholar
DHM (2017). Observed Climate Trend Analysis in Nepal (1971–2014). Kathmandu, Nepal: Department of Hydrology and Meteorology (DHM).Google Scholar
Didan, K. (2015). MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN V006 (Data set). NASA EOSDIS LP DAAC. doi:10.5067/MODIS/MOD13Q1.006Google Scholar
Dobremez, J. F. (1976). Le Nepal Ecolgie et Biogeography (Ecology and Biogeography of Nepal). Paris: Editions du Centre National de la Researche Centifique.Google Scholar
DoFRS (2015). State of Nepal’s Forests, Forest Resource Assessment (FRA) Nepal. Kathmandu, Nepal: Department of Forest Research and Survey (DoFRS).Google Scholar
DoFRS (2017). Forest and Watershed Profile of Local Level (744) Structures of Nepal. Kathmandu, Nepal: Department of Forest Research and Survey (DoFRS).Google Scholar
Dong, J. R., Kaufmann, R. K., Myneni, R. B., et al. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sensing of Environment 84: 393410.Google Scholar
EPA (1998). Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F. Washington, DC: US Environmental Protection Agency.Google Scholar
Fensholt, R., & Proud, S. R. (2012). Evaluation of earth observation based global long term vegetation trends – Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment 119: 131147.CrossRefGoogle Scholar
Foley, J. A., Defries, R., Asner, G. P., et al. (2005). Global consequences of land use. Science 309(5734): 570574.Google Scholar
Gaire, N. P., Bhuju, D. R., Koirala, M., et al. (2017a). Tree-ring based spring precipitation reconstruction in western Nepal Himalaya since AD 1840. Dendrochronologia 42: 2130.Google Scholar
Gaire, N. P., Dhakal, Y. R., Shah, , S. K., et al. (2018). Drought (scPDSI) reconstruction of trans-Himalayan region of central Himalaya using Pinus wallichiana tree-rings. Palaeogeography, Palaeoclimatology, Palaeoecology 514: 251264.CrossRefGoogle Scholar
Gaire, N. P., Koirala, M., Bhuju, D. R., & Carrer, M. (2017b). Site- and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia 41: 4456.Google Scholar
He, Y. Q., Lee, E., & Warner, T. A. (2017). A time series of annual land use and land cover maps of China from 1982 to 2013 generated using AVHRR GIMMS NDVI3g data. Remote Sensing of Environment 199: 201217.CrossRefGoogle Scholar
Holben, B. N. (1986). Characteristics of maximum value composite (MVC) images from temporal AVHRR data. International Journal of Remote Sensing 7(11): 14171434.Google Scholar
ICIMOD (2014a). Land Cover of Nepal 1990. Kathmandu, Nepal: International Center for Integrated Mountain Development (ICIMOD). Available from: http://rds.icimod.org (Last accessed 26 July 2021).Google Scholar
ICIMOD (2014b). Land Cover of Nepal 2000. Kathmandu, Nepal: International Center for Integrated Mountain Development (ICIMOD). Available from: http://rds.icimod.org (Last accessed 26 July 2021).Google Scholar
Karki, R., Hasson, S., Schickhoff, U., Scholten, T., & Bohner, J. (2017). Rising precipitation extremes across Nepal. Climate 5: 4.Google Scholar
Kendall, M. G. (1975). Rank Correlation Methods. London: Charles Griffin.Google Scholar
Kharal, D. K., Thapa, U. K., St George, S., et al. (2017). Tree-climate relations along an elevational transect in Manang Valley, central Nepal. Dendrochronologia 41: 5764.CrossRefGoogle Scholar
Klein Goldewijk, K., Beusen, A., Van Drecht, G., & De Vos, M. (2011). The HYDE 3.1 spatially explicit database of human induced global land use change over the past 12,000 years. Global Ecology and Biogeography 20(1): 7386.Google Scholar
Kogan, F., & Sullivan, J. (1993). Development of Global Drought-Watch System Using NOAA AVHRR Data. Advances in Space Research 13(5): 219222.Google Scholar
Krakauer, N. Y., Lakhankar, T., & Anadon, J. D. (2017). Mapping and attributing normalized difference vegetation index trends for Nepal. Remote Sensing 9(10): 986.Google Scholar
Li, L., Zhang, Y., Wu, J., et al. (2019). Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Science of the Total Environment 678: 2129.CrossRefGoogle ScholarPubMed
Liang, L., Sun, Q., Luo, X., et al. (2017). Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere 8(8): e01919.Google Scholar
Liu, X. F., Zhu, X. F., Li, S. S., Liu, Y. X., & Pan, Y. Z. (2015). Changes in growing season vegetation and their associated driving forces in China during 2001–2012. Remote Sensing 7(11): 1551715535.Google Scholar
Lobell, D., & Burke, M. (2008). Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environmental Research Letters 3(034007).Google Scholar
LRMP (1986). Land Resources Mapping Project. Kathmandu, Nepal: Survey Department, HMGN and Kenting Earth Sciences.Google Scholar
Mann, H. B. (1945) Nonparametric tests against trend. Econometrica 13(3): 245259.Google Scholar
MoFALD (2017) Local Government Operative Act, 2017 (p. 84). Nepal, Kathmandu, Nepal: Ministry of Federal Affairs and Local Development (MoFALD).Google Scholar
MoFE (2019). National Level Forests and Land Cover Analysis of Nepal using Google Earth Images. Kathmandu, Nepal: Ministry of Forests and Environment, Forest Research and Training Centre.Google Scholar
Myneni, R. B., Dong, J., Tucker, C. J., et al. (2001). A large carbon sink in the woody biomass of Northern forests. Proceedings of the National Academy of Sciences (USA) 98(26): 1478414789.Google Scholar
NAPA (2010). National Adaptation Program in Action (NAPA) to Climate Change. Kathmandu, Nepal: Ministry of Environment (MoE), Government of Nepal (GoN).Google Scholar
NRRC (2013). Nepal Risk Reduction Consortium; Flagship Programmes. National Level Conference on Flagship Programmes, Kathmandu, Nepal.Google Scholar
Panthi, S., Brauning, A., Zhou, Z. K., & Fan, Z. X. (2017). Tree rings reveal recent intensified spring drought in the central Himalaya, Nepal. Global and Planetary Change 157(17): 2634.Google Scholar
Paudel, B., Zhang, Y., Li, S., et al. (2016). Review of studies on land use and land cover change in Nepal. Journal of Mountain Science 13(4): 643660.Google Scholar
Paudel, B., Zhang, Y., Li, S., & Liu, L. (2018). Spatiotemporal changes in agricultural land cover in Nepal over the last 100 years. Journal of Geographical Science 28(10): 15191537.Google Scholar
Paudel, B., Zhang, Y., Raju, R., Li, L., & Wu, X. (2019). Farmer’s understanding of climate change in Nepal Himalayas: Important determinants and implications for developing adaptation strategies. Climate Change 158(3–4): 485502.CrossRefGoogle Scholar
Pettorelli, N., Vik, J. O., Mysterud, A., et al. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution 20(9): 503510.Google Scholar
Piao, S. L., Fang, J. Y., Zhou, L. M., et al. (2003). Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research-Atmospheres 108(D14): 4401.Google Scholar
Piao, S. L., Fang, J. Y., Zhu, B., & Tan, K. (2005). Forest biomass carbon stocks in China over the past 2 decades: Estimation based on integrated inventory and satellite data. Journal of Geophysical Research–Biogeosciences 110: G01006.Google Scholar
Piao, S. L., Wang, X. H., Ciais, P., et al. (2011). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology 17(10): 32283239.Google Scholar
Rimal, B. (2013). Urbanization and the decline of agricultural land in Pokhara sub-metropolitan City, Nepal. Journal of Agricultural Science 5(1): 5465.Google Scholar
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63(324): 13791389.Google Scholar
Sharma, K. P. (2009) Maximum temperature trends in Nepal. An analysis based on temperature records from Nepal for the period 1975–2007. Kathmandu, Nepal: Department of Hydrology and Meteorology (DHM), Babarmahal.Google Scholar
Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate 12(9): 27752786.2.0.CO;2>CrossRefGoogle Scholar
Shrestha, K. B., Chhetri, P. K., & Bista, R. (2017). Growth responses of Abies spectabilis to climate variations along an elevational gradient in Langtang National Park in the central Himalaya, Nepal. Journal of Forest Research 22(5): 274281.Google Scholar
Shrestha, U. B., Shrestha, A. M., Aryal, S., et al. (2019). Climate change in Nepal: A comprehensive analysis of instrumental data and people’s perceptions. Climate Change 154(3): 315334.CrossRefGoogle Scholar
Sigdel, M., & Ikeda, M. (2012). Seasonal contrast in precipitation mechanisms over Nepal deduced from relationship with the large-scale climate patterns. Nepal Journal of Science and Technology 13(1): 115123.Google Scholar
Sigdel, S. R., Wang, Y., Camarero, J. J., et al. (2018). Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology 24(11): 55495559.Google Scholar
Sigdyal, K. P. (1999) Save ecological balance: Environment problems and their solution in Nepal, insight in to diverse facets of topography, flora and ecology. Nepal Nature Paradise 1(1): 221235.Google Scholar
Thapa, R. B., & Murayama, Y. (2012). Scenario based urban growth allocation in Kathmandu Valley, Nepal. Landscape and Urban Planning 105(1–2): 140148.CrossRefGoogle Scholar
Thapa, U. K., St George, S., Kharal, D. K., & Gaire, N. P. (2017). Tree growth across the Nepal Himalaya during the last four centuries. Progress in Physical Geography 41(4): 478495.Google Scholar
Tiwari, A., Fan, Z. X., Jump, A. S., Li, S. F., & Zhou, Z. K. (2017a). Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia 41: 3443.Google Scholar
Tiwari, A., Fan, Z. X., Jump, A. S., & Zhou, Z. K. (2017b). Warming induced growth decline of Himalayan birch at its lower range edge in a semi-arid region of Trans-Himalaya, central Nepal. Plant Ecology 218: 621633.Google Scholar
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8(2): 127150.Google Scholar
Tucker, C. J., Pinzon, J. E., Brown, M. E., et al. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing 26(20): 44854498.CrossRefGoogle Scholar
Uddin, K., Matin, M. A., & Maharjan, S. (2018). Assessment of land cover change and its impact on changes in soil erosion risk in Nepal. Sustainability 10(12): 4715.Google Scholar
Uddin, K., Shrestha, H. L., Murthy, M. S. R., et al. (2015). Development of 2010 national land cover database for the Nepal. Journal of Environmental Management 148: 8290.Google Scholar
Venter, O., Sanderson, E. W., Magrach, A., et al. (2016). Global terrestrial Human Footprint maps for 1993 and 2009. Scientific Data 3: 160067.CrossRefGoogle ScholarPubMed
Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & Tucker, C. J. (2015). Use of the Normalised Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales; Current Status, Future Trends and Practical Considerations. Springer Briefs in Environmental Science. Sweden: Springer.Google Scholar
Yuan, X. L., Li, L. H., Chen, X., & Shi, H. (2015). Effects of precipitation intensity and temperature on NDVI-based grass change over Northern China during the period from 1982 to 2011. Remote Sensing 7(8): 1016410183.Google Scholar
Zhao, X., Tan, K., Zhao, S., & Fang, J. (2011). Changing climate affects vegetation growth in the arid region of the northwestern China. Journal of Arid Environments 75(10): 946952.Google Scholar
Zhou, L. M., Tucker, C. J., Kaufmann, R. K., et al. (2001). Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research-Atmospheres 106(D17): 2006920083.CrossRefGoogle Scholar

References

Bloomfield, J. P., Jackson, C. R., & Stuart, M. E. (2013). Changes in groundwater levels, temperature, and quality in the UK over the 20th century: An assessment of evidence of impacts from climate change. Living With Environmental Change Report, UK, 14 pp., Available from http://nora.nerc.ac.uk/503271/ (Last accessed 19 September 2013).Google Scholar
Chen, D. F., Wang, M. C., & Xia, B. (2005). Formation condition and distribution prediction of gas hydrate in Qinghai–Tibet Plateau permafrost. Chinese Journal of Geophysics 48(1): 166172.Google Scholar
Cheng, G. D. (2005). A roadbed cooling approach for the construction of Qinghai-Tibet Railway. Cold Region Science and Technology 42(2): 169176.Google Scholar
Cheng, G. D., & Wu, T. (2007). Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research 112(F02S03): 110.Google Scholar
Cheng, G., & Zhao, L. (2000), The problems associated with permafrost in the development of the Qinghai-Xizang Plateau (in Chinese with English abstract). Quaternary Sciences, 20(6): 521531.Google Scholar
Cheng, W., Zhao, S., Zhou, C., & Chen, X. (2012). Simulation of the decadal permafrost distribution on the Qinghai-Tibet plateau (China) over the past 50 years. Permafrost and Periglacial Processes 23(4): 292300.Google Scholar
Daout, S., Doin, M. P., Peltzer, G., Socquet, A., & Lasserre, C. (2017). Large-scale InSAR monitoring of permafrost freeze-thaw cycles on the Tibetan plateau. Geophysical Research Letters 44(2): 901909.Google Scholar
Dong, Y. (2001). Driving mechanism and status of sandy desertification in the northern Tibet Plateau. Journal of Mountain Science, 19(5): 385391 (in Chinese, English abstract).Google Scholar
Fang, H. B., Zhao, L., Wu, X. D., et al. (2015). Soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau, China. Journal of Mountain Science 12(6): 14481459.CrossRefGoogle Scholar
Gao, B., Yang, D., Qin, Y., et al. (2018). Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau. The Cryosphere 12(2): 657673.Google Scholar
Guo, B., Luo, W., Wang, D., & Jiang, L. (2017). Spatial and temporal change patterns of freeze–thaw erosion in the three-river source region under the stress of climate warming. Journal of Mountain Science, 14(6): 8699.Google Scholar
Guo, D., & Wang, H. (2014). Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan plateau from 1981 to 2010. Chinese Science Bulletin 59(20): 24392448.Google Scholar
Guo, D., Wang, H., & Li, D. (2012). A projection of permafrost degradation on the Tibetan plateau during the 21st century. Journal of Geophysical Research: Atmospheres 117(D5): 115.Google Scholar
Han, Y., Xi, X., Song, L., Ye, Y., & Li, Y. (2004), Spatio-temporal sand-dust distribution in Qinghai-Tibet Plateau and its climatic significance. Journal of Desert Research 24(5): 7276 (in Chinese with English abstract).Google Scholar
Houghton, J., Filho, L., Callander, B., et al. (eds.) (1996). Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge University Press.Google Scholar
Immerzeel, W. W., Droogers, P., De Jong, S. M., & Bierkens, M. F. P. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment 113(1): 4049.Google Scholar
Immerzeel, W. W., van Beek, L. P. H., Konz, M., Shrestha, A. B., & Bierkens, M. F. P. (2012). Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change 110: 721736.Google Scholar
Jamshidi, R. J., & Lake, C. B. (2015). Hydraulic and strength properties of unexposed and freeze–thaw exposed cement-stabilized soils. Canadian Geotechnical Journal 52(3): 283294.Google Scholar
Jin, H., He, R., Cheng, G., et al. (2009). Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters 4(4): 045206.Google Scholar
Jin, R., Zhang, T. J., Li, X., Yang, X. G., & Ran, Y. H. (2015). Mapping surface soil freeze–thaw cycles in China based on SMMR and SSM/I brightness temperatures from 1978–2008. Arctic, Antarctic, and Alpine Research 47(2): 213229.Google Scholar
Kurylyk, B. L., MacQuarrie, K. T. B., & Voss, C. I. (2014). Climate change impacts on the temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resources Research 50(4): 32533274.CrossRefGoogle Scholar
Kurylyk, B. L., & Watanabe, K. (2013). The mathematical representation of freezing and thawing processes in variably saturated, non-deformable soils. Advances in Water Resources 60: 160177.Google Scholar
Li, R., Zhao, L., Ding, Y., et al. (2012). Temporal and spatial variations of the active layer alone the Qinghai–Tibetan Highway in a permafrost region. Chinese Science Bulletin 57(35): 46094619.Google Scholar
Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20(14): 17291742.3.0.CO;2-Y>CrossRefGoogle Scholar
Liu, X. D., Cheng, Z. G., & Yan, L. B. (2009). Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change 68(3): 164174.Google Scholar
Lu, J., Zhang, M., Zhang, X., Pei, W., & Bi, J. (2018). Experimental study on the freezing–thawing deformation of a silty clay. Cold Regions Science and Technology 151: 1927.Google Scholar
Luo, D. L., Jin, H. J., Lin, L., et al. (2013). Distributive features and controlling factors of permafrost and the active layer thickness in the Bayan Har Mountains along the Qinghai-Kangding highway on Northeastern Qinghai-Tibet plateau. Scientia Geographica Sinica 33(5): 635640 (In Chinese, English abstract).Google Scholar
Luo, S., Fang, X., Lu, S., Ma, D., & Chen, H. (2016). Frozen ground temperature trends associated with climate change in the Tibetan plateau three river source region from 1980 to 2014. Climate Research 67(3): 241255.Google Scholar
Ma, X. B., & Hu, Z. Y. (2005). Precipitation variation characteristics and abrupt changeover Qinghai–Xizang Plateau in recent 40 year. Journal of Desert Research 25(1): 137139 (in Chinese, English abstract).Google Scholar
Meehl, G. A., Washington, W. M., Arblaster, J. M., Bettge, T. W., & Strand, W. G. (2000). Anthropogenic forcing and climate system response in simulations of 20th and 21st century climate. Journal of Climate 13(21): 37283744.Google Scholar
Menberg, K., Blum, P., Schaffitel, A., & Bayer, P. (2013). Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Environment Science and Technology 47(17): 97479755.Google Scholar
Mitchell, J. F. B., Johns, T. J., Gregory, J. M., & Tett, S. F. B. (1995). Climate response to increasing level of greenhouse gases and sulphate aerosols. Nature 376: 501504.Google Scholar
Nan, Z., Gao, Z., Li, S., & Wu, T. (2003). Permafrost changes in the northern limit of permafrost on the Qinghai-Tibet Plateau in the last 30 years, Acta Geographica Sinica 58(6): 817823 (In Chinese, English abstract).Google Scholar
Nearing, M. A., Pruski, F. F., & O’Neal, M. R. (2004) Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation 59(1): 4350.Google Scholar
Özgan, E., Serin, S., Ertürk, S., & Vural, I. (2015). Effects of freezing and thawing cycles on the engineering properties of soils. Soil Mechanics and Foundation Engineering 52(2): 9599.CrossRefGoogle Scholar
Oztas, T., & Fayetorbay, F. (2003). Effect of freezing and thawing processes on soil aggregate stability. Catena 52(1): 18.Google Scholar
Pan, B., & Li, J. (1996). Qinghai–Tibetan Plateau: A driver and amplifier of the global climatic change. Journal of Lanzhou University (Natural Sciences) 32: 108115 (in Chinese, English abstract).Google Scholar
Pan, W., Yu, S., Jia, H., & Liu, D. (2002). Variation of the ground temperature field in permafrost regions along the Qinghai–Tibetan railway. Journal of Glaciology and Geocryology 24(6): 774779 (in Chinese, English abstract).Google Scholar
Peng, J., Liu, Z., Liu, Y., Wu, J., & Han, Y. (2012). Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecological Indicators 14(1), 2839.Google Scholar
Qiu, J. (2014). Double threat for Tibet: Climate change and human development are jeopardizing the platear's fragile environment. Nature 512: 240241.CrossRefGoogle Scholar
Ran, Y., Li, X., & Cheng, G. (2018). Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 12(2): 595608.CrossRefGoogle Scholar
Royden, L. H., Burchfiel, B. C., & van der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science 321(5892): 10541058.Google Scholar
Schuur, E. A. G., McGuire, A. D., Schädel, C., et al. (2015). Climate change and the permafrost carbon feedback. Nature 520: 171179.Google Scholar
Shi, Y. (1992). The discussion of the grassland ecological environment maladjustment and control strategy. Qinghai Environment 1(2): 713 (in Chinese, English abstract).Google Scholar
Song, L. C., Han, Y. X., Zhang, Q., Xi, X. X., & Ye, Y. H. (2004). Monthly temporal–spatial distribution of sandstorms in China as well as the origin of Kosa in Japan and Korea. Chinese Journal of Atmospheric Sciences 28(6): 820828 (in Chinese, English abstract).Google Scholar
Song, Y., Jin, L., & Wang, H. (2018). Vegetation changes along the Qinghai–Tibet Plateau engineering corridor since 2000 induced by climate change and human activities. Remote Sensing 10(1): 95115.Google Scholar
Subin, Z. M., Koven, C. D., Riley, W. J., et al. (2013). Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. Journal of Climate 26(10): 31393158.CrossRefGoogle Scholar
Sun, Z. Z., Wu, G. L., Yun, H. B., Liu, G. J., & Rui, P. F. (2014). Permafrost degradation under an embankment of the Qinghai–Tibet Railway in the southern limit of permafrost. Journal of Glaciology and Geocryology 36(4): 767771 (in Chinese, English abstract).Google Scholar
Sun, Z. Z., Zhao, L., Hu, G., et al. (2020). Modeling permafrost changes on the Qinghai–Tibetan plateau from 1966 to 2100: A case study from two boreholes along the Qinghai–Tibet engineering corridor. Permafrost and Periglacial Processes 31(1): 156170.Google Scholar
Teng, H., Liang, Z., Chen, S., et al. (2018). Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment, 635: 673686.Google Scholar
Thorsteinsson, T., Johannesson, T., & Snorrason, A. (2013). Glaciers and ice caps: Vulnerable water resources in a warming climate. Current Opinion in Environmental Sustainability 5(6): 590598.Google Scholar
Tong, C. J., & Wu, Q. B. (1996). The effect of climate warming on the Qinghai–Tibet Highway. Cold Region Science and Technology 24(1): 101106.Google Scholar
Walvoord, M. A., & Kurylyk, B. L. (2016). Hydrologic impacts of thawing permafrost – A review. Vadose Zone Journal 15(6): 120.Google Scholar
Wang, G. X., Li, Y. S., Wu, Q. B., & Wang, Y. B. (2006). Impacts of permafrost changes on alpine ecosystem in Qinghai–Tibet Plateau. Science in China (series D) 49: 11561169.Google Scholar
Wang, G. X., Liu, G., Li, C., & Yang, Y.. (2012). The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region. Agricultural & Forest Meteorology 162–163, 4457.Google Scholar
Wang, L., Zhang, F., Fu, S., et al. (2020). Assessment of soil erosion risk and its response to climate change in the mid-Yarlung Tsangpo river region. Environmental Science and Pollution Research 27(1): 607621.CrossRefGoogle ScholarPubMed
Widhalm, B., Bartsch, A., Leibman, M., & Khomutov, A. (2017). Active-layer thickness estimation from x-band SAR backscatter intensity. Cryosphere 11(1): 483496.CrossRefGoogle Scholar
Wu, Q., & Zhang, T. (2008). Recent permafrost warming on the Qinghai-Tibetan Plateau. Journal of Geophysics Research 113(D13): D13108.Google Scholar
Wu, Q., Zhang, T., & Liu, Y. (2010). Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global and Planetary Change 72(1–2): 3238.Google Scholar
Wu, Q., Zhang, T., & Liu, Y. (2012). Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) railway from 2006 to 2010. The Cryosphere 6(3): 607612.CrossRefGoogle Scholar
Wu, T., Zhao, L., Li, R., et al. (2013). Recent ground surface warming and its effects on permafrost on the Central Qinghai-Tibet Plateau. International Journal of Climatology 33(4): 920930.Google Scholar
Xie, H., Nkonya, E., & Wielgosz, B. (2011). Technical Note: Assessing the risks of soil erosion and small reservoir siltation in a tropical river basin in Mali using the SWAT model under limited data condition. Applied Engineering in Agriculture 27(6): 895904.Google Scholar
Xue, X., Guo, J., Han, B. S., Sun, Q. W., & Liu, L. C. (2009). The effect of climate warming and permafrost thaw on desertification in the Qing–Tibetan Plateau. Geomorphology 108(3–4): 182190.Google Scholar
Yang, M. X., Nelson, F., Shiklomanov, N., Guo, D., & Wan, G. (2010). Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth Science Review 103(1–2): 3144.Google Scholar
Yang, M. X., Wang, S. L., Yao, T. D., et al. (2004). Desertification and its relationship with permafrost degradation in Qinghai–Xizang (Tibet) Plateau. Cold Region Science and Technology 39(1): 4753.Google Scholar
Yang, M. X., Yao, T. D., Gou, X. H., & Wang, H. J. (2006). Effect of heavy snowfall on ground temperature, Northern Tibetan Plateau. Annals of Glaciology 43(1): 317322.Google Scholar
Yang, M. X., Yao, T. D., Gou, X. H., et al. (2007). The diurnal thaw/freeze cycles of the surface ground on the Tibetan Plateau. Chinese Science Bulletin 52(1): 136139.Google Scholar
Yin, G. A., Niu, F. J., Li, Z. J., Luo, J., & Liu, M. H. (2017). Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China. Science of the Total Environment 581–582: 472485.Google Scholar
Zhang, M. L., Wen, Z., & Xue, K. (2016). Temperature and deformation analysis on slope subgrade with rich moisture of Qinghai–Tibet railway in permafrost regions. Chinese Journal Rock Mechanic Engineering 35(8): 16771687.Google Scholar
Zhang, S. J., Lai, Y. M., Sun, Z. Z., & Gao, Z. H. (2007). Volumetric strain and strength behavior of frozen soils under confinement. Cold Regions Science and Technology 47(3): 263270.Google Scholar
Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., & Brown, J. (2008). Statistics and characteristics of permafrost and ground-ice distribution in the northern hemisphere. Polar Geography 31(1–2): 4768.Google Scholar
Zhang, Y., Wang, G., & Wang, Y. (2010). Response of biomass spatial pattern of alpine vegetation to climate change in permafrost region of the Qinghai-Tibet plateau, China. Journal of Mountain Science 7(4): 215.Google Scholar
Zhao, J., Yu, Y., & Sun, G. (2005). Influence of frozen soil on sandstorms. Journal of Desert Research 25(5): 658662 (in Chinese, English abstract).Google Scholar
Zhao, L., Ping, C. L., Yang, D. Q., et al. (2004). Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China, Global Planet. Change 43(1/2): 1931.Google Scholar
Zhao, S., Zhang, S., Cheng, W., & Zhou, C. (2019). Model simulation and prediction of decadal mountain permafrost distribution based on remote sensing data in the Qilian mountains from the 1990s to the 2040s. Remote Sensing 11(2): 183.Google Scholar
Zhu, X., Wang, W., & Fraedrich, K. (2013). Future climate in the Tibetan Plateau from a statistical regional climate model. Journal of Climate 26(24): 1012510138.Google Scholar

References

AghaKouchak, A. (2014). A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrology and Earth System Sciences 18(7): 24852492.Google Scholar
Amin, M., Zhang, J., & Yang, M. (2015). Effects of climate change on the yield and cropping area of major food crops: A case of Bangladesh. Sustainability 7(1): 898915.Google Scholar
Antwi-Agyei, P., Fraser, E. D. G., Dougill, A. J., Stringer, L. C., & Simelton, E. (2012). Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Applied Geography 32(2): 324334.Google Scholar
Barnabas, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment 31(1): 1138.CrossRefGoogle ScholarPubMed
Beniston, M., Stephenson, D. B., Christensen, O. B., et al. (2007). Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change 81(S1): 7195.Google Scholar
Boyer, J. S. (2004). Grain yields with limited water. Journal of Experimental Botany 55(407): 23852394.Google Scholar
Burke, E. J., Brown, S. J., & Christidis, N. (2006). Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley centre climate model. Journal of Hydrometeorology 7(5): 11131125.Google Scholar
Butler, E. E., & Huybers, P. (2012). Adaptation of US maize to temperature variations. Nature Climate Change 3(1): 6872.Google Scholar
Challinor, A. J., Watson, J., Lobell, D. B., et al. (2014). A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change 4(4): 287291.Google Scholar
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany 103(4): 551560.Google Scholar
Chen, Y., Zhang, Z., & Tao, F. (2018). Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0°C. Earth System Dynamics 9(2): 543562.Google Scholar
Ciais, P., Reichstein, M., Viovy, N., et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058): 529533.Google Scholar
Cohn, A. S., VanWey, L. K., Spera, S. A., & Mustard, J. F. (2016). Cropping frequency and area response to climate variability can exceed yield response. Nature Climate Change 6(6): 601604.Google Scholar
Costa, J. A., & Rodrigues, G. P. (2017). Space-time distribution of rainfall anomaly index (Rai) for the Salgado Basin, Ceará State – Brazil. Ciência e Natura 39(3): 627634.Google Scholar
Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change 2(7): 491496.Google Scholar
Coumou, D., & Robinson, A. (2013). Historic and future increase in the global land area affected by monthly heat extremes. Environmental Research Letters 8(3): 16.Google Scholar
Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change 2(1): 4565.Google Scholar
Dai, A. (2012). Increasing drought under global warming in observations and models. Nature Climate Change 3(1): 5258.Google Scholar
Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters 9(3): 113.Google Scholar
Deryng, D., Sacks, W. J., Barford, C. C., & Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25(2): GB2006.Google Scholar
Dickinson, R. E., Errico, R. M., Giorgi, F., & Bates, G. T. (1989). A regional climate model for the Western United States. Climatic Change 15(3): 383422.Google Scholar
van Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., et al. (2013). The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resources Research 49(2): 10401057.Google Scholar
Donat, M. G., Alexander, L. V., Yang, H., et al. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres 118(5): 20982118.Google Scholar
Easterling, D. R., Meehl, G. A., Parmesan, C., et al. (2000). Climate extremes: Observations, modeling, and impacts. Science 289(5487): 20682074.Google Scholar
Eyring, V., Bony, S., Meehl, G. A., et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9(5): 19371958.Google Scholar
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences 30(6): 491507.Google Scholar
Ferris, R., Ellis, R. H., Wheeler, T. R., & Hadley, P. (1998). Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Annals of Botany 82(5): 631639.Google Scholar
Fess, T. L., Kotcon, J. B., & Benedito, V. A. (2011). Crop breeding for low input agriculture: A sustainable response to feed a growing world population. Sustainability 3(10): 17421772.Google Scholar
Fischer, R. A. (1985). Number of kernels in wheat crops and the influence of solar-radiation and temperature. Journal of Agricultural Science 105: 447461.Google Scholar
Flato, G., Marotzke, J., Abiodun, B., et al. (2014). Evaluation of climate models. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 741866). Cambridge: Cambridge University Press.Google Scholar
Foley, J. A., Ramankutty, N., Brauman, K. A., et al. (2011). Solutions for a cultivated planet. Nature 478(7369): 337342.Google Scholar
Forster, P. M. D., & Taylor, K. E. (2006). Climate forcings and climate sensitivities diagnosed from coupled climate model integrations. Journal of Climate 19(23): 61816194.Google Scholar
Founda, D., & Giannakopoulos, C. (2009). The exceptionally hot summer of 2007 in Athens, Greece – A typical summer in the future climate? Global and Planetary Change 67(3–4): 227236.Google Scholar
Fukuda, S., Spreer, W., Yasunaga, E., et al. (2013). Random forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agricultural Water Management 116: 142150.Google Scholar
Gebrehiwot, T., van der Veen, A., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation 13(3): 309321.Google Scholar
Gleick, P. H. (2014). Water, drought, climate change, and conflict in Syria. Weather, Climate, and Society 6(3): 331340.Google Scholar
Godfray, H. C. J., Beddington, J. R., Crute, I. R., et al. (2010). Food security: The challenge of feeding 9 billion people. Science 327(5967): 812818.Google Scholar
Gooding, M. J., Ellis, R. H., Shewry, P. R., & Schofield, J. D. (2003). Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science 37(3): 295309.Google Scholar
Gordon, C., Cooper, C., Senior, C. A., et al. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16(2–3): 147168.Google Scholar
Griffin, D., & Anchukaitis, K. J. (2014). How unusual is the 2012–2014 California drought? Geophysical Research Letters 41(24): 90179023.Google Scholar
Guttman, N. B. (1998). Comparing the Palmer Drought Index and the standardized precipitation index. Journal of the American Water Resources Association 34(1): 113121.Google Scholar
Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations – The CRU TS3.10 dataset. International Journal of Climatology 34(3): 623642.Google Scholar
Hayhoe, K., Cayan, D., Field, C. B., et al. (2004). Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences (USA) 101(34): 1242212427.Google Scholar
Heddinghaus, T. R., & Sabol, P. (1991). A review of the Palmer Drought Severity Index and where do we go from here. Proceedings of the 7th Conference on Applied Climatology. American Meteorological Society Boston, MA, pp. 242246.Google Scholar
Heim, R. R. Jr. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society 83(8): 11491166.Google Scholar
Hoffman, A. L., Kemanian, A. R., & Forest, C. E. (2018). Analysis of climate signals in the crop yield record of sub-Saharan Africa. Global Change Biology 24(1): 143157.Google Scholar
Huang, S., Chang, J., Huang, Q., & Chen, Y. (2014). Spatio-temporal changes and frequency analysis of drought in the Wei River Basin, China. Water Resources Management 28(10): 30953110.Google Scholar
Huang, S., Chang, J., Leng, G., & Huang, Q. (2015). Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River basin, China. Journal of Hydrology 527: 608618.Google Scholar
Huang, S., Huang, Q., Leng, G., & Liu, S. (2016). A nonparametric multivariate standardized drought index for characterizing socioeconomic drought: A case study in the Heihe River Basin. Journal of Hydrology 542: 875883.Google Scholar
Huang, S., Leng, G., Huang, Q., et al. (2017). The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations. Science Reports 7(1): 5891.Google Scholar
Huber, D. G., & Gulledge, J. (2011). Extreme Weather and Climate Change: Understanding the Link, Managing the Risk. Arlington: Pew Center on Global Climate Change.Google Scholar
Hwalla, N., El Labban, S., & Bahn, R. A. (2016). Nutrition security is an integral component of food security. Frontiers in Life Science 9(3): 167172.Google Scholar
Iizumi, T., & Ramankutty, N. (2015). How do weather and climate influence cropping area and intensity? Global Food Security 4: 4650.CrossRefGoogle Scholar
Ilani, S., Martin, J., Teitelbaum, E., et al. (2004). The microscopic nature of localization in the quantum Hall effect. Nature 427(6972): 328332.Google Scholar
Jeong, J. H., Resop, J. P., Mueller, N. D., et al. (2016). Random forests for global and regional crop yield predictions. PLoS ONE 11(6): e0156571.Google Scholar
Karlen, D. L., Kovar, J. L., Cambardella, C. A., & Colvin, T. S. (2013). Thirty-year tillage effects on crop yield and soil fertility indicators. Soil and Tillage Research 130: 2441.CrossRefGoogle Scholar
Kassie, B. T., Van Ittersum, M. K., Hengsdijk, H., et al. (2014). Climate-induced yield variability and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia. Field Crops Research 160: 4153.Google Scholar
Kiehl, J. T. (2007). Twentieth century climate model response and climate sensitivity. Geophysical Research Letters 34(22): 14.Google Scholar
Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters 7(3): 18.Google Scholar
Knutti, R., & Sedláček, J. (2012). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change 3(4): 369373.Google Scholar
Koide, N., Robertson, A. W., Ines, A. V. M., et al. (2013). Prediction of rice production in the Philippines using seasonal climate forecasts. Journal of Applied Meteorology and Climatology 52(3): 552569.Google Scholar
Kotera, A., Nguyen, K. D., Sakamoto, T., Iizumi, T., & Yokozawa, M. (2013) A modeling approach for assessing rice cropping cycle affected by flooding, salinity intrusion, and monsoon rains in the Mekong Delta, Vietnam. Paddy and Water Environment 12(3): 343354.Google Scholar
Kucharik, C. J., & Ramankutty, N. (2005). Trends and variability in U.S. corn yields over the twentieth century. Earth Interactions 9(1): 129.Google Scholar
Leng, G. (2017). Recent changes in county-level corn yield variability in the United States from observations and crop models. Science of the Total Environment 607–608: 683690.Google Scholar
Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment 654: 811821.Google Scholar
Leng, G., & Huang, M. (2017). Crop yield response to climate change varies with crop spatial distribution pattern. Science Reports 7(1): 1463.Google Scholar
Leng, G., Peng, J., & Huang, S. (2019). Recent changes in county-level maize production in the United States: Spatial-temporal patterns, climatic drivers and the implications for crop modelling. Science of the Total Environment 686: 819827.Google Scholar
Leng, G., Tang, Q., & Rayburg, S. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change 126: 2334.Google Scholar
Leng, G., Zhang, X., Huang, M., et al. (2016). Simulating county-level crop yields in the conterminous United States using the Community Land Model: The effects of optimizing irrigation and fertilization. Journal of Advances in Modeling Earth Systems 8(4): 19121931.Google Scholar
Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature 529(7584): 84.Google Scholar
Li, Y., Huang, H., Ju, H., et al. (2015). Assessing vulnerability and adaptive capacity to potential drought for winter-wheat under the RCP 8.5 scenario in the Huang-Huai-Hai Plain. Agriculture, Ecosystems & Environment 209: 125131.Google Scholar
Li, Y., Ye, W., Wang, M., & Yan, X. (2009). Climate change and drought: A risk assessment of crop-yield impacts. Climate Research 39: 3146.Google Scholar
Lobell, D. B., Burke, M. B., Tebaldi, C., et al. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863): 607610.Google Scholar
Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters 2(1): 17.Google Scholar
Lobell, D. B., Hammer, G. L., McLean, G., et al. (2013). The critical role of extreme heat for maize production in the United States. Nature Climate Change 3(5): 497501.Google Scholar
Lobell, D. B., Roberts, M. J., Schlenker, W., et al. (2014). Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344(6183): 516519.Google Scholar
Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science 333(6042): 616620.Google Scholar
Lobell, D. B., Sibley, A., & Ivan Ortiz-Monasterio, J. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change 2(3): 186189.Google Scholar
Luber, G., & McGeehin, M. (2008). Climate change and extreme heat events. American Journal of Preventive Medicine 35(5): 429435.Google Scholar
Lyon, B., & DeWitt, D. G. (2012). A recent and abrupt decline in the East African long rains. Geophysical Research Letters 39(2): 2702.Google Scholar
Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics 444(2): 139158.Google Scholar
Maltais-Landry, G., & Lobell, D. B. (2012). Evaluating the contribution of weather to maize and wheat yield trends in 12 U.S. counties. Agronomy Journal 104(2): 301311.Google Scholar
McGrath, J. M., & Lobell, D. B. (2011). An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. Global Change Biology 17(8): 26892696.Google Scholar
Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686): 994997.Google Scholar
Mishra, A. K., & Singh, V. P. (2010) A review of drought concepts. Journal of Hydrology 391(1–2): 202216.Google Scholar
Mkhabela, M., Bullock, P., Gervais, M., Finlay, G., & Sapirstein, H. (2010). Assessing indicators of agricultural drought impacts on spring wheat yield and quality on the Canadian prairies. Agricultural and Forest Meteorology 150(3): 399410.Google Scholar
Mohammed, A. R., & Tarpley, L. (2009). High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology 149(6–7): 9991008.Google Scholar
Mondiale, B. (2008) World Development Report 2008. Agriculture for Development. Washington, DC: World Bank.Google Scholar
Morid, S., Smakhtin, V., & Moghaddasi, M. (2006). Comparison of seven meteorological indices for drought monitoring in Iran. International Journal of Climatology 26(7): 971985.Google Scholar
Moriondo, M., Giannakopoulos, C., & Bindi, M. (2010). Climate change impact assessment: The role of climate extremes in crop yield simulation. Climatic Change 104(3–4): 679701.Google Scholar
Moss, R. H., Edmonds, J. A., Hibbard, K. A., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature 463(7282): 747756.Google Scholar
New, M., Lister, D., Hulme, M., & Makin, I. (2002). A high-resolution data set of surface climate over global land areas. Climate Research 21(1): 125.Google Scholar
Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society of London, B: Biological Sciences 360(1463): 20212035.Google Scholar
Pretty, J. N., Morison, J. I. L., & Hine, R. E. (2003). Reducing food poverty by increasing agricultural sustainability in developing countries. Agriculture, Ecosystems & Environment 95(1): 217234.Google Scholar
Pretty, J. N., Noble, A. D., Bossio, D., et al. (2006). Resource-conserving agriculture increases yields in developing countries. Environmental Science & Technology 40(4): 11141119.Google Scholar
Quiring, S. M., & Papakryiakou, T. N. (2003). An evaluation of agricultural drought indices for the Canadian prairies. Agricultural and Forest Meteorology 118(1–2): 4962.Google Scholar
Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles 22(1): GB1003.Google Scholar
Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications 6(5989): 19.Google Scholar
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6): e66428.Google Scholar
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communications 3(1293): 17.Google Scholar
Renard, B., & Lang, M. (2007). Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Advances in Water Resources 30(4): 897912.Google Scholar
Roberts, L. (2011). 9 Billion? Science 333(6042): 540543.Google Scholar
Robine, J. M., Cheung, S. L., Le Roy, S., et al. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies 331(2): 171178.Google Scholar
Rogelj, J., Luderer, G., Pietzcker, R. C., et al. Energy system transformations for limiting end-of-century warming to below 1.5°C. Nature Climate Change 2015; 5(6): 519527.Google Scholar
Rosenzweig, C., Iglesius, A., Yang, X. -B., Epstein, P. R., & Chivian, E. (2001). Climate change and extreme weather events – Implications for food production, plant diseases, and pests. Global Change Human Health 2(2): 90104.Google Scholar
Ruffo, M. L., Gentry, L. F., Henninger, A. S., Seebauer, J. R., & Below, F. E. (2015). Evaluating management factor contributions to reduce corn yield gaps. Agronomy Journal 107(2): 495505.Google Scholar
Sadegh, M., Ragno, E., & AghaKouchak, A. (2017). Multivariate copula analysis toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Research 53(6): 51665183.Google Scholar
Saini, H. S., & Aspinall, D. (1982). Abnormal sporogenesis in wheat (Triticum-aestivum L) induced by short periods of high-temperature. Annals of Botany 49(6): 835846.Google Scholar
Saini, H. S., & Westgate, M. E. (1999). Reproductive development in grain crops during drought. In Spartes, D. L. (ed.), Advances in Agronomy (vol. 68, pp. 5996). San Diego, CA: Academic Press.Google Scholar
Seifert, C. A., & Lobell, D. B. (2015). Response of double cropping suitability to climate change in the United States. Environmental Research Letters 10(2): 16.Google Scholar
Seneviratne, S. I. (2012). Climate science: Historical drought trends revisited. Nature 491(7424): 338339.Google Scholar
Sheffield, J., & Wood, E. F. (2007). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31(1): 79105.Google Scholar
Shi, W., & Tao, F. (2014). Spatio-temporal distributions of climate disasters and the response of wheat yields in China from 1983 to 2008. Natural Hazards 74(2): 569583.Google Scholar
Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters 35(2): 17.Google Scholar
Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H., & Graß, R. (2014). Impact of heat stress on crop yield – On the importance of considering canopy temperature. Environmental Research Letters 9(4): 18.Google Scholar
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research: Atmospheres 118(4): 17161733.Google Scholar
Simelton, E. (2011). Food self-sufficiency and natural hazards in China. Food Security 3(1): 3552.Google Scholar
Smith, P. (2013) Delivering food security without increasing pressure on land. Global Food Security 2(1): 1823.Google Scholar
Song, L., Guanter, L., Guan, K., et al. (2018). Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Global Change Biology 24(9): 40234037.Google Scholar
Stern, N. (2008). The economics of climate change. American Economic Review 98(2): 137.Google Scholar
Sun, C., & Yang, S. (2012). Persistent severe drought in southern China during winter–spring 2011: Large-scale circulation patterns and possible impacting factors. Journal of Geophysical Research: Atmospheres 117(D10).Google Scholar
Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93(4): 485498.Google Scholar
Tebaldi, C., & Lobell, D. B. (2008). Towards probabilistic projections of climate change impacts on global crop yields. Geophysical Research Letters 35(8): 18.Google Scholar
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences (USA) 108(50): 2026020264.Google Scholar
Troy, T. J., Kipgen, C., & Pal, I. (2015). The impact of climate extremes and irrigation on US crop yields. Environmental Research Letters 10(5): 110.Google Scholar
Varma, V., & Bebber, D. P. (2019). Climate change impacts on banana yields around the world. Nature Climate Change 9(10): 752757.Google Scholar
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate 23(7): 16961718.Google Scholar
Vogel, E., Donat, M. G., Alexander, L. V., et al. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters 14(5): 112.Google Scholar
Wiebe, K. (2009). How to feed the world in 2050. Insights from an Expert Meeting at FAO, pp. 2426.Google Scholar
Yu, Q., Shi, Y., Tang, H., et al. (2017a). eFarm: A tool for better observing agricultural land systems. Sensors (Basel) 17(3): 453.Google Scholar
Yu, Q., van Vliet, J., Verburg, P. H., et al. (2018). Harvested area gaps in China between 1981 and 2010: Effects of climatic and land management factors. Environmental Research Letters 13(4): 110.Google Scholar
Yukimoto, S., Adachi, Y., Hosaka, M., et al. (2012). A new global climate model of the meteorological research Institute: MRI-CGCM3 – Model description and basic performance. Journal of the Meteorological Society of Japan 90A: 2364.Google Scholar
Zampieri, M., Ceglar, A., Dentener, F., & Toreti, A. (2017). Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters 12(6): 111.Google Scholar
Zhang, J. (2004). Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China. Agriculture, Ecosystems & Environment 102(2): 133153.Google Scholar
Zhang, Q., & Zhang, J. (2016). Drought hazard assessment in typical corn cultivated areas of China at present and potential climate change. Natural Hazards 81(2): 13231331.Google Scholar
Zhang, Q., Zhang, J., & Wang, C. (2016). Risk assessment of drought disaster in typical area of corn cultivation in China. Theoretical and Applied Climatology 128(3–4): 533540.Google Scholar
Zhang, X., Cai, J., Wollenweber, B., et al. (2013). Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Journal of Cereal Science 57(1): 134140.Google Scholar
Zhao, C., Liu, B., Piao, S., et al. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences (USA) 114(35): 93269331.Google Scholar
Zhao, H., Dai, T., Jing, Q., Jiang, D., & Cao, W. (2007). Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regulation 51(2): 149158.Google Scholar
Zipper, S. C., Qiu, J., & Kucharik, C. J. (2016). Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. Environmental Research Letters 11(9): 111.Google Scholar

References

Bruins, H. J., Evenari, M., & Nessler, U. (1986). Rainwater-harvesting agriculture for food production in arid zones: The challenge of the African famine. Applied Geography 6(1): 1332.Google Scholar
Cai, X. (2008). Water stress, water transfer and social equity in Northern China – Implications for policy reforms. Journal of Environmental Management 87(1): 1425.Google Scholar
Cao, X., Wu, P., Wang, Y., & Zhao, X. (2014). Water footprint of grain product in irrigated farmland of China. Water Resources Management 28, 22132227.Google Scholar
Dalin, C., Qiu, H., Hanasaki, N., Mauzerall, D. L., & Rodriguez-Iturbe, I. (2015). Balancing water resource conservation and food security in China. Proceedings of the National Academy of Sciences (USA) 112(15): 45884593.Google Scholar
Döll, P., & Lehner, B. (2002). Validation of a new global 30-min drainage direction map. Journal of Hydrology 258(1–4), 214231.Google Scholar
Döll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research 38(4): 110.Google Scholar
Fader, M., Rost, S., Müller, C., Bondeau, A., & Gerten, D. (2010). Virtual water content of temperate cereals and maize: Present and potential future patterns. Journal of Hydrology 384(3–4), 218231.Google Scholar
Falkenmark, M., & Rockström, J. (2004). Balancing Water for Humans and Nature: The New Approach in Ecohydrology. Oxford: Routledge.Google Scholar
FAO: AQUASTAT, Food and Agriculture Organization of the United Nations. Available from www.fao.org/nr/water/aquastat/main/index.stm (Last accessed 10 March 2016).Google Scholar
Haddeland, I., Clark, D. B., Franssen, W., et al. (2011). Multimodel estimate of the global terrestrial water balance: Setup and first results. Journal of Hydrometeorology 12(5): 869884.Google Scholar
Hanasaki, N., Kanae, S., & Oki, T. (2006). A reservoir operation scheme for global river routing models. Journal of Hydrology 327(1–2): 2241.Google Scholar
Hanasaki, N., Kanae, S., Oki, T., et al. (2008). An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing. Hydrology and Earth System Sciences 12(4): 10071025.Google Scholar
Hoff, H., Falkenmark, M., Gerten, D., Gordon, L., Karlberg, L., & Rockström, J. (2010). Greening the global water system. Journal of Hydrology 384(3–4): 177186.Google Scholar
Liu, J., & Yang, H. (2010). Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water. Journal of Hydrology 384(3–4): 187197.Google Scholar
Mann, H. B. (1945). Nonparametric tests against trend. Mann Source: Econometrica 13(3): 245259.Google Scholar
Molden, D., Oweis, T., Steduto, P., Kijne, J. W., Hanjra, M. A., & Bindraban, P. S. (2007). Pathways for increasing agricultural water productivity. In Molden, D. (ed.), Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture (pp. 278310). London: Earthscan.Google Scholar
Molden, D., & Sakthivadivel, R. (1999). Water accounting to assess use and productivity of water. International Journal of Water Resources Development 15(1–2), 5571.Google Scholar
Nature Agency (2013). Groundwater in China – Part 1: Occurrence and Use. Beijing: Ministry of the Environment.Google Scholar
NBSC (2015). China Statistical Year Book 2015 (in Chinese). National Bureau of Statistics of China. Beijing: China Statistics Press.Google Scholar
Portmann, F. T., Siebert, S., & Döll, P. (2010). MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles 24(1): 124.Google Scholar
Rohwer, J., Gerten, D., & Lucht, W. (2007). Development of functional irrigation types for improved global crop modelling. PIK Report 104: 161.Google Scholar
Rosegrant, M. W., Cai, X., & Cline, S. (2002a). World Water and Food to 2025: Dealing with Scarcity. Washington, DC: International Food Policy Research Institute (IFPRI).Google Scholar
Rosegrant, M. W., Cai, X., Cline, S., & Nakagawa, N. (2002b). The Role of Rainfed Agriculture in the Future of Global Food Production. EPTD discussion papers 90. Washington, DC: International Food Policy Research Institute (IFPRI).Google Scholar
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., & Schaphoff, S. (2008). Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research 44(9): 117.Google Scholar
Siebert, S., & Döll, P. (2010). Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology 384(3–4): 198217.Google Scholar
Sun, S., Wu, P., Wang, Y., Zhao, X., Liu, J., & Zhang, X. (2012). The temporal and spatial variability of water footprint of grain: A case study of an irrigation district in China from 1960 to 2008. Journal of Food, Agriculture and Environment 10(3–4): 12461251.Google Scholar
Tang, Q., Zhang, X., & Tang, Y. (2013). Anthropogenic impacts on mass change in North China. Geophysical Research Letters 40(15): 39243928.Google Scholar
Tilman, D., Fargione, J., Wolff, B., et al. (2001). Forecasting agriculturally driven global environmental change. Science 292(5515): 281284.Google Scholar
Vörösmarty, C. J., Bos, R., & Balvanera, P. (2005). Fresh water. In Hassan, R., Scholes, R., & Ash, N. (eds.), Ecosystems and Human Well-Being: Current States and Trends, Millennium Ecosystem Assessment Report (pp. 165207). Washington, DC: Island Press.Google Scholar
Wada, Y., Van Beek, L. P. H., & Bierkens, M. F. P. (2012). Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resources Research 48(6): 2055.Google Scholar
Wada, Y., Van Beek, L. P. H., Van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., & Bierkens, M. F. P. (2010). Global depletion of groundwater resources. Geophysical Research Letters 37(20): 15.Google Scholar
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., & Viterbo, P. (2014). Data methodology applied to ERA-Interim reanalysis data. Water Resources Research 50(9): 75057514.Google Scholar
Weedon, G. P., Gomes, S., Viterbo, P., et al. (2011). Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology 12(5): 823848.Google Scholar
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Schumann, A. H., & Vörösmarty, C. J. (2010). The significance of local water resources captured in small reservoirs for crop production – A global-scale analysis. Journal of Hydrology 384(3–4), 264275.Google Scholar
Wisser, D., Frolking, S., Douglas, E. M., Fekete, B. M., Vörösmarty, C. J., & Schumann, A. H. (2008). Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophysical Research Letters 35(24), 15.Google Scholar
Zang, C. F., Liu, J., Van Der Velde, M., & Kraxner, F. (2012). Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrology and Earth System Sciences 16(8): 28592870.Google Scholar
Zeng, Z., Liu, J., Koeneman, P. H., Zarate, E., & Hoekstra, A. Y. (2012). Assessing water footprint at river basin level: A case study for the Heihe River Basin in northwest China. Hydrology and Earth System Sciences 16(8): 27712781.Google Scholar
Zhuo, L., Mekonnen, M. M., Hoekstra, A. Y., & Wada, Y. (2016). Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Advances in Water Resources 87: 2941.Google Scholar

References

Alam, M. (2016). Evaluating the benefit-cost ratio of groundwater abstraction for additional irrigation water on global scale. Degree Project in Environmental Engineering, Second Cycle, 30 Credits, Stockholm, Sweden.Google Scholar
Alcamo, J., Dǒll, P., Henrichs, T., et al. (2003). Global estimates of water withdrawals and availability under current and future ‘business-as-usual’ conditions. Hydrological Sciences Journal 48(3): 339348.Google Scholar
Bondeau, A., Smith, P., Zaehle, S., et al. (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology 13(3): 679706.Google Scholar
CAB-SNWDP (Construction and Administration Bureau of South to North Water Diversion Project, Ministry of Water Resources of China) (2003). Introduction of south to north water diversion project’s plan. China Water Resources B: 5662 (in Chinese).Google Scholar
Cosgrove, W., & Loucks, D. (2015). Water management: Current and future challenges and research directions. Water Resources Research 51(6): 48234839.Google Scholar
Dziegielewski, B., Sharma, S. C., Bik, T. J., Margono, H., & Yang, X. (2002). Analysis of Water Use Trends in the Unites States: 1950–1995. Special Report 28. Urbana-Champaign, IL: Illinois Water Resources Center, University of Illinois.Google Scholar
Eldardiry, H., Habib, E., & Borrok, D. (2016). Small scale catchment analysis of water stress in wet regions of the U.S.: An example from Louisiana. Environmental Research Letters 11(12): 124031.Google Scholar
Fader, M., Rost, S., Müller, C., Bondeau, A., & Gerten, D. (2010). Virtual water content of temperate cereals and maize: Present and potential future patterns. Journal of Hydrology 384(3–4): 218231.Google Scholar
FAO (Food and Agriculture Organization of the United Nations) (2003). Water Report (Book 23): Review of World Water Resources by Country. Rome: FAO.Google Scholar
Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., & Alcamo, J. (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environment Change 23(1): 144156.Google Scholar
Fu, J. Y., Jiang, D., & Huang, Y. H. (2014). 1 km grid population dataset of China (2005, 2010). Acta Geographica Sinica 69(Suppl.): 136139.Google Scholar
Gaffin, S. R., Rosenzweig, C., Xing, X. S., & Yetman, G. (2004). Downscaling and geo-spatial gridding of socio-economic projections from the IPCC Special Report on Emissions Scenarios (SRES). Global Environmental Change 14(2): 105123.Google Scholar
Gain, A. K., Giupponi, C., & Wada, Y. (2016). Measuring global water security towards sustainable development goals. Environmental Research Letters 11(12): 124015.Google Scholar
GAQUIQ and SAC (General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China) (2009). GB/T 23598-2009, Code of practice for water resources bulletin (in Chinese).Google Scholar
Gu, H., Yu, Z., & Wang, J. (2014). Future extreme climates projection over Huang-Huai-Hai region of China. Advanced Materials Research 955: 38873892.Google Scholar
Gupta, J., & van der Zaag, P. (2008). Interbasin water transfers and integrated water resources management: Where engineering, science and politics interlock. Physics and Chemistry of the Earth 33(1–2): 2840.Google Scholar
Haddeland, I., Heinke, J., Biemans, H., et al. (2014). Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences (USA) 111(9): 32513256.Google Scholar
Hanasaki, N., Fujimori, S., Yamamoto, T., et al. (2013). A global water scarcity assessment under shared socio-economic pathways – Part 1: Water use. Hydrology and Earth System Sciences 17(7): 23752391.Google Scholar
Hanasaki, N., Kanae, S., Oki, T., et al. (2008a). An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing. Hydrology and Earth System Science 12(4): 10071025.Google Scholar
Hanasaki, N., Kanae, S., Oki, T., et al. (2008b). An integrated model for the assessment of global water resources – Part 2: Applications and assessments. Hydrology and Earth System Science 12(4): 10271037.Google Scholar
Hanasaki, N., Yoshikawa, S., Pokhrel, Y., & Kanae, S. (2018). A global hydrological simulation to specify the sources of water used by humans. Hydrology and Earth System Science 22(1): 789817.Google Scholar
Hattermann, F. F., Krysanova, V., Gosling, S., et al. (2017). Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change 141: 561576.Google Scholar
Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society 90(8): 10951107.Google Scholar
Hawkins, E., Osborne, T. M., Ho, C. K., & Challinor, A. J. (2013). Calibration and bias correction of climate projections for crop modelling: An idealized case study over Europe. Agricultural and Forest Meteorology 170: 1931.Google Scholar
High-level Panel on Water (2018). Making Every Drop Count: An Agenda for Water Action: High-Level Panel on Water Outcome Document. New York: High-Level Panel on Water, United Nations Division for Sustainable Development (UN DESA), 14 March 2018.Google Scholar
Ho, C., Stephenson, S., Collins, M., Freeo, C., & Brown, S. (2012). Calibration strategies: A source of additional uncertainty in climate change projections. Bulletin of the American Meteorological Society 93(1): 2126.Google Scholar
Hoekstra, A. (2014). Water scarcity challenges to business. Nature Climate Change 4: 318320.Google Scholar
Huang, J., Qin, D., Jiang, T., et al. (2018a). Effect of fertility policy changes on the population structure and economy of China: From the perspective of the Shared Socioeconomic Pathways. Earth’s Future 7(3): 250265.Google Scholar
Huang, Y. H., Jiang, D., & Fu, J. Y. (2014). 1 km grid GDP data of China (2005, 2010). Acta Geographica Sinica 69(Suppl.): 140143.Google Scholar
Huang, Z., Hejazi, M., Li, X., et al. (2018b). Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrology and Earth System Sciences 22(4): 21172133.Google Scholar
Hughes, B. B. (2005). UNEP GEO4 Diver Scenarios (fifth draft). Denver, CO: Josef Korbel School of International Studies, University of Denver.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) (2014). Summary for policymakers Climate Change 2014: Impacts, Adaptation, and Vulnerability: A. Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Field, C. B., Barros, V. R., Dokken, D. J., et al. Cambridge: Cambridge University Press.Google Scholar
Kong, X., Lal, R., Li, B., et al. (2014). Fertilizer intensification and its impacts in China’s HHH plains. In Sparks, D. L. (ed.), Advances in Agronomy (pp. 135169). Oxford: Elsevier Science & Technology.Google Scholar
Kummu, M., Ward, P. J., de Moel, H., & Varis, O. (2010). Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environmental Research Letters 5: 034006.Google Scholar
Li, W., Sankarasubramanian, A., Ranjithan, R. A., & Brill, E. D. (2014). Improved regional water management utilizing climate forecasts: An interbasin transfer model with a risk management framework. Water Resources Research 50(8): 68106827.Google Scholar
Liao, X., Hall, J., & Eyre, N. (2016). Water use in China’s thermoelectric power sector. Global Environmental Change 41: 142152.Google Scholar
Liu, C., & Zhang, H. (2002). South-to-north water transfer schemes for China. Water Resources Development 18(3): 453471.Google Scholar
Liu, Y., Long, H., Li, T., & Tu, S. (2015). Land use transitions and their effects on water environment in Huang-Huai-Hai plain, China. Land Use Policy 47: 293301.Google Scholar
Lu, G., Xiao, H., Wu, Z., Zhang, S., & Li, Y. (2013). Assessing the impacts of future climate change on hydrology in Huang-Huai-Hai region in China using the PRECIS and VIC models. Journal of Hydrologic Engineering 18(9): 10771087.Google Scholar
Ma, J. (2004). China’s Water Crisis. Norwalk, CT: EastBridge.Google Scholar
Milly, P., Betancourt, J., Falkenmark, M., et al. (2008). Stationarity is dead: Whither water management? Science 319(5863): 573574.Google Scholar
Monfreda, C., Ramankutty, N., & Foley, J. A. (2008). Farming the planet, part 2: The geographic distribution of crop areas and yields in the year 2000. Global Biogeochemical Cycles 22(1): GB1022.Google Scholar
MWR (Ministry of Water Resources) (2002). South–North Water Transfer Project Masterplan (Summary). Beijing: Ministry of Water Resources (in Chinese).Google Scholar
MWRC (Ministry of Water Resources of the People’s Republic of China) (2011). National Integrated Water Resources Planning of China (2000–2030). Beijing: Ministry of Water Resources (in Chinese).Google Scholar
NBSC (National Bureau of Statistics of China) (2011). China Statistical Yearbook 2010. Beijing: China Statistics Press (in Chinese).Google Scholar
NDRC (National Development & Reform Commission) (2007). China’s National Climate Change Programme [English version]. Beijing: National Development & Reform Commission.Google Scholar
O’Neill, B., Kriegler, E., Ebi, K., et al. (2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42: 169180.Google Scholar
Office of the South-to-North Water Diversion Project Construction Committee, State Council (PRC) (2016). The south-to-north water diversion project. Engineering 2(3): 265267.Google Scholar
Pittock, J., Meng, J., & Chapagain, A. (2009). Interbasin Water Transfers and Water Scarcity in a Changing World – A Solution or a Pipedream? Germany: World Wide Fund (WWF).Google Scholar
Portmann, F. T., Siebert, S., & Döll, P. (2010). MIRCA2000 – Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles 24(1): GB1011.Google Scholar
Rajagopalan, B., Nowak, K., Prairie, J., et al. (2009). Water supply risk on the Colorado River: Can management mitigate? Water Resources Research 45(8): W08201.Google Scholar
Rost, S., Gerten, D., Bondeau, A., Lucht, W., Rohwer, J., & Schaphoff, S. (2008). Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research 44(9): W09405.Google Scholar
Schewe, J., Heinke, J., Gerten, D., et al. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences (USA) 111(9): 32453250.Google Scholar
Shi, Y. C. (2003). Comprehensive reclamation of salt-affected soils in China’s Huang-Huai-Hai plain. In Goyal, S. S., Sharma, S. K., & Rains, D. W. (eds.), Crop Production in Saline Environments: Global and Integrative Perspectives (pp. 163179). New York: Food Products Press.Google Scholar
Shiklomanov, I. (2000). Appraisal and assessment of world water resources. Water International 25(1): 1132.Google Scholar
Shumilova, O., Tockner, K., Thieme, M., Koska, A., & Zarfl, C. (2018). Global water transfer megaprojects: A potential solution for the water-food-energy nexus? Frontiers in Environmental Science, 6: 150.Google Scholar
Siebert, S., & Döll, P. (2010). Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology 384(3–4): 198217.Google Scholar
Siebert, S., Döll, P., Feick, S., Hoogeveen, J., & Frenken, K. (2007). Global Map of Irrigation Areas Version 4.0.1. Frankfurt am Main: Institute of Physical Geography, University of Frankfurt.Google Scholar
Sun, G., McNulty, S. G., Myers, J. A. M., & Cohen, E. C. (2008). Impacts of multiple stresses on water demand and supply across the southeastern United States. Journal of the American Water Resource Association 44(6): 14411457.Google Scholar
Tian, Z., Shi, J., Gao, Z., & Tubiello, F. N. (2008). Assessing the impact of future climate change on wheat production in Huang-Huai-Hai Plain in China based on GIS and crop model. Remote Sensing and Modeling of Ecosystems for Sustainability, 7083.Google Scholar
UN Water (United Nations Water). (2017). Level of water stress: Freshwater withdrawal in percentage of available freshwater resources (Version 19 January 2017). Integrated Monitoring Guide for SDG6: Step-by-step monitoring methodology for indicator 6.4.2. Available from www.unwater.org/publications (Last accessed 17 August 2019).Google Scholar
Verma, S., Kampman, D., der Zaag, P., & Hoekstra, A. (2009). Going against the flow: A critical analysis of inter-state virtual water trade in the context of India’s National River Linking Program. Physics and Chemistry of the Earth 34(4–5): 261269.Google Scholar
van Vuuren, D., Kriegler, E., O’Neill, B., et al. (2014). A new framework for climate change research: Scenario matrix architecture. Climatic Change 122(3): 373386.Google Scholar
Wada, Y., Flörkem, M., Hanasaki, N., et al. (2016). Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 9(1): 175222.Google Scholar
Wada, Y., van Beek, L., van Kempen, C., Reckman, J., Vasak, S., & Bierkens, M. (2010). Global depletion of groundwater resources. Geophysical Research Letters 37: L20402.Google Scholar
Wada, Y., van Beek, L., Viviroli, D., Duee, H. H., Weingartner, R., & Bierkens, M. (2011). Global monthly water stress: 2 Water demand and severity of water stress. Water Resources Research, 47(7): W07518.Google Scholar
Wada, Y., Wisser, D., & Bierkens, M. F. P. (2014). Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics 5(1): 1540.Google Scholar
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2014). The inter-sectoral impact model intercomparison projection (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences (USA) 111(9): 32283232.Google Scholar
Wei, C. (2000). South to North Water Transfer Project in China. Beijing: China Agriculture Press (in Chinese).Google Scholar
WWAP (World Water Assessment Programme) (2009). The United Nations World Water Development Report 3: Water in a Changing World. Paris: UNESCO Publishing.Google Scholar
Xia, J. (2012). Climate change impact on water security and adaptive management in China: Introduction. Water International 37(5): 509511.Google Scholar
Xia, J., Qiu, B., & Li, Y. Y. (2012). Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water International 37(5): 523536.Google Scholar
Yin, Y., Tang, Q., Liu, X., & Zhang, X. (2017). Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin. Hydrology and Earth System Sciences 21(2): 791804.Google Scholar
Zeng, Y., & Hesketh, T. (2016). The effects of China’s universal two-child policy. Lancet 388(10054): 19301938.Google Scholar
Zhang, C., & Anadon, L. D. (2013). Life cycle water use of energy production and its environmental impacts in China. Environmental Science and Technology 47(24): 1445914467.Google Scholar
Zhang, C., Zhong, L., Fu, X., Wang, J., & Wu, Z. (2016). Revealing water stress by the thermal power industry in China based on a high spatial resolution water withdrawal and consumption inventory. Environmental Science and Technology 50(4): 16421652.Google Scholar
Zhang, Q., Xu, Z., Shen, Z., Li, S., & Wang, S. (2009). The Han River watershed management initiative for the South-to-North Water Transfer project (middle route) of China. Environmental Monitoring and Assessment 148: 369377.Google Scholar
Zhang, X. (1999). South to North Water Transfer Project: Supporting Project for China’s Sustainable Development. Beijing: China Water & Power Press (in Chinese).Google Scholar

References

Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology 73(3–4): 247265.Google Scholar
Alvioli, M., Melillo, M., Guzzetti, F., et al. (2018). Implications of climate change on landslide hazard in Central Italy. Science of the Total Environment 630: 15281543.Google Scholar
Benz, S. A., & Blum, P. (2019). Global detection of rainfall-triggered landslide clusters. Natural Hazards and Earth System Sciences 19(7): 14331444.Google Scholar
Bogaard, T., & Greco, R. (2018). Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds. Natural Hazards and Earth System Sciences 18(1): 3139.Google Scholar
Broeckx, J., Vanmaercke, M., Duchateau, R., & Poesen, J. (2018). A data-based landslide susceptibility map of Africa. Earth-Science Reviews 185: 102121.Google Scholar
Brunetti, M., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., & Guzzetti, F. (2010). Rainfall thresholds for the possible occurrence of landslides in Italy. Natural Hazards and Earth System Sciences 10(3): 447458.Google Scholar
Caine, N. (1980). The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler Series A 62(1–2): 2327.Google Scholar
Chen, W., Pourghasemi, H. R., Kornejady, A., & Zhang, N. (2017). Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma 305(3): 314327.Google Scholar
Clarizia, M., Gullà, G., & Sorbino, G. (1996). Sui meccanismi di innesco dei soil slip. In International Conference on Prevention of Hydrogeological Hazards: The Role of Scientific Research, Alba, Italy, pp. 585597. (in Italian)Google Scholar
Crosta, G. B., & Frattini, P. (2000). Rainfall thresholds for triggering soil slips and debris flows. In Mediterranean Storms 2000 – Proceedings of the Second EGS Plinius Conference, Siena, Italy, pp. 463487.Google Scholar
Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology 64(1): 6587.Google Scholar
Danielson, J. J., & Gesch, D. (2011). Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). US Geological Survey. Available from http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/GMTED2010 (Last accessed 29 March 2020).Google Scholar
Ermini, L., Catani, F., & Casagli, N. (2005). Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66(1–4): 327343.Google Scholar
Evans, S. G., & Delaney, K. B. (2019). Taking the pulse of global landslide occurrence 2010–2018. Geophysical Research Abstracts 21: EGU2019–11815.Google Scholar
FAO, IIASA, ISRIC, ISS-CAS, & JRC (2012). Harmonized World Soil Database V 1.2. Rome: FAO.Google Scholar
Farahmand, A., & Aghakouchak, A. (2013). A satellite-based global landslide model. Natural Hazards and Earth System Science 13(5): 12591267.Google Scholar
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 43024315.Google Scholar
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences 18(8): 21612181.Google Scholar
Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth Science Reviews 162: 227252.Google Scholar
Giardini, D., Gruenthal, G., Shedlock, K., & Zhang, P. (2003). The GSHAP global seismic hazard map. In Lee, W. H. K., Kanamori, H., Jennings, P. C., & Kisslinger, C. (eds.), International Handbook of Earthquake and Engineering Seismology (Vol. 81, pp. 12331239). Amsterdam: Academic Press.Google Scholar
Giuliani, G., & Peduzzi, P. (2011). The PREVIEW global risk data platform: A geoportal to serve and share global data on risk to natural hazards. Natural Hazards and Earth System Science 11(1): 5366.Google Scholar
Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4): 181216.Google Scholar
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics 98(3–4): 239267.Google Scholar
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 5(1): 317.Google Scholar
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1–4): 272299.Google Scholar
Haque, U., Blum, P., da Silva, P. F., et al. (2016). Fatal landslides in Europe. Landslides 13(5): 15451554.Google Scholar
Haque, U., da Silva, P. F., Devoli, G., et al. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment 682: 673684.Google Scholar
Harp, E. L., Reid, M. E., McKenna, J. P., & Michael, J. A. (2009). Mapping of hazard from rainfall-triggered landslides in developing countries: Examples from Honduras and Micronesia. Engineering Geology 104(3–4): 295311.Google Scholar
Hong, Y., Adler, R. F., & Huffman, G. (2007a). An experimental global prediction system for rainfall-triggered landslides using satellite remote sensing and geospatial datasets. IEEE Transactions on Geoscience and Remote Sensing 45(6): 16711680.Google Scholar
Hong, Y., Adler, R., & Huffman, G. (2007b). Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards 43(2): 245256.Google Scholar
Hong, Y., Alder, R., & Huffman, G. (2006). Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophysical Research Letters 33(22): 15.Google Scholar
Huang, Y., & Zhao, L. (2018). Review on landslide susceptibility mapping using support vector machines. Catena 165(3): 520529.Google Scholar
Huffman, G. J., Bolvin, D. T., Braithwaite, D., et al. (2019). Algorithm Theoretical Basis Document (ATBD) Version 06: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Greenbelt, MD: National Aeronautics and Space Administration (NASA). Available from https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf (Last accessed 29 March 2020).Google Scholar
Innes, J. L. (1983). Debris flows. Progress in Physical Geography 7(4): 469501.Google Scholar
Intrieri, E., Gigli, G., Casagli, N., & Nadim, F. (2013). Early warning system: Toolbox and general concepts. Natural Hazards and Earth System Science 13(1): 8590.Google Scholar
Jia, G., Tang, Q., & Xu, X. (2020). Evaluating the performances of satellite-based rainfall data for global rainfall-induced landslide warnings. Landslides 17(2): 283299.Google Scholar
Juang, C. S., Stanley, T. A., & Kirschbaum, D. B. (2019). Using citizen science to expand the global map of landslides: Introducing the Cooperative Open Online Landslide Repository (COOLR). PLoS One 14(7): 128.Google Scholar
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., & Lerner-Lam, A. (2010). A global landslide catalog for hazard applications: Method, results, and limitations. Natural Hazards 52(3): 561575.Google Scholar
Kirschbaum, D. B., Adler, R., Hong, Y., & Lerner-Lam, A. (2009). Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Natural Hazards and Earth System Science 9(3): 673686.Google Scholar
Kirschbaum, D. B., & Stanley, T. (2018). Satellite-based assessment of rainfall-triggered landslide hazard for situational awareness. Earth’s Future 6(3): 505523.Google Scholar
Kirschbaum, D. B., Stanley, T., & Zhou, Y. (2015). Spatial and temporal analysis of a global landslide catalog. Geomorphology 249: 415.Google Scholar
Latham, J., Cumani, R., Rosati, I., & Bloise, M. (2014). Global Land Cover SHARE (GLC-SHARE). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Lin, L., Lin, Q., & Wang, Y. (2017). Landslide susceptibility mapping on a global scale using the method of logistic regression. Natural Hazards and Earth System Sciences 17(8): 14111424.Google Scholar
Ma, T., Li, C., Lu, Z., & Bao, Q. (2015). Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China. Geomorphology 245: 193206.Google Scholar
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., & Guzzetti, F. (2015). An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12(2): 311320.Google Scholar
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., & Guzzetti, F. (2016). Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13(1): 165172.Google Scholar
Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., Roccati, A., & Guzzetti, F. (2018). A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environmental Modelling and Software 105: 230243.Google Scholar
Monsieurs, E., Dewitte, O., & Demoulin, A. (2018). A susceptibility-based rainfall threshold approach for landslide occurrence. Natural Hazards and Earth System Sciences 19(4): 775789.Google Scholar
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides 3(2): 159173.Google Scholar
Palladino, M. R., Viero, A., Turconi, L., et al. (2018). Rainfall thresholds for the activation of shallow landslides in the Italian Alps: The role of environmental conditioning factors. Geomorphology 303: 5367.Google Scholar
Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., & Guzzetti, F. (2017). Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290(4): 3957.Google Scholar
Peruccacci, S., Brunetti, M. T., Luciani, S., Vennari, C., & Guzzetti, F. (2012). Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139–140: 7990.Google Scholar
Petley, D. (2012). Global patterns of loss of life from landslides. Geology 40(10): 927930.Google Scholar
Petley, D. (2019). Global Fatal Landslide Database (GFLD) Version 2, pp. 1–24. University of Sheffield. Online publication.Google Scholar
Petley, D. N., Dunning, S. A., & Rosser, N. J. (2005). The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. In Hungr, O., Fell, R., Couture, R., & Eberhardt, E. (eds.), Landslide Risk Management (pp. 367374). Amsterdam: Academic Press.Google Scholar
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews 180(3): 6091.Google Scholar
Sassa, K. (2004). The International Consortium on Landslides. Landslides 1(1): 9194.Google Scholar
Schneider, A., Jost, A., Coulon, C., Silvestre, M., Théry, S., & Ducharne, A. (2017). Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophysical Research Letters 44(6): 27732781.Google Scholar
Segoni, S., Piciullo, L., & Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15(8): 14831501.Google Scholar
Stanley, T., & Kirschbaum, D. B. (2017). A heuristic approach to global landslide susceptibility mapping. Natural Hazards 87(1): 145164.Google Scholar
UNDRR. (2019). Global Assessment Report on Disaster Risk Reduction, Geneva: UNDRR.Google Scholar
UNESCO. (1973). Annual Summary of Information on Natural Disasters No.6:1971. Paris: UNESCO.Google Scholar
University of East Anglia Climatic Research Unit, Harris, I. C., & Jones, P. D. (2020). CRU TS4.03: Climatic Research Unit (CRU) Time-Series (TS) version 4.03 of High-Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901–Dec. 2018). Centre for Environmental Data Analysis, 22 January. Online publication.Google Scholar
Van Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet, J. P., Montanarella, L., & Nadim, F. (2012). Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 9(3): 357369.Google Scholar

References

Ahmad, S. P., Salomonson, V. V., Barnes, W. L., Xiong, X., Leptoukh, G. G., & Serafino, G. N. (2002). MODIS radiances and reflectance for earth system science studies and environmental applications. Proceedings of the 18th International Conference on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, 1317 January 2002, Orlando, Florida, pp. 188192.Google Scholar
Alkhaier, F., Schotting, R. J., & Su, Z. (2009). A qualitative description of shallow groundwater effect on surface temperature of bare soil. Hydrology and Earth System Sciences 13(9): 17491756.Google Scholar
Bastiaanssen, W. G. M. (2003). Retrieving soil moisture storage in the unsaturated zone using satellite imagery and bi-annual phreatic surface fluctuation. Irrigation and Drainage Systems 17(3): 141161.Google Scholar
Brenning, A., Peña, M., Long, S., & Soliman, A., (2012). Thermal remote sensing of ice-debris landforms using ASTER: An example from the Chilean Andes. Cryosphere 6(2): 367382.Google Scholar
Caselles, E., Pitarch, C., & Caselles, V. (2014). Estimation of the water table depth of the Calarasi district Island (Romania) at the Danube River using ASTER/DEM data. European Journal of Remote Sensing 47(1): 169180.Google Scholar
Chase, M. E. (1969). Airborne remote sensing for groundwater studies in prairie environment. Canadian Journal of Earth Sciences 6(4): 737741.Google Scholar
Fallah Shamsi, S. R., Ebrahimi, Z., Ekhtesasi, M., & Kompani-Zare, M. (2017). Segmentation of playa geomorphological facies in desert regions, using integrated remote sensing and statistical modeling of soil properties. Journal of Remote Sensing Technology 5(1): 19.Google Scholar
Fallah Shamsi, S. R., Zare, S., & Abtahi, S. (2012) Soil salinity characteristics using moderate resolution imaging spectro-radiometer (MODIS) images and statistical analysis, Archives of Agronomy and Soil Science 10(4): 471489.Google Scholar
Fang, B., Lakshmi, V., Bindlish, R., & Jackson, T. J. (2018). Downscaling of SMAP soil moisture using land surface temperature and vegetation data. Vadose Zone Journal 17(1): 115.Google Scholar
Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48(4): RG4004.Google Scholar
Heilman, J. L., & Moore, D. G. (1982). Evaluating near-surface soil moisture using heat capacity mapping mission data. Remote Sensing of Environment 12(2): 117121.Google Scholar
Jensen, J. R. (2000). Remote Sensing of the Environment: An Earth Resource Perspective (2nd ed., p. 544). Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
Jiménez-Muñoz, J. C., & Sobrino, J. A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research 108(D22): 46884695.Google Scholar
Kappelmeyer, O. (1957). The use of near surface temperature measurements for discovering anomalies due to causes at depths. Geophysical Prospecting 5(3): 239258.Google Scholar
Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., & Gutman, G. G. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate 23(3): 618633.Google Scholar
Kustas, W. P., & Norman, J. M. (1996). Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal 41(4): 495516.Google Scholar
Li, Z. L., & Becker, F. (1993). Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sensing of Environment 43(1): 6785.Google Scholar
Li, Z. L., Wu, H., Wang, N., et al. (2013). Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing 34(9–10): 30843127.Google Scholar
Modiri, S., & Modiri, M. (2016). Calibration of separate window model factors to calculate land surface temperature using MODIS images. European Online Journal of Natural and Social Sciences 5(2): 546558.Google Scholar
Ndou, N. N., Palamuleni, L. G., & Ramoelo, A. (2018). Modelling depth to groundwater level using SEBAL-based dry season potential evapotranspiration in the upper Molopo river catchment, South Africa. The Egyptian Journal of Remote Sensing and Space Science 21(3): 237248.Google Scholar
Price, J. C. (1983). Estimating surface temperatures from satellite thermal infrared data: A simple formulation for the atmospheric effect. Remote Sensing of Environment 13(4): 353361.Google Scholar
Qu, J. J., Gao, W., Kafatos, M., Murphy, R. E., & Salomonson, V. V. (2006). Earth Science Satellite Remote Sensing, Vol. 1: Science and Instruments. New York: Springer.Google Scholar
Quiel, F. (1975). Thermal/IR in geology. Photogrammetry Engineering and Remote Sensing 41(3): 341346.Google Scholar
Rodell, M., & Famiglietti, J. S. (2002). The potential for satellite-based monitoring of groundwater storage changes using GRACE: The High Plains aquifer, Central US. Journal of Hydrology 263(1–4): 245256.Google Scholar
Sobrino, J. A., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring, application to Morocco. International Journal of Remote Sensing 21(2): 353366.Google Scholar
Sobrino, J. A., Soria, G., & Prata, A. J. (2004). Surface temperature retrieval from Along Track Scanning Radiometer 2 data: Algorithms and validation. Journal of Geophysical Research Atmospheres 109(11): D11101.Google Scholar
Sutanudjaja, E., De Jong, S., van Geer, F., & Bierkens, M. (2013). Using ERS space-borne micro-wave soil moisture observations to predict groundwater head in space and time. Remote Sensing of Environment 138: 172188.Google Scholar
Tiyip, T., Cui, J. Y., & Ding, J. L. (2005). Study on the means of groundwater distribution beneath the oasis-desert ecotone in an arid area by using thermal infrared data. Arid Land Geography 28(2): 252257.Google Scholar
Urqueta, H., Jodar, J., Herrera, C., et al. (2018). Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert. Science of the Total Environment 612: 12341248.Google Scholar
Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African and South American areas. Remote Sensing of Environment 57: 167184.Google Scholar
White, D. A. (2014). The MODIS conversion toolkit (MCTK) user’s guide, ITT Visual Information Solutions. Available from http://nsidc.org/data/modis/tools.html (Last accessed 3 September 2021).Google Scholar
Zare, S., Fallah Shamsi, S. R., & Abtahi, S. A. (2019). Weakly-coupled geo-statistical mapping of soil salinity to stepwise multiple linear regression of MODIS spectral image products. Journal of African Earth Sciences 152: 101114.Google Scholar
Zhang, Z.-M., He, G., Xiao, R.-B., Wang, W., & Ouyang, Z. (2006). Land surface temperature retrieval of Beijing city using MODIS and TM data. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 31 July–4 August, Denver, CO, pp. 10941096.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×