Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: May 2011

14 - The impact of climate change on the origin and future of East African rainforest trees

from Section 3 - Biogeography, migration and ecological niche modelling

Summary

Abstract

East African rainforests are characterised by a high percentage of endemic species. The occurrence of Annonaceae in the area conforms to this pattern. We review the historical biogeography of species of this family endemic to East Africa, in the light of episodes of climate change during the Tertiary. Based on herbarium specimen data, and using a phyloclimatic modelling approach, we identify the environmental variables that are associated with the origin of East African endemics of the genus Monodora. We discuss the possible responses of Monodora to future trends, based on inferences from past evolutionary changes linked to climatic transitions.

Introduction

Ecological changes due to the process of global warming and climate change are increasingly documented (Hannah et al., 2005; Lovett et al., 2005a; Lewis, 2006). Species distributions have shifted, and changes in ethology and phenology have caused the disruption of synchrony in plant–insect and predator–prey interactions (Parmesan, 2006). One of the tools applied to study the effect of climate change on organisms is species distribution modelling (Heikkinen et al., 2006; Beaumont et al., 2007). These models, also named bioclimatic envelopes or bioclimatic niches (see Kearney, 2006, for a discussion of species distribution modelling and terms involved), reflect the potential distribution of a species that is predicted on the basis of the relationships between species absence/presence, or presence-only, data, and environmental parameters of areas in which these species occur.

Related content

Powered by UNSILO
References
Beaumont, L. J., Pitman, A. J., Poulsen, M. and Hughes, L. (2007). Where will species go? Incorporating new advances in climate modelling into projections of species' distributions. Global Change Biology, 13, 1368–1385.
Bobe, R. (2006). The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments, 66, 564–584.
Bowie, R. C. K., Fjeldså, J., Hackett, S. J., Bates, J. M. and Crowe, T. M. (2006). Coalescent models reveal the relative roles of ancestral polymorphism, vicariance, and dispersal in shaping phylogeographical structure of an African montane forest robin. Molecular Phylogenetics and Evolution, 38, 171–188.
Busby, J. R. (1991). BIOCLIM: a bioclimatic analysis and prediction system. In Nature Conservation: Cost Effective Biological Surveys and Data Analysis, ed. Margules, C. R. and Austin, M. P.. Melbourne: CSIRO, pp. 64–68.
Chatrou, L. W., Couvreur, T. L. P. and Richardson, J. E. (2009). Spatio-temporal dynamism of hotspots enhances plant diversity. Journal of Biogeography, 36, 1628–1629.
Couvreur, T. L. P. (2009). Monograph of the syncarpous African genera Isolona and Monodora (Annonaceae). Systematic Botany Monographs, 87, 1–150.
Couvreur, T. L. P., Gereau, R. J., Wieringa, J. J. and Richardson, J. E. (2006). Description of four new species of Monodora and Isolona (Annonaceae) from Tanzania and an overview of Tanzanian Annonaceae diversity. Adansonia (Paris), 28, 243–266.
Couvreur, T. L. P., Chatrou, L. W., Sosef, M. S. M. and Richardson, J. E. (2008). Molecular phylogenetics reveal multiple Tertiary vicariance origins of the African rain forest trees. BMC Biology, 6, 54.
Crisp, M. D. and Cook, L. G. (2007). A congruent molecular signature of vicariance across multiple plant lineages. Molecular Phylogenetics and Evolution, 43, 1106–1117.
Elith, J., Graham, C. H., Anderson, R. P. et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129–151.
Filer, D. L. (2008). BRAHMS Version 6. Oxford: Department of Plant Sciences, University of Oxford.
Graham, C. H., Moritz, C. and Williams, S. E. (2006). Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences of the USA, 103, 632–636.
Hannah, L., Midgley, G., Hughes, G. and Bomhard, B. (2005). The view from the Cape: extinction risk, protected areas, and climate change. BioScience, 55, 231–242.
Heikkinen, R. K., Luoto, M., Araújo, M. B. et al. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 30, 751–777.
Hijmans, R. J., Guarino, L., Jarvis, A. et al. (2005). DIVA-GIS, version 5. www.diva-gis.org.
Hulme, M., Doherty, R., Ngara, T. and New, M. (2005). Global warming and African climate change: a reassessment. In Climate Change and Africa, ed. Low, P. S.. Cambridge: Cambridge University Press, pp. 29–40.
Kearney, M. (2006). Habitat, environment and niche: what are we modelling?Oikos, 115, 186–191.
Lewis, S. L. (2006). Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society of London B, 361, 439–450.
Linder, H. P., Hardy, C. R. and Rutschmann, F. (2005). Taxon sampling effects in molecular clock dating: an example from the African Restionaceae. Molecular Phylogenetics and Evolution, 35, 569–582.
Lovett, J. C., Midgley, G. F. and Barnard, P. (2005a). Climate change and ecology in Africa. African Journal of Ecology, 43, 167–169.
Lovett, J. C., Marchant, R., Taplin, J. and Küper, W. (2005b). The oldest rainforests in Africa: stability or resilience for survival and diversity? In Phylogeny and Conservation, ed. Purvis, A., Gittleman, J. L. and Brooks, T.. Cambridge, UK: Cambridge University Press, pp. 198–229.
Maddison, W. P. and Maddison, D. R. (2006). Mesquite: a modular system for evolutionary analysis, version 1.11. http://mesquiteproject.org.
Morley, R. J. (2000). Origin and Evolution of Tropical Rain Forests. Chichester: Wiley.
Mumbi, C. T., Marchant, R., Hooghiemstra, H. and Wooller, M. J. (2008). Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. Quaternary Research, 69, 326–341.
Near, T. J. and Sanderson, M. J. (2004). Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Philosophical Transactions of the Royal Society of London B, 359, 1477–1483.
Nogués, -Bravo, D. (2009). Predicting the past distribution of species' climatic niches. Global Ecology and Biogeography, 18, 521–531.
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.
Pennington, R. T., Lavin, M., Prado, D. E. et al. (2004). Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society of London B, 359, 515–537.
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modeling of species' geographic distributions. Ecological Modelling, 190, 231–259.
Pirie, M. D., Chatrou, L. W., Erkens, R. H. J. et al. (2005). Phylogeny reconstruction and molecular dating in four Neotropical genera of Annonaceae: the effect of taxon sampling in age estimation. In Plant Species-Level Systematics: New Perspectives on Pattern and Process, ed. Bakker, F. T., Chatrou, L. W., Gravendeel, B. and Pelser, P. B.. Ruggell, Liechenstein: A. R. G. Gantner Verlag, pp. 149–174.
Punyasena, S. W., Eshel, G. and McElwain, J. C. (2008). The influence of climate on the spatial patterning of Neotropical plant families. Journal of Biogeography, 35, 117–130.
Richardson, J. E., Chatrou, L. W., Mols, J. B. et al. (2004). Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philosophical Transactions of the Royal Society of London B, 359, 1495–1508.
Sanderson, M. J. and Doyle, J. A. (2001). Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. American Journal of Botany, 88, 1499–1516.
Tilman, D. and Lehman, C. (2001). Human-caused environmental change: impacts on plant diversity and evolution. Proceedings of the National Academy of Sciences of the USA, 98, 5433–5440.
Wiens, J. J. (2004). Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution, 58, 193–197.
Wiens, J. J. and Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639–644.
Wisz, M. S., Hijmans, R. J., Li, J. et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.
Yesson, C. and Culham, A. (2006). Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling. Systematic Biology, 55, 785–802.
Yesson, C., Toomey, N. H. and Culham, A. (2009). Cyclamen: time, sea and speciation biogeography using a temporally calibrated phylogeny. Journal of Biogeography, 36, 1234–1252.