Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-05T13:41:47.491Z Has data issue: false hasContentIssue false

18 - Qubit measurements, superdense coding, and quantum teleportation

Published online by Cambridge University Press:  05 June 2012

Emmanuel Desurvire
Affiliation:
Thales, France
Get access

Summary

This chapter is concerned with the measure of information contained in qubits. This can be done only through quantum measurement, an operation that has no counterpart in the classical domain. I shall first describe in detail the case of single qubit measurements, which shows under which measurement conditions “classical” bits can be retrieved. Next, we consider the measurements of higher-order or n-qubits. Particular attention is given to the Einstein–Podolsky–Rosen (EPR) or Bell states, which, unlike other joint tensor states, are shown being entangled. The various single-qubit measurement outcomes from the EPR–Bell states illustrate an effect of causality in the information concerning the other qubit. We then focus on the technique of Bell measurement, which makes it possible to know which Bell state is being measured, yielding two classical bits as the outcome. The property of EPR–Bell state entanglement is exploited in the principle of quantum superdense coding, which makes it possible to transmit classical bits at twice the classical rate, namely through the generation and measurement of a single qubit. Another key application concerns quantum teleportation. It consists of the transmission of quantum states over arbitrary distances, by means of a common EPR–Bell state resource shared by the two channel ends. While quantum teleportation of a qubit is instantaneous, owing to the effect of quantum-state collapse, it is shown that its completion does require the communication of two classical bits, which is itself limited by the speed of light.

Type
Chapter
Information
Classical and Quantum Information Theory
An Introduction for the Telecom Scientist
, pp. 356 - 377
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gottesman, D. and Chuang, I. L., Quantum teleportation is a universal computational primitive. Nature, 402 (1999), 390–3CrossRefGoogle Scholar
Huang, Y.-F., Ren, X.-F., Zhang, Y.-S., Duan, L.-M., and Guo, G.-C., Experimental teleportation of a quantum controlled-NOT gate. Phys. Rev. Letts., 93 (2004)CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×