Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2011
  • Online publication date: July 2011

Section 2 - Mechanisms underlying microbleeds

References

1. FerrerI, KasteM, KalilJ. Vascular diseases. In LoveS, LouisD, EllisonD, (eds.) Greenfield's Neuropathology. London: Arnold, 2008, pp. 121–220.
2. FisherCM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 1971;30:536–50.
3. LammieGA. Pathology of small vessel stroke. Br Med Bull 2000;56:296–306.
4. FisherCM. Cerebral miliary aneurysms in hypertension. Am J Pathol 1972;66:313–30.
5. LammieGA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol 2002;12:358–70.
6. MunozDG. Small vessel disease: neuropathology. Int Psychogeriatr 2003;15(Suppl. 1):67–9.
7. TakebayashiS, KanekoM. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke 1983;14:28–36.
8. FarkasE, de VosRA, DonkaGet al. Age-related microvascular degeneration in the human cerebral periventricular white matter. Acta Neuropathol 2006;111:150–7.
9. SpanglerKM, ChallaVR, MoodyDM, BellMA. Arteriolar tortuosity of the white matter in aging and hypertension. A microradiographic study. J Neuropathol Exp Neurol 1994;53:22–6.
10. ChallaVR, MoodyDM, BellMA. The Charcot–Bouchard aneurysm controversy: impact of a new histologic technique. J Neuropathol Exp Neurol 1992;51:264–71.
11. JellingerK. Cerebrovascular amyloidosis with cerebral hemorrhage. J Neurol 1977;214:195–206.
12. CadavidD, MenaH, KoellerK, FrommeltRA. Cerebral beta amyloid angiopathy is a risk factor for cerebral ischemic infarction. A case control study in human brain biopsies. J Neuropathol Exp Neurol 2000;59:768–73.
13. HaglundM, EnglundE. Cerebral amyloid angiopathy, white matter lesions and Alzheimer encephalopathy: a histopathological assessment. Dement Geriatr Cogn Disord 2002;14:161–6.
14. JellingerKA. Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 2002;109:813–36.
15. GravinaSA, HoL, EckmanCBet al. Amyloid beta protein (Abeta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 1995;270:7013–16.
16. HaglundM, KalariaR, SladeJY, EnglundE. Differential deposition of amyloid beta peptides in cerebral amyloid angiopathy associated with Alzheimer's disease and vascular dementia. Acta Neuropathol 2006;111:430–5.
17. VonsattelJP, MyersRH, Hedley-WhyteETet al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 1991;30:637–49.
18. VintersHV, WangZZ, SecorDL. Brain parenchymal and microvascular amyloid in Alzheimer's disease. Brain Pathol 1996;6:179–95.
19. ThalDR, GhebremedhinE, RubUet al. Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002;61:282–93.
20. TateJ, SchumacherD. Interferometric pump-probe study of intense field excitation of sapphire. Phys Rev Lett 2001;87:053901.
21. XiG, FewelME, HuaYet al. Intracerebral hemorrhage: pathophysiology and therapy. Neurocrit Care 2004;1:5–18.
22. OehmichenM, RaffG. Timing of cortical contusion. Correlation between histomorphologic alterations and post-traumatic interval. Z Rechtsmed 1980;84:79–94.
23. VernooijMW, van der LugtA, IkramMAet al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–14.
24. SeifertT, LechnerA, FloohEet al. Lack of association of lobar intracerebral hemorrhage with apolipoprotein E genotype in an unselected population. Cerebrovasc Dis 2006;21:266–70.
25. LevyE, CarmanMD, Fernandez-MadridIJet al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 1990;248:1124–6.
26. van RoodenS, van der GrondJ, van den BoomRet al. Descriptive analysis of the Boston criteria applied to a Dutch-type cerebral amyloid angiopathy population. Stroke 2009;40:3022–7.
27. JoutelA, CorpechotC, DucrosAet al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707–10.
28. SouranderP, WalinderJ. Hereditary multi-infarct dementia. Lancet 1977;i:1015.
29. SouranderP, WalinderJ. Hereditary multi-infarct dementia. Morphological and clinical studies of a new disease. Acta Neuropathol 1977;39:247–54.
30. RuchouxMM, MaurageCA. CADASIL: cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neuropathol Exp Neurol 1997;56:947–64.
31. StevensDL, HewlettRH, BrownellB. Chronic familial vascular encephalopathy. Lancet 1977;i:1364–5.
32. Lesnik ObersteinSA, van den BoomR, van BuchemMAet al. Cerebral microbleeds in CADASIL. Neurology 2001;57:1066–70.
33. DichgansM, HoltmannspotterM, HerzogJet al. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002;33:67–71.
34. FukuiM. Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis (‘moyamoya’ disease). Research Committee on Spontaneous Occlusion of the Circle of Willis (Moyamoya Disease) of the Ministry of Health and Welfare, Japan. Clin Neurol Neurosurg 1997;99(Suppl. 2):S238–40.
35. IshikawaT, KurodaS, NakayamaNet al. Prevalence of asymptomatic microbleeds in patients with moyamoya disease. Neurol Med Chir (Tokyo) 2005;45:495–500; discussion 500.
36. KikutaK, TakagiY, NozakiKet al. Asymptomatic microbleeds in moyamoya disease: T2*-weighted gradient-echo magnetic resonance imaging study. J Neurosurg 2005;102:470–5.
37. KikutaK, TakagiY, NozakiK, OkadaT, HashimotoN. Histological analysis of microbleed after surgical resection in a patient with moyamoya disease. Neurol Med Chir (Tokyo) 2007;47:564–7.
38. BrennerDS, DrachenbergCB, PapadimitriouJC. Structural similarities between hematoidin crystals and asteroid bodies: evidence of lipid composition. Exp Mol Pathol 2001;70:37–42.
39. SchragM, McAuleyG, PomakianJet al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
40. FazekasF, ChawlukJB, AlaviA, HurtigHI, ZimmermanRA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 1987;149:351–6.
41. TatsumiS, ShinoharaM, YamamotoT. Direct comparison of histology of microbleeds with postmortem MR images: a case report. Cerebrovasc Dis 2008;26:142–6.
42. SalzmanKL, OsbornAG, HousePet al. Giant tumefactive perivascular spaces. AJNR Am J Neuroradiol 2005;26:298–305.
43. GreenbergSM, NandigamRN, DelgadoPet al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke 2009;40:2382–6.
44. YamamotoY, IharaM, ThamCet al. Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke 2009;40:2004–11.
45. MessoriA, SalvoliniU. Postmortem MRI as a useful tool for investigation of cerebral microbleeds. Stroke 2003;34:376–7; author reply 377.
46. TanakaA, UenoY, NakayamaY, TakanoK, TakebayashiS. Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas. Stroke 1999;30:1637–42.
47. RoobG, KleinertR, SeifertTet al. [Indications of cerebral micro-hemorrhage in MRI. Comparative histological findings and possible clinical significance.] Nervenarzt 1999;70:1082–7.
48. FazekasF, KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42.
49. GreenbergSM. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 1998;51:690–4.
50. GreenbergSM, BriggsME, HymanBTet al. Apolipoprotein E epsilon 4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 1996;27:1333–7.
51. KnudsenKA, RosandJ, KarlukD, GreenbergSM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56, 537–9.

References

1. FazekasF, KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42.
2. CordonnierC, Al-ShahiSalman R, WardlawJ. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988–2003.
3. VernooijMW, IkramMA, WielopolskiPAet al. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection. Radiology 2008;248:272–7.
4. VernooijMW, van der LugtA, IkramMAet al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70: 1208–1214.
5. KoenneckeHC. Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 2006;66:165–71.
6. GreenbergSM, VernooijMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
7. OffenbacherH, FazekasF, SchmidtRet al. MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 1996;17:573–8.
8. AlemanyM, StenborgA, TerentA, SonninenP, RaininkoR. Coexistence of microhemorrhages and acute spontaneous brain hemorrhage: correlation with signs of microangiopathy and clinical data. Radiology 2006;238:240–7.
9. LeeSH, KimBJ, RohJK. Silent microbleeds are associated with volume of primary intracerebral hemorrhage. Neurology 2006;66:430–2.
10. LeeSH, ParkJM, KwonSJet al. Left ventricular hypertrophy is associated with cerebral microbleeds in hypertensive patients. Neurology 2004;63:16–21.
11. RoobG, SchmidtR, KapellerPet al. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 1999;52:991–4.
12. JeerakathilT, WolfPA, BeiserAet al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 2004;35:1831–5.
13. SveinbjornsdottirS, SigurdssonS, AspelundTet al. Cerebral microbleeds in the population based AGES–Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatry 2008;79:1002–6.
14. van EsAC, van der GrondJ, de CraenAJet al. Risk factors for cerebral microbleeds in the elderly. Cerebrovasc Dis 2008;26:397–403.
15. PettersenJA, SathiyamoorthyG, GaoFQet al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch Neurol 2008;65:790–5.
16. CordonnierC, van der FlierWM, SluimerJDet al. Prevalence and severity of microbleeds in a memory clinic setting. Neurology 2006;66:1356–60.
17. CopenhaverBR, HsiaAW, MerinoJGet al. Racial differences in microbleed prevalence in primary intracerebral hemorrhage. Neurology 2008;71: 1176–82.
18. StaalsJ, van OostenbruggeRJ, KnottnerusILet al. Brain microbleeds relate to higher ambulatory blood pressure levels in first-ever lacunar stroke patients. Stroke 2009;40:3264–8.
19. HenskensLH, KroonAA, van OostenbruggeRJet al. Increased aortic pulse wave velocity is associated with silent cerebral small-vessel disease in hypertensive patients. Hypertension 2008;52:1120–6.
20. ChoAH, LeeSB, HanSJet al. Impaired kidney function and cerebral microbleeds in patients with acute ischemic stroke. Neurology 2009;73:1645–8.
21. ViswanathanA, GuichardJP, GschwendtnerAet al. Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain 2006;129:2375–83.
22. LeeSH, BaeHJ, YoonBWet al. Low concentration of serum total cholesterol is associated with multifocal signal loss lesions on gradient-echo magnetic resonance imaging: analysis of risk factors for multifocal signal loss lesions. Stroke 2002;33:2845–9.
23. VernooijMW, HaagMD, van der LugtAet al. Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol 2009;66:714–720.
24. RosandJ, EckmanMH, KnudsenKA, SingerDE, GreenbergSM. The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage. Arch Intern Med 2004;164:880–4.
25. QiuC, CotchMF, SigurdssonSet al. Retinal and cerebral microvascular signs and diabetes: the Age, Gene/Environment Susceptibility–Reykjavik study. Diabetes 2008;57:1645–50.
26. ReveszT, HoltonJL, LashleyTet al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009;118:115–30.
27. ChabriatH, JoutelA, DichgansMet al. Cadasil. Lancet Neurol 2009;8:643–53.
28. GuoDC, PapkeCL, Tran-FaduluVet al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 2009;84:617–27.
29. GregoireSM, BrownMM, KallisCet al. MRI detection of new microbleeds in patients with ischemic stroke: five-year cohort follow-up study. Stroke; 41:184–6.
30. GreenbergSM, O’DonnellHC, SchaeferPW, KraftE. MRI detection of new hemorrhages: potential marker of progression in cerebral amyloid angiopathy. Neurology 1999;53:1135–8.
31. ChenYW, GurolME, RosandJet al. Progression of white matter lesions and hemorrhages in cerebral amyloid angiopathy. Neurology 2006;67:83–7.
32. RothmanKJ (ed.). Modern Epidemiology. Philadelphia, PA: Lippincott, Williams & Williams, 2008.
33. KnudsenKA, RosandJ, KarlukD, GreenbergSM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537–9.
34. GregoireSM, ChaudharyUJ, BrownMMet al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759–66.

References

1. RoobG, SchmidtR, KapellerPet al. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 1999;52:991–4.
2. VernooijMW, van der LugtA, IkramMAet al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–14.
3. CordonnierC, Al-Shahi SalmanR, WardlawJ. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988–2003.
4. ViswanathanA, ChabriatH. Cerebral microhemorrhage. Stroke 2006;37:550–5.
5. FanYH, MokVC, LamWWet al. Cerebral microbleeds and white matter changes in patients hospitalized with lacunar infarcts. J Neurol 2004;251:537–41.
6. ImaizumiT, HoritaY, ChibaMet al. Dot-like hemosiderin spots on gradient echo T2*-weighted magnetic resonance imaging are associated with past history of small vessel disease in patients with intracerebral hemorrhage. J Neuroimaging 2004;14:251–7.
7. LeeSH, BaeHJ, KwonSJet al. Cerebral microbleeds are regionally associated with intracerebral hemorrhage. Neurology 2004;62:72–6.
8. LeeSH, KwonSJ, KimKSet al. Cerebral microbleeds in patients with hypertensive stroke. Topographical distribution in the supratentorial area. J Neurol 2004;251:1183–9.
9. ImaizumiT, HonmaT, HoritaYet al. Dot-like hemosiderin spots are associated with past hemorrhagic strokes in patients with lacunar infarcts. J Neuroimaging 2005;15:157–63.
10. WerringDJ, CowardLJ, LosseffNAet al. Cerebral microbleeds are common in ischemic stroke but rare in TIA. Neurology 2005;65:1914–18.
11. ChoAH, LeeSB, HanSJet al. Impaired kidney function and cerebral microbleeds in patients with acute ischemic stroke. Neurology 2009;73:1645–8.
12. AlemanyM, StenborgA, TerentAet al. Coexistence of microhemorrhages and acute spontaneous brain hemorrhage: correlation with signs of microangiopathy and clinical data. Radiology 2006;238:240–7.
13. OvbiageleB, SaverJL, SanossianNet al. Predictors of cerebral microbleeds in acute ischemic stroke and TIA patients. Cerebrovasc Dis 2006;22:378–83.
14. JeonSB, KangDW, ChoAHet al. Initial microbleeds at MR imaging can predict recurrent intracerebral hemorrhage. J Neurol 2007;254:508–12.
15. HanJ, GaoP, LinYet al. Three-tesla magnetic resonance imaging study of cerebral microbleeds in patients with ischemic stroke. Neurolog Res 2009;31:900–3.
16. OrkenDN, KenangilG, UysalEet al. Cerebral microbleeds in ischemic stroke patients on warfarin treatment. Stroke 2009;40:3638–40.
17. StaalsJ, van OostenbruggeRJ, KnottnerusILet al. Brain microbleeds relate to higher ambulatory blood pressure levels in first-ever lacunar stroke patients. Stroke 2009;40:3264–8.
18. SunJ, SooYO, LamWWet al. Different distribution patterns of cerebral microbleeds in acute ischemic stroke patients with and without hypertension. Eur Neurol 2009;62:298–303.
19. KatoH, IzumiyamaM, IzumiyamaKet al. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke 2002;33:1536–40.
20. GreenbergSM, VernooijMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
21. AdamsHP, Jr., BendixenBH, KappelleLJet al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993;24:35–41.
22. BamfordJ, SandercockP, DennisMet al. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991;337:1521–6.
23. GaoT, WangY, ZhangZ. Silent cerebral microbleeds on susceptibility-weighted imaging of patients with ischemic stroke and leukoaraiosis. Neurolog Res 2008;30:272–6.
24. WardlawJM, LewisSC, KeirSLet al. Cerebral microbleeds are associated with lacunar stroke defined clinically and radiologically, independently of white matter lesions. Stroke 2006;37:2633–6.
25. LeeSH, BaeHJ, KoSBet al. Comparative analysis of the spatial distribution and severity of cerebral microbleeds and old lacunes. J Neurol Neurosurg Psychiatry 2004;75:423–7.
26. KnudsenKA, RosandJ, KarlukDet al. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537–9.
27. HaglundM, PassantU, SjobeckMet al. Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia. Int J Geriatr Psychiatry 2006;21:681–7.
28. KimberlyWT, GilsonA, RostNSet al. Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology 2009;72:1230–5.
29. FazekasF, KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42.
30. RoobG, LechnerA, SchmidtRet al. Frequency and location of microbleeds in patients with primary intracerebral hemorrhage. Stroke 2000;31:2665–9.
31. SmithEE, NandigamKRN, ChenY-Wet al. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage. Stroke 2010:41:1933–8.
32. LimJB, KimE. Silent microbleeds and old hematomas in spontaneous cerebral hemorrhages. J Korean Neurosurg Soc 2009;46:38–44.
33. CopenhaverBR, HsiaAW, MerinoJGet al. Racial differences in microbleed prevalence in primary intracerebral hemorrhage. Neurology 2008;71:1176–82.
34. LeeSH, KimBJ, RohJK. Silent microbleeds are associated with volume of primary intracerebral hemorrhage. Neurology 2006;66:430–2.
35. ImaizumiT, HonmaT, HoritaYet al. Hematoma size in deep intracerebral hemorrhage and its correlation with dot-like hemosiderin spots on gradient echo T2*-weighted MRI. J Neuroimaging 2006;16:236–42.
36. SchmahmannJD, SmithEE, EichlerFSet al. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 2008;1142:266–309.
37. JeerakathilT, WolfPA, BeiserAet al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 2004;35:1831–5.
38. SveinbjornsdottirS, SigurdssonS, AspelundTet al. Cerebral microbleeds in the population based AGES–Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatry 2008;79:1002–6.
39. JeonSB, KwonSU, ChoAHet al. Rapid appearance of new cerebral microbleeds after acute ischemic stroke. Neurology 2009;73:1638–44.
40. JeongSW, JungKH, ChuKet al. Clinical and radiologic differences between primary intracerebral hemorrhage with and without microbleeds on gradient-echo magnetic resonance images. Arch Neurol 2004;61:905–9.
41. SmithEE, GurolME, EngJAet al. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology 2004;63:1606–12.
42. MaiaLF, VasconcelosC, SeixasSet al. Lobar brain hemorrhages and white matter changes: clinical, radiological and laboratorial profiles. Cerebrovasc Dis 2006;22:155–61.
43. ViswanathanA, GuichardJP, GschwendtnerAet al. Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain 2006;129:2375–83.
44. DichgansM, HoltmannspotterM, HerzogJet al. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002;33:67–71.
45. CordonnierC, van der FlierWM, SluimerJDet al. Prevalence and severity of microbleeds in a memory clinic setting. Neurology 2006;66:1356–60.
46. PettersenJA, SathiyamoorthyG, GaoFQet al. Microbleed topography, leukoaraiosis, and cognition in probable Alzheimer disease from the Sunnybrook dementia study. Arch Neurol 2008;65:790–5.
47. GoosJD, KesterMI, BarkhofFet al. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 2009;40:3455–60.
48. van EsAC, van der GrondJ, de CraenAJet al. Risk factors for cerebral microbleeds in the elderly. Cerebrovasc Dis 2008;26:397–403.
49. JouventE, ViswanathanA, ManginJFet al. Brain atrophy is related to lacunar lesions and tissue microstructural changes in CADASIL. Stroke 2007;38:1786–90.
50. RomeroJM, SchaeferPW, GrantPEet al. Diffusion MR imaging of acute ischemic stroke. Neuroimaging Clin North Am 2002;12:35–53.
51. PierpaoliC, JezzardP, BasserPJet al. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–48.
52. O’SullivanM, SummersPE, JonesDKet al. Normal-appearing white matter in ischemic leukoaraiosis: a diffusion tensor MRI study. Neurology 2001;57:2307–10.
53. ViswanathanA, PatelP, RahmanRet al. Tissue microstructural changes are independently associated with cognitive impairment in cerebral amyloid angiopathy. Stroke 2008;39:1988–92.
54. WardlawJM, FarrallA, ArmitagePAet al. Changes in background blood–brain barrier integrity between lacunar and cortical ischemic stroke subtypes. Stroke 2008;39:1327–32.
55. TopakianR, BarrickTR, HoweFAet al. Blood–brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 2010;81:192–7.
56. HuynhTJ, MurphyB, PettersenJAet al. CT perfusion quantification of small-vessel ischemic severity. AJNR Am J Neuroradiol 2008;29:1831–6.
57. QiuC, CotchMF, SigurdssonSet al. Retinal and cerebral microvascular signs and diabetes: the Age Gene/Environment Susceptibility–Reykjavik study. Diabetes 2008;57:1645–50.
58. JohnsonKA. Amyloid imaging of Alzheimer's disease using Pittsburgh Compound B. Curr Neurol Neurosci Rep 2006;6:496–503.
59. LockhartA, LambJR, OsredkarTet al. PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain 2007;130:2607–15.
60. JohnsonKA, GregasM, BeckerJAet al. Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 2007;62:229–34.
61. LyJV, DonnanGA, VillemagneVLet al. 11C-PIB binding is increased in patients with cerebral amyloid angiopathy-related hemorrhage. Neurology 2010;74:487–93.
62. GreenbergSM, EngJA, NingMet al. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–20.
63. RosandJ,MuzikanskyA, KumarAet al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol 2005;58:459–62.