Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2011
  • Online publication date: July 2011

Chapter 5 - Cerebral microbleedmimics

from Section 1 - Historical aspects, detection and interpretation


1. GreenbergSM, VernoojiMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
2. CordonnierC, Al-ShahiSalman R, WardlawJM. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130: 1988–2003.
3. CordonnierC, PotterGM, JacksonCAet al. Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 2009;40: 94–9.
4. GregoireSM, ChaudaryUJ, BrownMMet al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759–66.
5. CasanovaMF, AraqueJM. Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging. Psychiatry Res 2003;121:59–87.
6. JeonSB, KangDW. Cerebral air emboli on T2-weighted gradient echo magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2007;78:871.
7. AlmansoriM, NaikS, AhmedSN. Magnetic susceptibility in a patient with a metallic heart valve. Pak J Neurol Sci 208;3:40–1.
8. TsushimaY, EndoK. Hypointensities in the brain on T2*-weighted gradient echo magnetic resonance imaging. Curr Probl Diagn Radiol 2006;35:140–50.
9. WerringDJ. Cerebral microbleeds: clinical and pathophysiological significance. J Neuroimaging 2006;17:1–11.
10. HortobagyiT, Al-SarrajS. The significance of diffuse axonal injury: how to diagnose it and what does it tell us? Adv Clin Neurosci Rehabil 2008;8:16–18.
11. ScheidR, PreulC, GruberOet al. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol 2003;24:1049–56.
12. ClatterbuckRE, EberhartCG, CrainBJ, RigamontiD. Ultrastructural and immunocytochemical evidence that an incompetent blood–brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 2001;71:188–92.
13. RigamontiD, DrayerBP, JohnsonPCet al. The MRI appearance of cavernous malformations (angiomas). J Neurosurgery 1987;67:518–24.
14. ZabramaskiJM, WascherTM, SpetzlerRF. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurgery 1994;80:422–32.
15. ClatterbuckRE, ElmaciI, RigamontiD. The nature and fate of punctate (type IV) cavernous malformations. Neurosurgery 2001;49:26–30.
16. BlitsteinMK, TungGA. MRI of cerebral microhaemorrhages. Am J Radiol 2007;189:720–5.
17. HaackeEM, XuY, ChengYC, ReichenbachJR. Susceptibility- weighted imaging (SWI). Magn Reson Med 2004;52:612–18.
18. ThomasB, SomasundaramS, ThamburajKet al. Clinical applications of susceptibility weighted MR imaging of the brain: a pictorial review. Neuroradiology 2008;50:105–16.