Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: July 2014

4 - The neurophysiological basis of learning and memory in an advanced invertebrate: the octopus

from Part I - Cognition, brain and evolution

References

Bailey, C. H., Giustetto, M., Huang, Y. Y., Hawkins, R. D. and Kandel, E. R. (2000). Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory?Nature Reviews Neuroscience, 1(1): 11–20.
Boycott, B. B. (1961). The functional organization of the brain of the cuttlefishSepia officinalis. Proceedings of the Royal Society. B: Biological Sciences, 153: 503–534.
Boycott, B. B. and Young, J. Z. (1955). A memory system in Octopus vulgaris Lamarck. Proceedings of the Royal Society. B: Biological Sciences, 143(913): 449–480.
Budelmann, B. U. (1995). The cephalopods nervous system: what evolution has made of the molluscan design. In The nervous system of invertebrates: an evolutionary and comparative approach, Breidbach, O. and Kutsch, W., (eds). Basel: Birkhäuser Verlag, pp. 115–138.
Bullock, T. H. (1984). Ongoing compound field potentials from octopus brain are labile and vertebrate-like. Electroencephalography and Clinical Neurophysiology, 57(5): 473–483.
Bullock, T. H. and Basar, E. (1988). Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates. Brain Research, 472(1): 57–75.
Bullock, T. H. and Horridge, G. A. (1965). Structure and function in the nervous systems of invertebrates, San Francisco: W. H. Freeman.
Cassenaer, S. and Laurent, G. (2012). Conditional modulation of spike-timing-dependent plasticity for olfactory learning. Nature, 482(7383): 47–52.
Corkin, S. (2002). What’s new with the amnesic patient H. M.?Nature Reviews Neuroscience, 3(2): 153–160.
Fiorito, G. and Chichery, R. (1995). Lesions of the vertical lobe impair visual discrimination learning by observation in Octopus vulgaris. Neuroscience Letters, 192(2): 117–120.
Fiorito, G. and Scotto, P. (1992). Observational learning in Octopus vulgaris. Science, 256(5056): 545–547.
Garthwaite, J. (2008). Concepts of neural nitric oxide-mediated transmission. European Journal of Neuroscience, 27(11): 2783–2802.
Grasso, F. W. and Basil, J. A. (2009). The evolution of flexible behavioral repertoires in cephalopod molluscs. Brain Behavior and Evolution, 74(3): 231–245.
Gray, E. G. (1970). The fine structure of the vertical lobe of octopus brain. Philosophical Transactions of the Royal Society of London. Series B, 258: 379–394.
Gray, E. G. and Young, J. Z. (1964). Electron microscopy of synaptic structure of octopus brain. Journal of Cell Biology, 21: 87–103.
Hanlon, R. T. and Messenger, J. B. (1996). Cephalopod behaviour. Cambridge: Cambridge University Press.
Hochner, B. (2008). Octopuses. Current Biology, 18(19): R897–R898.
Hochner, B. (2010). Functional and comparative assessments of the octopus learning and memory system. Frontiers in Bioscience, 2: 764–771.
Hochner, B., Brown, E. R., Langella, M., Shomrat, T. and Fiorito, G. (2003). A learning and memory area in the octopus brain manifests a vertebrate-like long-termJournal of Neurophysiology, 90(5): 3547–3554.
Hochner, B., Shomrat, T. and Fiorito, G. (2006). The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms. The Biological Bulletin, 210(3): 308–317.
Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294(5544): 1030–1038.
Kandel, E. R., Schwartz, J. H. and Jessel, T. M. (2000). Principles of neural science, New York: McGraw-Hill.
Keene, A. C. and Waddell, S. (2007). Drosophila olfactory memory: single genes to complex neural circuits. Nature Reviews Neuroscience, 8(5): 341–354.
Kemenes, I., O’Shea, M. and Benjamin, P. R. (2011). Different circuit and monoamine mechanisms consolidate long-term memory in aversive and reward classical conditioning. European Journal of Neuroscience, 33(1): 143–152.
Lima, P. A., Nardi, G. and Brown, E. R. (2003). AMPA/kainate and NMDA-like glutamate receptors at the chromatophore neuromuscular junction of the squid: role in synaptic transmission and skin patterning. European Journal of Neuroscience, 17(3): 507–516.
Maldonado, H. (1965). The positive and negative learning process in Octopus vulgaris Lamarck. Influence of the vertical and median superior frontal lobes. Zeitschrift fur vergleichende Physiologie, 51: 185–203.
Matzner, H., Gutfreund, Y. and Hochner, B. (2000). Neuromuscular system of the flexible arm of the octopus: physiological characterization. Journal of Neurophysiology, 83(3): 1315–1328.
Miyakawa, H. and Kato, H. (1986). Active properties of dendritic membrane examined by current source density analysis in hippocampal CA1 pyramidal neurons. Brain Research, 399(2): 303–309.
Moser, E. I., Krobert, K. A., Moser, M. B. and Morris, R. G. M. (1998). Impaired spatial learning after saturation of long-term potentiation. Science, 281(5385): 2038–2042.
Nixon, M. and Young, J. Z. (2003). The brain and lives of cephalopods, Oxford: Oxford University Press.
Nowotny, T., Huerta, R., Abarbanel, H. D. and Rabinovich, M. (2005). Self-organization in the olfactory system: one shot odor recognition in insects. Biological Cybernetics, 93(6): 436–446.
Packard, A. (1972). Cephalopods and fish: the limits of convergence. Biological Reviews, 47: 241–307.
Robertson, J. D., Bonaventura, J. and Kohm, A. P. (1994). Nitric oxide is required for tactile learning in Octopus vulgaris. Proceedings of the Royal Society. B: Biological Sciences, 256(1347): 269–273.
Robertson, J. D., Bonaventura, J., Kohm, A. P. and Hiscat, M. (1996). Nitric oxide is necessary for visual learning in Octopus vulgaris. Proceedings of the Royal Society. B: Biological Sciences, 263(1377): 1739–1743.
Sanders, G. D. (1975). The cephalopods. In Invertebrate learning. Cephalopods and Echinoderms, Vol. 3, Corning, W. C., Dyal, J. A. and Willows, A. O. D., (eds). New York: Plenum Press, pp. 139–145.
Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30(5): 203–210.
Shomrat, T., Feinstein, N., Klein, M. and Hochner, B. (2010). Serotonin is a facilitatory neuromodulator of synaptic transmission and “reinforces” long-term potentiation induction in the vertical lobe ofOctopus vulgaris. Neuroscience, 169(1): 52–64.
Shomrat, T., Graindorge, N., Bellanger, C., Fiorito, G., Loewenstein, Y. and Hochner, B. (2011). Alternative sites of synaptic plasticity in two homologous “fan-out fan-in” learning and memory networks. Current Biology, 21(21): 1773–1782.
Shomrat, T., Zarrella, I., Fiorito, G. and Hochner, B. (2008). The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Current Biology, 18(5): 337–342.
Stellar, E. (1957). Physiological psychology. Annual Review of Psychology, 8: 415–436.
Susswein, A. J. and Chiel, H. J. (2012). Nitric oxide as a regulator of behavior: new ideas from Aplysia feeding. Progress in Neurobiology, 97(3): 304–317.
Vapnik, V. N. (1998). Statistical learning theory, New York: John Wiley and Sons, Inc.
Wells, M. J. (1978). Octopus, London: Chapman and Hall.
Young, J. Z. (1971). The anatomy of the nervous system of Octopus vulgaris, Oxford: Clarendon Press.
Young, J. Z. (1991). Computation in the learning-system of cephalopods. The Biological Bulletin, 180(2): 200–208.
Young, J. Z. (1995). Multiple matrices in the memory system of octopus. In Cephalopod Neurobiology, Abbott, J. N., Williamson, R. and Maddock, L., (eds). Oxford: Oxford University Press, pp. 431–443.
Zullo, L., Sumbre, G., Agnisola, C., Flash, T. and Hochner, B. (2009). Nonsomatotopic organization of the higher motor centers in octopus. Current Biology, 19: 1632–1636.