Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: July 2014

7 - Toward a Modular Analysis of Cell Mechanosensing and Mechanotransduction

Summary

Introduction

Cellular mechanosensing and -transduction are critical functions in the shaping of cells and tissues. Although an increasing literature details the proteins and complexes involved in mechanotransduction, how these mechanisms generate the mechanochemical functions of cell motility is often poorly understood. This is a result of the fact that cells can exhibit a number of different types of motility depending on factors such as cell type and local chemical and mechanical perturbations. Due to these factors, even a genetically homogeneous cell population presents a confusing array of different motility phenotypes to the experimentalist. Therefore, we suggest a new approach to understanding cell mechanical functions through reverse systems engineering. Through quantitative analysis, we have observed that, though motility over a population of cells is heterogeneous, at a particular time and location at the cell edge, a cell exhibits only one of a limited number of modular, morphodynamic states of the acto-myosin cytoskeleton. Furthermore, a single motility module can exhibit a heterogeneous cycle of individual steps, with chemical and mechanical interactions changing over the course of this cycle. Thus, much in the way an engineer would describe the functions of components in a car engine, we should be able to approach many problems in cell motility by first describing the molecular steps involved in the basic motility modules and then showing how signaling pathways regulate those modules in order to perform cell-wide functions. In the case of cell motility, we believe there are less than thirty distinct motility modules. With a detailed, quantitative understanding of normal cell motility functions, it will be possible to understand how their malfunction can result in disease processes and to develop therapies that target specific motility modules.

REFERENCES
Kostic, A., and Sheetz, M. P.. 2006. Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge. Mol Biol Cell 17: 2684–2695.
Giannone, G., and Sheetz, M. P.. 2006. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16: 213–223.
Vogel, V., and Sheetz, M.. 2006. Local force and geometry sensing regulate cell functions. Nature Revs 7: 265–275.
Glogauer, M., Arora, P., Yao, G., Sokholov, I., Ferrier, J., and McCulloch, C. A.. 1997. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci 110(Pt 1): 11–21.
Sawada, Y., Tamada, M., Dubin-Thaler, B. J., Cherniavskaya, O., Sakai, R., Tanaka, S., and Sheetz, M. P.. 2006. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127: 1015–1026.
Tamada, M., Sheetz, M. P., and Sawada, Y.. 2004. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7: 709–718.
Fillingham, I., Gingras, A. R., Papagrigoriou, E., Patel, B., Emsley, J., Critchley, D. R., Roberts, G. C., and Barsukov, I. L.. 2005. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13: 65–74.
Raucher, D., and Sheetz, M. P.. 1999. Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77: 1992–2002.
Raucher, D., and Sheetz, M. P.. 2000. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Bio 148: 127–136.
Heo, W. D., and Meyer, T.. 2003. Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell 113: 315–328.
Yoshida, K., and Soldati, T.. 2006. Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 119: 3833–3844.
Dubin-Thaler, B. J., Giannone, G., Dobereiner, H. G., and Sheetz, M. P.. 2004. Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and STEPs. Biophys J 86: 1794–1806.
Döbereiner, H. G., Dubin-Thaler, B., Giannone, G., Xenias, H. S., and Sheetz, M. P.. 2004. Dynamic phase transitions in cell spreading. Phys Rev Lett 93: 108105.
Ayala, R., Shu, T., and Tsai, L. H.. 2007. Trekking across the brain: The journey of neuronal migration. Cell 128: 29–43.
Marin, O., Valdeolmillos, M., and Moya, F.. 2006. Neurons in motion: Same principles for different shapes?Trends Neurosci 29: 655–661.
Friedl, P., den Boer, A. T., and Gunzer, M.. 2005. Tuning immune responses: Diversity and adaptation of the immunological synapse. Nat Rev Immunol 5: 532–545.
Sahai, E., and Marshall, C. J.. 2003. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719.
Wang, W., Wyckoff, J. B., Goswami, S., Wang, Y., Sidani, M., Segall, J. E., and Condeelis, J. S.. 2007. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67: 3505–3511.
Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H. G., Freund, Y., Borisy, G., and Sheetz, M. P.. 2007. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128: 561–575.
Dubin-Thaler, B., Hofman, J. M., Xenias, H., Spielman, I., Shneidman, A. V., David, L. A., Dobereiner, H. G., Wiggins, C. H., and Sheetz, M. P.. 2008. Quantification of cell edge velocities and fraction forces reveals distinct motility modules during cell spreading. PLOS ONE 3(11): e 3735.
Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M., and Faix, J.. 2005. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 7: 619–625.
DesMarais, V., Ghosh, M., Eddy, R., and Condeelis, J.. 2005. Cofilin takes the lead. J Cell Sci 118: 19–26.
Gupton, S. L., Anderson, K. L., Kole, T. P., Fischer, R. S., Ponti, A., Hitchcock-DeGregori, S. E., Danuser, G., Fowler, V. M., Wirtz, D., Hanein, D., and Waterman-Storer, C. M.. 2005. Cell migration without a lamellipodium: Translation of actin dynamics into cell movement mediated by tropomyosin. J Cell Biol 168: 619–631.
Machacek, M., and Danuser, G.. 2006. Morphodynamic profiling of protrusion phenotypes. Biophys J 90: 1439–1452.
Dubin-Thaler, B. J., Hofman, J. M., Cai, Y., Xenias, H., Spielman, I., Shneidman, A. V., David, L. A., Dobereiner, H. G., Wiggins, C. H., and Sheetz, M. P.. 2008. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading. PloS One 3: e 3735.
Gupton, S. L., and Waterman-Storer, C. M.. 2006. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125: 1361–1374.
Johnson, K. E. 1976. Circus movements and blebbing locomotion in dissociated embryonic cells of an amphibian, Xenopus laevis. J Cell Sci 22: 575–583.
Sims, T. N., Soos, T. J., Xenias, H., Dubin-Thaler, B., Hofman, J., Waite, J., Cameron, T. O., Thomas, V. K., Varma, R., Wiggins, C., Sheetz, M. P., Littman, D. R., and Dustin, M. L.. 2007. Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129: 773–785.
Vial, E., Sahai, E., and Marshall, C. J.. 2003. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67–79.
Munevar, S., Wang, Y. L., and Dembo, M.. 2004. Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117: 85–92.
Kirschner, M., and Gerhart, J.. 2005. The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, New Haven, CT.
Wittkopp, P. J. 2006. Evolution of cis-regulatory sequence and function in Diptera. Heredity 97: 139–147.
Han, Y. H., Chung, C. Y., Wessels, D., Stephens, S., Titus, M. A., Soll, D. R., and Firtel, R. A.. 2002. Requirement of a vasodilator-stimulated phosphoprotein family member for cell adhesion, the formation of filopodia, and chemotaxis in dictyostelium. J Biol Chem 277: 49877–49887.
Edwards, R. A., and Bryan, J.. 1995. Fascins, a family of actin bundling proteins. Cell Motility and the Cytoskeleton 32: 1–9.
Kureishy, N., Sapountzi, V., Prag, S., Anilkumar, N., and Adams, J. C.. 2002. Fascins, and their roles in cell structure and function. Bioessays 24: 350–361.
Applewhite, D. A., Barzik, M., Kojima, S. I., Svitkina, T. M., Gertler, F. B., and Borisy, G. G.. 2007. Ena/VASP proteins have an anti-capping independent function in filopodia formation. Mol Biol Cell. 18(7): 2579–2591.
Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A., and Boone, C.. 2002. Role of formins in actin assembly: Nucleation and barbed-end association. Science 297: 612–615.
Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N., and Pollard, T. D.. 2006. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124: 423–435.
Schirenbeck, A., Arasada, R., Bretschneider, T., Schleicher, M., and Faix, J.. 2005. Formins and VASPs may co-operate in the formation of filopodia. Biochem Soc Trans 33: 1256–1259.
Brangwynne, C. P., Koenderink, G. H., Barry, E., Dogic, Z., Mackintosh, F. C., and Weitz, D. A.. 2007. Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys J 93(1): 346–59.
Medalia, O., Beck, M., Ecke, M., Weber, I., Neujahr, R., Baumeister, W., and Gerisch, G.. 2007. Organization of actin networks in intact filopodia. Curr Biol 17: 79–84.
Vignjevic, D., Kojima, S., Aratyn, Y., Danciu, O., Svitkina, T., and Borisy, G. G.. 2006. Role of fascin in filopodial protrusion. J Cell Biol 174: 863–875.
Bohil, A. B., Robertson, B. W., and Cheney, R. E.. 2006. Myosin-X is a molecular motor that functions in filopodia formation. Proc Nat Acad Sci USA 103: 12411–12416.
Mattila, P. K., Pykalainen, A., Saarikangas, J., Paavilainen, V. O., Vihinen, H., Jokitalo, E., and Lappalainen, P.. 2007. Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176: 953–964.
Mejillano, M. R., Kojima, S., Applewhite, D. A., Gertler, F. B., Svitkina, T. M., and Borisy, G. G.. 2004. Lamellipodial versus filopodial mode of the actin nanomachinery: Pivotal role of the filament barbed end. Cell 118: 363–373.
Haviv, L., Brill-Karniely, Y., Mahaffy, R., Backouche, F., Ben-Shaul, A., Pollard, T. D., and Bernheim-Groswasser, A.. 2006. Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system. Proc Nat Acad Sci USA 103: 4906–4911.
Vignjevic, D., Yarar, D., Welch, M. D., Peloquin, J., Svitkina, T., and Borisy, G. G.. 2003. Formation of filopodia-like bundles in vitro from a dendritic network. J Cell Biol 160: 951–962.
Bukharova, T., Weijer, G., Bosgraaf, L., Dormann, D., van Haastert, P. J., and Weijer, C. J.. 2005. Paxillin is required for cell-substrate adhesion, cell sorting and slug migration during Dictyostelium development. J Cell Sci 118: 4295–4310.
Mallavarapu, A., and Mitchison, T.. 1999. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146: 1097–1106.
Betz, T., Lim, D., and Kas, J. A.. 2006. Neuronal growth: A bistable stochastic process. Phys Rev Lett 96: 098103–098104.
Medeiros, N. A., Burnette, D. T., and Forscher, P.. 2006. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8: 215–226.
Charras, G. T., Hu, C. K., Coughlin, M., and Mitchison, T. J.. 2006. Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175: 477–490.
Bereiter-Hahn, J., Luck, M., Miebach, T., Stelzer, H. K., and Voth, M.. 1990. Spreading of trypsinized cells: Cytoskeletal dynamics and energy requirements. J Cell Sci 96(Pt 1):171–188.
Boss, J. 1955. Mitosis in cultures of newt tissues. IV. The cell surface in late anaphase and the movements of ribonucleoprotein. Exp Cell Res 8: 181–187.
Keller, H., and Eggli, P.. 1998. Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Cell Motil Cytoskeleton 41: 181–193.
Mills, J. C., Stone, N. L., Erhardt, J., and Pittman, R. N.. 1998. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140: 627–636.
Sebbagh, M., Renvoize, C., Hamelin, J., Riche, N., Bertoglio, J., and Breard, J.. 2001. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3: 346–352.
Coleman, M. L., Sahai, E. A., Yeo, M., Bosch, M., Dewar, A., and Olson, M. F.. 2001. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3: 339–345.
Charras, G. T., Yarrow, J. C., Horton, M. A., Mahadevan, L., and Mitchison, T. J.. 2005. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435: 365–369.
McCarthy, N. J., Whyte, M. K., Gilbert, C. S., and Evan, G. I.. 1997. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136: 215–227.
Mills, J. C., Stone, N. L., and Pittman, R. N.. 1999. Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 146: 703–708.
Barros, L. F., Kanaseki, T., Sabirov, R., Morishima, S., Castro, J., Bittner, C. X., Maeno, E., Ando-Akatsuka, Y., and Okada, Y.. 2003. Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death and Differentiation 10: 687–697.
Kogel, D., Prehn, J. H., and Scheidtmann, K. H.. 2001. The DAP kinase family of pro-apoptotic proteins: novel players in the apoptotic game. Bioessays 23: 352–358.
Deschesnes, R. G., Huot, J., Valerie, K., and Landry, J.. 2001. Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol Biol Cell 12: 1569–1582.
Huot, J., Houle, F., Marceau, F., and Landry, J.. 1997. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80: 383–392.
Huot, J., Houle, F., Rousseau, S., Deschesnes, R. G., Shah, G. M., and Landry, J.. 1998. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143: 1361–1373.
Totsukawa, G., Yamakita, Y., Yamashiro, S., Hartshorne, D. J., Sasaki, Y., and Matsumura, F.. 2000. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J Cell Biol 150: 797–806.
Totsukawa, G., Wu, Y., Sasaki, Y., Hartshorne, D. J., Yamakita, Y., Yamashiro, S., and Matsumura, F.. 2004. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164: 427–439.
Yamaji, S., Suzuki, A., Kanamori, H., Mishima, W., Yoshimi, R., Takasaki, H., Takabayashi, M., Fujimaki, K., Fujisawa, S., Ohno, S., and Ishigatsubo, Y.. 2004. Affixin interacts with alpha-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell-substrate interaction. J Cell Biol 165: 539–551.
Bailly, M., Condeelis, J. S., and Segall, J. E.. 1998. Chemoattractant-induced lamellipod extension. Microsc Res Tech 43: 433–443.
Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., and Condeelis, J. S.. 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304: 743–746.
Horstman, D. A., DeStefano, K., and Carpenter, G.. 1996. Enhanced phospholipase C-gamma1 activity produced by association of independently expressed X and Y domain polypeptides. Proc Nat Acad Sci USA 93: 7518–7521.
Theriot, J. A., and Mitchison, T. J.. 1991. Actin microfilament dynamics in locomoting cells. Nature 352: 126–131.
Azuma, T., Witke, W., Stossel, T. P., Hartwig, J. H., and Kwiatkowski, D. J.. 1998. Gelsolin is a downstream effector of rac for fibroblast motility. EMBO J 17: 1362–1370.
Yamazaki, D., Fujiwara, T., Suetsugu, S., and Takenawa, T.. 2005. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading. Genes Cells 10: 381–392.
Gov, N. S., and Gopinathan, A.. 2006. Dynamics of membranes driven by actin polymerization. Biophys J 90: 454–469.
Wolgemuth, C. W. 2005. Lamellipodial contractions during crawling and spreading. Biophys J 89: 1643–1649.
Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M., and Danuser, G.. 2004. Two distinct actin networks drive the protrusion of migrating cells. Science 305: 1782–1786.