Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T08:33:21.381Z Has data issue: false hasContentIssue false

6 - Role of Ion Channels in Cellular Mechanotransduction – Lessons from the Vascular Endothelium

Published online by Cambridge University Press:  05 July 2014

Abdul I. Barakat
Affiliation:
University of California, Davis
Andrea Gojova
Affiliation:
University of California, Davis
Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Introduction

Two essential functions of arterial endothelium are flow-mediated vasoregulation in response to acute changes in blood flow and vascular wall remodeling in response to chronic hemodynamic alterations [1, 2]. Both of these functions require arterial endothelial cells (ECs) to be capable of sensing the mechanical forces associated with blood flow and of transducing these forces into biochemical signals that mediate structural and functional responses. Mechanosensing and -transduction in arterial endothelium also play a critical role in the development and localization of atherosclerosis. The topography of early atherosclerotic lesions is highly focal and correlates with arterial regions that are exposed to low and/or oscillatory shear stress [3, 4]. There is mounting evidence that low and oscillatory shear stress elicit a pro-inflammatory and adhesive EC phenotype, whereas relatively high and nonreversing pulsatile shear stress induce a phenotype that is largely anti-inflammatory [5–9]. In light of the central role of EC inflammation in atherogenesis [9–14], the key to understanding the involvement of flow in the development of atherosclerosis may lie in determining the mechanisms governing the differential responsiveness of ECs to different types of flows.

The current concept of EC mechanotransduction postulates that it involves a sequential progression of events involving sensing of the mechanical stimulus, transduction of the stimulus to a biochemical signal, and cellular reaction and subsequent possible adaptation to the new mechanical environment [15–19]. Consistent with this construct, a number of candidate mechanosensors have been proposed. These include stretch- and flow-sensitive ion channels [20–27], cell-surface integrins at both the luminal and basal cell surfaces [19, 28], the cellular cytoskeletal network [15], subregions of the cell membrane or the entire membrane [29, 30], membrane-associated GTP-binding proteins (or G-proteins) [31, 32] and G-protein–coupled receptors [33], cell–cell junction constituents including platelet–EC adhesion molecule-1 (PECAM-1) [34], and the glycocalyx at the cell luminal surface [35–37]. The rationale for classifying these various structures as candidate mechanosensors is threefold: 1) They are associated with the cell membrane, where the effects of an externally applied force would likely be most immediately felt; 2) they generally respond very rapidly following the onset of the mechanical stimulus; and 3) interfering with the activation of these structures abrogates, or at least significantly diminishes, some of the downstream responses induced by the applied mechanical force. It remains unclear, however, how these various structures interact with one another to potentially form an integrated mechanosensory system.

Type
Chapter
Information
Cellular Mechanotransduction
Diverse Perspectives from Molecules to Tissues
, pp. 161 - 180
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Langille, B. L. and O’Donnell, F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 231: 405–407, 1986.CrossRefGoogle ScholarPubMed
Pohl, U., Holtz, J., Busse, R., and Bassenge, E. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension. 8: 37–44, 1986.CrossRefGoogle ScholarPubMed
Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5: 293–302, 1985.CrossRefGoogle ScholarPubMed
Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng. 114: 274–282, 1992.CrossRefGoogle ScholarPubMed
Barakat, A. I. and Lieu, D. K. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys. 38: 323–343, 2003.CrossRefGoogle ScholarPubMed
Cunningham, K. S. and Gotlieb, A. I. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 85: 9–23, 2005.CrossRefGoogle ScholarPubMed
Dai, G., Kaazempur-Mofrad, M. R., Natarajan, S., Zhang, Y., Vaughn, S., Blackman, B. R., Kamm, R. D., Garcia-Cardena, G., and Gimbrone, M. A.. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA. 101: 14871–14876, 2004.CrossRefGoogle ScholarPubMed
Passerini, A. G., Polacek, D. C., Shi, C., Francesco, N. M., Manduchi, E., Grant, G. R., Pritchard, W. F., Powell, S., Chang, G. Y., Stoeckert, C. J., and Davies, P. F. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA. 101: 2482–2487, 2004.CrossRefGoogle Scholar
Tedgui, A. and Mallat, Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res. 88: 877–887, 2001.CrossRefGoogle ScholarPubMed
Libby, P. Inflammation in atherosclerosis. Nature. 420: 868–874, 2002.CrossRefGoogle ScholarPubMed
Libby, P. Atherosclerosis: The new view. Sci Am. 286: 46–55, 2002.CrossRefGoogle ScholarPubMed
Libby, P., Ridker, P. M., and Maseri, A. Inflammation and atherosclerosis. Circulation. 105: 1135–1143, 2002.CrossRefGoogle Scholar
Ross, R. Atherosclerosis is an inflammatory disease. Am Heart J. 138: S419–420, 1999.CrossRefGoogle ScholarPubMed
Ross, R. Atherosclerosis – An inflammatory disease. N Engl J Med. 340: 115–126, 1999.CrossRefGoogle ScholarPubMed
Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 75: 519–560, 1995.CrossRefGoogle ScholarPubMed
Huang, H., Kamm, R. D., and Lee, R. T. Cell mechanics and mechanotransduction: Pathways, probes, and physiology. Am J Physiol. 287: C1–11, 2004.CrossRefGoogle ScholarPubMed
Kaazempur Mofrad, M. R., Abdul-Rahim, N. A., Karcher, H., Mack, P. J., Yap, B., and Kamm, R. D. Exploring the molecular basis for mechanosensation, signal transduction, and cytoskeletal remodeling. Acta Biomater. 1: 281–293, 2005.CrossRefGoogle ScholarPubMed
Kamm, R. D. and Kaazempur-Mofrad, M. R. On the molecular basis for mechanotransduction. Mech Chem Biosyst. 1: 201–209, 2004.Google ScholarPubMed
Li, Y. S., Haga, J. H., and Chien, S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 38: 1949–1971, 2005.CrossRefGoogle ScholarPubMed
Barakat, A. I., Leaver, E. V., Pappone, P. A., and Davies, P. F. A flow-activated chloride-selective membrane current in vascular endothelial cells. Circ Res. 85: 820–828, 1999.CrossRefGoogle ScholarPubMed
Hoger, J. H., Ilyin, V. I., Forsyth, S., and Hoger, A. Shear stress regulates the endothelial Kir2.1 ion channel. Proc Natl Acad Sci USA. 99: 7780–7785, 2002.CrossRefGoogle ScholarPubMed
Kung, C. A possible unifying principle for mechanosensation. Nature. 436: 647–654, 2005.CrossRefGoogle ScholarPubMed
Martinac, B. Mechanosensitive ion channels: Molecules of mechanotransduction. J Cell Sci. 117: 2449–2460, 2004.CrossRefGoogle ScholarPubMed
Nilius, B. and Droogmans, G. Ion channels and their functional role in vascular endothelium. Physiol Rev. 81: 1415–1459, 2001.CrossRefGoogle ScholarPubMed
Olesen, S. P., Clapham, D. E., and Davies, P. F. Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature. 331: 168–170, 1988.CrossRefGoogle Scholar
Perozo, E. Gating prokaryotic mechanosensitive channels. Nat Rev Mol Cell Biol. 7: 109–119, 2006.CrossRefGoogle ScholarPubMed
Sachs, F. and Morris, C. E. Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol. 132: 1–77, 1998.CrossRefGoogle ScholarPubMed
Shyy, J. Y. and Chien, S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol. 9: 707–713, 1997.CrossRefGoogle ScholarPubMed
Butler, P. J., Norwich, G., Weinbaum, S., and Chien, S. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am J Physiol. 280: C962–969, 2001.CrossRefGoogle ScholarPubMed
Haidekker, M. A., L’Heureux, N., and Frangos, J. A. Fluid shear stress increases membrane fluidity in endothelial cells: A study with DCVJ fluorescence. Am J Physiol. 278: H1401–1406, 2000.Google ScholarPubMed
Gudi, S., Nolan, J. P., and Frangos, J. A. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci USA. 95: 2515–2519, 1998.CrossRefGoogle ScholarPubMed
Gudi, S. R., Clark, C. B., and Frangos, J. A. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res. 79: 834–839, 1996.CrossRefGoogle ScholarPubMed
Chachisvilis, M., Zhang, Y. L., and Frangos, J. A. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA. 103: 15463–15468, 2006.CrossRefGoogle ScholarPubMed
Tzima, E., Irani-Tehrani, M., Kiosses, W. B., Dejana, E., Schultz, D. A., Engelhardt, B., Cao, G., DeLisser, H., and Schwartz, M. A. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 437: 426–431, 2005.CrossRefGoogle ScholarPubMed
Pahakis, M. Y., Kosky, J. R., Dull, R. O., and Tarbell, J. M. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem Biophys Res Commun. 355: 228–233, 2007.CrossRefGoogle ScholarPubMed
Thi, M. M., Tarbell, J. M., Weinbaum, S., and Spray, D. C. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc Natl Acad Sci USA. 101: 16483–16488, 2004.CrossRefGoogle ScholarPubMed
Weinbaum, S., Zhang, X., Han, Y., Vink, H., and Cowin, S. C. Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA. 100: 7988–7995, 2003.CrossRefGoogle ScholarPubMed
Geiger, R. V., Berk, B. C., Alexander, R. W., and Nerem, R. M. Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis. Am J Physiol. 262: C1411–1417, 1992.CrossRefGoogle ScholarPubMed
Shen, J., Luscinskas, F. W., Connolly, A., Dewey, C. F., and Gimbrone, M. A.. Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am J Physiol. 262: C384–390, 1992.CrossRefGoogle ScholarPubMed
Tseng, H., Peterson, T. E., and Berk, B. C. Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res. 77: 869–878, 1995.CrossRefGoogle ScholarPubMed
Yan, C., Takahashi, M., Okuda, M., Lee, J. D., and Berk, B. C. Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells: Dependence on tyrosine kinases and intracellular calcium. J Biol Chem. 274: 143–150, 1999.CrossRefGoogle ScholarPubMed
Lan, Q., Mercurius, K. O., and Davies, P. F. Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun. 201: 950–956, 1994.CrossRefGoogle ScholarPubMed
Garcia-Cardena, G., Comander, J., Anderson, K. R., Blackman, B. R., and Gimbrone, M. A.. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA. 98: 4478–4485, 2001.CrossRefGoogle ScholarPubMed
Malek, A. M. and Izumo, S. Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens. 12: 989–999, 1994.CrossRefGoogle ScholarPubMed
Dewey, C. F., Bussolari, S. R., Gimbrone, M. A., and Davies, P. F. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 103: 177–185, 1981.CrossRefGoogle ScholarPubMed
Eskin, S. G., Ives, C. L., McIntire, L. V., and Navarro, L. T. Response of cultured endothelial cells to steady flow. Microvasc Res. 28: 87–94, 1984.CrossRefGoogle ScholarPubMed
Nerem, R. M., Levesque, M. J., and Cornhill, J. F. Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng. 103: 172–176, 1981.CrossRefGoogle ScholarPubMed
Gautam, M., Shen, Y., Thirkill, T. L., Douglas, G. C., and Barakat, A. I. Flow-activated chloride channels in vascular endothelium – Shear stress sensitivity, desensitization dynamics, and physiological implications. J Biol Chem. 281: 36492–36500, 2006.CrossRefGoogle ScholarPubMed
Dull, R. O. and Davies, P. F. Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells. Am J Physiol. 261: H149–154, 1991.Google ScholarPubMed
Barbee, K. A., Mundel, T., Lal, R., and Davies, P. F. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol. 268: H1765–1772, 1995.Google ScholarPubMed
Lansman, J. B., Hallam, T. J., and Rink, T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers?Nature. 325: 811–813, 1987.CrossRefGoogle ScholarPubMed
Hoyer, J., Distler, A., Haase, W., and Gogelein, H. Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium. Proc Natl Acad Sci USA. 91: 2367–2371, 1994.CrossRefGoogle ScholarPubMed
Popp, R., Hoyer, J., Meyer, J., Galla, H. J., and Gogelein, H. Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol. 454: 435–449, 1992.CrossRefGoogle ScholarPubMed
Hoyer, J., Kohler, R., Haase, W., and Distler, A.. Up-regulation of pressure-activated Ca2+-permeable cation channel in intact vascular endothelium of hypertensive rats. Proc Natl Acad Sci USA. 93: 11253–11258, 1996.CrossRefGoogle Scholar
Morris, C. E. and Sigurdson, W. J. Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science. 243: 807–809, 1989.CrossRefGoogle ScholarPubMed
Carattino, M. D., Sheng, S., and Kleyman, T. R. Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem. 279: 4120–4126, 2004.CrossRefGoogle ScholarPubMed
Satlin, L. M., Sheng, S., Woda, C. B., and Kleyman, T. R. Epithelial Na+ channels are regulated by flow. Am J Physiol. 280: F1010–1018, 2001.Google ScholarPubMed
Kohler, R., Heyken, W. T., Heinau, P., Schubert, R., Si, H., Kacik, M., Busch, C., Grgic, I., Maier, T., and Hoyer, J. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol. 26: 1495–1502, 2006.CrossRefGoogle ScholarPubMed
Schwarz, G., Droogmans, G., and Nilius, B. Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflugers Archiv. 421: 394–396, 1992.CrossRefGoogle ScholarPubMed
Jow, F. and Numann, R. Fluid flow modulates calcium entry and activates membrane currents in cultured human aortic endothelial cells. J Memb Biol. 171: 127–139, 1999.CrossRefGoogle ScholarPubMed
Moccia, F., Villa, A., and Tanzi, F. Flow-activated Na+ and K+ current in cardiac microvascular endothelial cells. J. Mol Cell Cardiol. 32: 1589–1593, 2000.CrossRefGoogle Scholar
Traub, O., Ishida, T., Ishida, M., Tupper, J. C., and Berk, B. C. Shear stress-mediated extracellular signal-regulated kinase activation is regulated by sodium in endothelial cells. J Biol Chem. 274: 20144–20150, 1999.CrossRefGoogle ScholarPubMed
Nakao, M., Ono, K., Fujisawa, S., and Iijima, T. Mechanical stress-induced Ca2+ entry and Cl− current in cultured human aortic endothelial cells. Am J Physiol. 276: C238–C249, 1999.CrossRefGoogle ScholarPubMed
Jacobs, E. R., Cheliakine, C., Gebremedhin, D., Birks, E. K., Davies, P. F., and Harder, D. R. Shear activated channels in cell-attached patches of cultured bovine aortic endothelial cells. Pflugers Arch. 431: 129–131, 1995.CrossRefGoogle ScholarPubMed
Lieu, D. K., Pappone, P. A., and Barakat, A. I. Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells. Am J Physiol. 286: C1367–C1375, 2004.CrossRefGoogle ScholarPubMed
Forsyth, S. E., Hoger, A., and Hoger, J. H. Molecular cloning and expression of a bovine endothelial inward rectifier potassium channel. FEBS Lett. 409: 277–282, 1997.CrossRefGoogle ScholarPubMed
Chatterjee, S., Al-Mehdi, A., Levitan, I., Stevens, T., and Fisher, A. B. Shear stress increases expression of a KATP Channel in rat and bovine pulmonary vascular endothelial cells. Am J Physiol Cell Physiol. 285: C959–C967, 2003.CrossRefGoogle ScholarPubMed
Brakemeier, S., Kersten, A., Eichler, I., Grgic, I., Zakrzewicka, A., Hopp, H., Kohler, R., and Hoyer, J. Shear stress-induced up-regulation of the intermediate-conductance Ca2+-activated K+ channel in human endothelium. Cardiovasc Res. 60: 488–496, 2003.CrossRefGoogle Scholar
Britt, J. C. and Brenner, H. R. Rapid drug application resolves two types of nicotinic receptors on rat sympathetic ganglion cells. Pflugers Arch. 434: 38–48, 1997.CrossRefGoogle ScholarPubMed
Romanenko, V. G., Davies, P. F., and Levitan, I. Dual effect of fluid shear stress on volume-regulated anion current in bovine aortic endothelial cells. Am J Physiol. 282: C708–C718, 2002.CrossRefGoogle ScholarPubMed
Nilius, B., Oike, M., Zahradnik, I., and Droogmans, G. Activation of a Cl− current by hypotonic volume increase in human endothelial cells. J Gen Physiol. 103: 787–805, 1994.CrossRefGoogle ScholarPubMed
Mason, M. J., Hussain, J. F., and Mahaut-Smith, M. P. A novel role for membrane potential in the modulation of intracellular Ca2+ oscillations in rat megakaryocytes. J Physiol. 524(Pt 2): 437–446, 2000.CrossRefGoogle ScholarPubMed
Hoyer, J., Kohler, R., and Distler, A. Mechanosensitive Ca2+ oscillations and STOC activation in endothelial cells. FASEB J. 12: 359–366, 1998.CrossRefGoogle ScholarPubMed
Cooke, J. P., Rossitch, E., Andon, N. A., Loscalzo, J., and Dzau, V. J. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 88: 1663–1671, 1991.CrossRefGoogle ScholarPubMed
Ohno, M., Gibbons, G. H., Dzau, V. J., and Cooke, J. P. Shear stress elevates endothelial cGMP – Role of a potassium channel and G-protein coupling. Circulation. 88: 193–197, 1993.CrossRefGoogle ScholarPubMed
Ohno, M., Cooke, J. P., Dzau, V. J., and Gibbons, G. H. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest. 95: 1363–1369, 1995.CrossRefGoogle ScholarPubMed
Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., Nerem, R. M., and Harrison, D. G. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 269: C1371–1378, 1995.CrossRefGoogle ScholarPubMed
Suvatne, J., Barakat, A. I., and O’Donnell, M. E. Flow-induced expression of endothelial Na-K-Cl cotransport: Dependence on K+ and Cl− channels. Am J Physiol. 280: C216–C227, 2001.CrossRefGoogle ScholarPubMed
Gojova, A. and Barakat, A. I. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol. 98: 2355–2362, 2005.CrossRefGoogle ScholarPubMed
Milner, P., Kirkpatrick, K. A., Ralevic, V., Toothill, V., Pearson, J., and Burnstock, G. Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow. Proc Biol Sci. 241: 245–248, 1990.CrossRefGoogle ScholarPubMed
Denk, W., Holt, J. R., Shepherd, G. M., and Corey, D. P. Calcium imaging of single stereocilia in hair cells: Localization of transduction channels at both ends of tip links. Neuron. 15: 1311–1321, 1995.CrossRefGoogle ScholarPubMed
Fettiplace, R. and Hackney, C. M. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci. 7: 19–29, 2006.CrossRefGoogle ScholarPubMed
Hudspeth, A. J. How the ear’s works work. Nature. 341: 397–404, 1989.CrossRefGoogle ScholarPubMed
Barakat, A. I., Lieu, D. K., and Gojova, A. Secrets of the code: Do vascular endothelial cells use ion channels to decipher complex flow signals?Biomaterials. 27: 671–678, 2006.CrossRefGoogle ScholarPubMed
Gautam, M., Gojova, A., and Barakat, A. I. Flow-activated ion channels in vascular endothelium. Cell Biochem Biophys. 46: 277–284, 2006.CrossRefGoogle ScholarPubMed
Hamill, O. P. and Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol Rev. 81: 685–740, 2001.CrossRefGoogle ScholarPubMed
Hamill, O. P. and McBride, D. W.. Mechanogated channels in Xenopus oocytes: Different gating modes enable a channel to switch from a phasic to a tonic mechanotransducer. Biol Bull. 192: 121–122, 1997.CrossRefGoogle ScholarPubMed
Squire, J. M., Chew, M., Nneji, G., Neal, C., Barry, J., and Michel, C. Quasi-periodic substructure in the microvessel endothelial glycocalyx: A possible explanation for molecular filtering?J Struct Biol. 136: 239–255, 2001.CrossRefGoogle ScholarPubMed
Bilston, L. E. and Mylvaganam, K. Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Lett. 512: 185–190, 2002.CrossRefGoogle ScholarPubMed
Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science. 282: 2220–2226, 1998.CrossRefGoogle ScholarPubMed
Gullingsrud, J., Kosztin, D., and Schulten, K. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J. 80: 2074–2081, 2001.CrossRefGoogle ScholarPubMed
Moe, P. and Blount, P. Assessment of potential stimuli for mechano-dependent gating of MscL: Effects of pressure, tension, and lipid headgroups. Biochemistry. 44: 12239–12244, 2005.CrossRefGoogle ScholarPubMed
Sukharev, S. Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J. 13(Suppl): S55–S61, 1999.CrossRefGoogle ScholarPubMed
Charras, G. T., Williams, B. A., Sims, S. M., and Horton, M. A. Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J. 87: 2870–2884, 2004.CrossRefGoogle ScholarPubMed
Fung, Y. C. and Liu, S. Q. Elementary mechanics of the endothelium of blood vessels. J Biomech Eng. 115: 1–12, 1993.CrossRefGoogle ScholarPubMed
Romaneneko, V. G., Rothblat, G. H., and Levitan, I. Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J. 83: 3211–3222, 2002.CrossRefGoogle Scholar
Simmons, C. A., Grant, G. R., Manduchi, E., and Davies, P. F. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 96: 792–799, 2005.CrossRefGoogle ScholarPubMed
Simmons, C. A., Zilberberg, J., and Davies, P. F. A rapid, reliable method to isolate high quality endothelial RNA from small spatially-defined locations. Ann Biomed Eng. 32: 1453–1459, 2004.CrossRefGoogle ScholarPubMed
Yang, M. B., Vacanti, J. P., and Ingber, D. E. Hollow fibers for hepatocyte encapsulation and transplantation: Studies of survival and function in rats. Cell Transplant. 3: 373–385, 1994.CrossRefGoogle ScholarPubMed
Bausch, A. R., Moller, W., and Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J. 76: 573–579, 1999.CrossRefGoogle ScholarPubMed
Feneberg, W., Aepfelbacher, M., and Sackmann, E. Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers. Biophys J. 87: 1338–1350, 2004.CrossRefGoogle ScholarPubMed
Lo, C. M. and Ferrier, J. Electrically measuring viscoelastic parameters of adherent cell layers under controlled magnetic forces. Eur Biophys J. 28: 112–118, 1999.CrossRefGoogle ScholarPubMed
Shkulipa, S. A., den Otter, W. K., and Briels, W. J. Simulations of the dynamics of thermal undulations in lipid bilayers in the tensionless state and under stress. J Chem Phys. 125: 234905, 2006.CrossRefGoogle Scholar
Wohlert, J. and Edholm, O. Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion. J Chem Phys. 125: 204703, 2006.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×