Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 17
  • Print publication year: 2010
  • Online publication date: July 2014

2 - Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations

Summary

Introduction

Phylogeny of the Carnivora – molecules, fossils, and total evidence

Fossil taxa are inherently at a disadvantage in resolving phylogenetic relationships, relative to living forms, as soft anatomy, DNA, physiology, and most life-history attributes are not readily available for the vast majority of these taxa, other than some fascinating new sequences available for Pleistocene fossil taxa (e.g. Smilodon, Homotherium, Miracinonyx, Ursus spelaeus, etc.; Loreille et al., 2001; Barnett et al., 2005). Nevertheless, fossil data possess several key advantages in phylogenetic analyses, including the ability to break-up ‘long branches’ in phylogenies, where the divergence between modern-day clades occurred deep in geological time. Fossils preserve morphologies that can become obscured along these long branches, and also provide temporal context for the evolution of living clades that may be crucial for accurately reconstructing ancestral conditions and partitioning synapomorphic versus homoplasious resemblances among modern-day taxa. Some workers feel that molecular data are inherently superior for reconstructing phylogeny than morphological characters (see for example: Scotland et al., 2003; but see Jenner, 2004), and as a consequence, phylogenies for many clades, particularly those that are not well represented in the fossil record, often are based solely on molecular sequence data. Within Carnivora, for example, the most recent studies reconstructing phylogenetic relationships among living taxa have relied principally on molecular sequences (e.g. Flynn et al., 2000, 2005).

References
Allard, M. W. and Carpenter, J. M. (1996). On weighting and congruence. Cladistics, 12, 183–98.
Alroy, J. (1998). Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280, 731–34.
Anyonge, W. (1993). Body-mass in large extant and extinct carnivores. Journal of Zoology, 231, 339–50.
Arango, C. P. and Wheeler, W. C. (2007). Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics, 23, 255–93.
Arnason, U., Bodin, K., Gullberg, A., Ledje, C. and Mouchaty, S. (1995). A molecular view of pinniped relationships with particular emphasis on the true seals. Journal of Molecular Evolution, 40, 78–85.
Arnason, U., Gullberg, A., Janke, A., et al. (2006). Pinniped phylogeny and a new hypothesis for their origin and dispersal. Molecular Phylogenetics and Evolution, 41, 345–54.
Arnason, U., Gullberg, A., Janke, A. and Kullberg, M. (2007). Mitogenomic analyses of caniform relationships. Molecular Phylogenetics and Evolution, 45, 863–74.
Asher, R. J. (2007). A web-database of mammalian morphology and a reanalysis of placental phylogeny. BMC Evolutionary Biology 2007, 7, 108 (10 pages; doi 10.1186/1471–2148–7–108).
Asher, R. J., Emry, R. J. and McKenna, M. C. (2005). New material of Centetodon (Mammalia, Lipotyphla) and the importance of (missing) DNA sequences in systematic paleontology. Journal of Vertebrate Paleontology, 25, 911–23.
Baker, R. H. and DeSalle, R. (1997). Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Systematic Biology, 46, 654–73.
Bardeleben, C., Moore, R. L. and Wayne, R. K. (2005). A molecular phylogeny of the Canidae based on six nuclear loci. Molecular Phylogenetics and Evolution, 37, 815–31.
Barnett, R., Barnes, I., Phillips, M. J., et al. (2005). Evolution of the extinct sabretooths and the American cheetah-like cat. Current Biology, 15(15), R589–90.
Berta, A., Sumich, J. L. and Kovacs, K. M. (2006). Marine Mammals: Evolutionary Biology, 2nd edn. San Diego, CA: Academic Press, 560 pp.
Bond, J. E. and Hedin, M. (2006). A total evidence assessment of the phylogeny of North American euctenizine trapdoor spiders (Araneae, Mygalomorphae, Cyrtaucheniidae) using Bayesian inference. Molecular Phylogenetics and Evolution, 41, 70–85.
Bookstein, F. L., Gingerich, P. D. and Kluge, A. G. (1978). Hierarchical linear modeling of the tempo and mode of evolution. Paleobiology, 4, 120–34.
Bryant, H. N. (1991). Phylogenetic relationships and systematics of the Nimravidae (Carnivora). Journal of Mammalogy, 72, 56–78.
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York, NY: Springer, 488 pp.
Cantino, P. D. and deQuiroz, K. (eds.) (2007). Phylocode. International Code of Phylogenetic Nomenclature, version 4b (12 September 2007; ).
Carbone, C., Mace, G. M., Roberts, S. C. and Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–88.
Carbone, C., Teacher, A. and Rowcliffe, J. M. (2007). The cost of carnivory. PLoS Biology, 5, 363–68.
Clark, J. (1939) Miacis gracilis, a new carnivore from the Uinta Eocene. Annals of Carnegie Museum, 27, 349–70.
Conroy, G. C. (1987). Problems of body weight estimation in fossil Primates. International Journal of Primatology, 8, 115–38.
Cope, E. D. (1880). On the genera of the Creodonta. Proceedings of the American Philosophical Society, 19, 76–82.
Dagosto, M. and Terranova, C. J. (1992). Estimating the body size of Eocene Primates: A comparison of results from dental and postcranial variables. International Journal of Primatology, 13, 307–44.
Dalerum, F. (2007). Phylogenetic reconstruction of carnivore social organizations. Journal of Zoology, 273, 90–97.
Damuth, J. and MacFadden, B. J. (1990). Introduction: body size and its estimation. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 1–9.
Davis, C. S., Delisle, I., Stirling, I., Siniff, D. B. and Strobeck, C. (2004). A phylogeny of the extant Phocidae inferred from complete mitochondrial DNA coding regions. Molecular Phylogenetics and Evolution, 33, 363–77.
Davis, D. D. (1964). The giant panda: a morphological study of evolutionary mechanisms. Fieldiana Zoology Memoirs, 3: 1–339.
Delisle, I. and Strobeck, C. (2005). A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. Molecular Phylogenetics and Evolution, 37, 192–201.
Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., Jablonski, N. G. and Dechow, P. C. (2000). Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropological Papers of the American Museum of Natural History, 83, 1–159.
Delsuc, F., Scally, M., Madsen, O., et al. (2002). Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Molecular Biology and Evolution, 19, 1656–71.
Dragoo, J. W., Bradley, R. D., Honeycutt, R. L. and Templeton, J. W. (1993). Phylogenetic relationships among the skunks: a molecular perspective. Journal of Mammalian Evolution, 1(4), 255–67.
Dragoo, J. W. and Honeycutt, R. L. (1997). Systematics of mustelid-like carnivores. Journal of Mammalogy, 78, 426–43.
Dunbar, R. I. M. and Bever, J. (1998). Neocortex size predicts group size in carnivores and some insectivores. Ethology, 104, 695–708.
Eisenberg, J. F. (1990). The behavioral/ecological significance of body size in the Mammalia. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 25–37.
Elton, S., Bishop, L. C. and Wood, B. (2001). Comparative context of Plio-Pleistocene hominin brain evolution. Journal of Human Evolution, 41, 1–27.
Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.
Finarelli, J. A. (2006). Estimation of endocranial volume through the use of external skull measures in the Carnivora (Mammalia). Journal of Mammalogy, 87, 1027–36.
Finarelli, J. A. (2007). Mechanisms behind active trends in body size evolution in the Canidae (Carnivora: Mammalia). American Naturalist, 170, 876–85.
Finarelli, J. A. (2008a). Testing hypotheses of the evolution of brain–body size scaling in the Canidae (Carnivora, Mammalia). Paleobiology, 34, 48–58.
Finarelli, J. A. (2008b). A total evidence phylogeny of the Arctoidea (Carnivora: Mammalia): relationships among basal taxa. Journal of Mammalian Evolution, 15, 231–59.
Finarelli, J. A. and Flynn, J. J. (2006). Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology, 55, 301–13.
Finarelli, J. A. and Flynn, J. J. (2007). The evolution of encephalization in caniform carnivorans. Evolution, 61, 1758–72.
Flynn, J. J. (1996). Phylogeny and rates of evolution: morphological, taxic and molecular. In Carnivore Behavior, Ecology, and Evolution, Vol. 2, ed. Gittleman, J.. Ithaca, NY: Cornell University Press, pp. 542–81.
Flynn, J. J. (1998). Early Cenozoic Carnivora (‘Miacoidea’). In Evolution of Tertiary Mammals of North America (Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals), ed. Janis, C. M., Scott, K. M. and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 110–23.
Flynn, J. J. and Galiano, H. (1982). Phylogeny of Early Tertiary Carnivora, with a description of a new species of Protictis from the Middle Eocene of Northwestern Wyoming. American Museum Novitates, 2725, 1–64.
Flynn, J. J. and Wyss, A. R. (1988). Letter to the Editor [re: S. J. O'Brien, ‘The ancestry of the giant panda’, Scientific American, November, 1987]. Scientific American, June 1988, 8.
Flynn, J. J. and Nedbal, M. A. (1998). Phylogeny of the Carnivora (Mammalia): congruence vs. incompatibility among multiple data sets. Molecular Phylogenetics and Evolution, 9, 414–26.
Flynn, J. J. and Wesley-Hunt, G. D. (2005). Carnivora. In Origin, Timing, and Relationships of the Major Clades of Extant Placental Mammals, ed. Archibald, D., and Rose, K. D.. Baltimore, MD: Johns Hopkins University Press, pp. 175–98.
Flynn, J. J., Neff, N. A. and Tedford, R. H. (1988). Phylogeny of the Carnivora. In Phylogeny and Classification of the Tetrapods, ed. Benton, M. J.. Oxford: Clarendon Press, pp. 73–116.
Flynn, J. J, Nedbal, M. A., Dragoo, J. W. and Honeycutt, R. L. (2000). Whence the red panda? Molecular Phylogenetics and Evolution, 17, 190–99.
Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J. and Nedbal, M. A. (2005). Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology, 54, 317–37.
Friscia, A. R., Van Valkenburgh, B. and Biknevicius, A. R. (2007). An ecomorphological analysis of extant small carnivorans. Journal of Zoology, 272, 82–100.
Fulton, T. L. and Strobeck, C. (2006). Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Molecular Phylogenetics and Evolution, 41, 165–81.
Fulton, T. L. and Strobeck, C. (2007). Novel phylogeny of the raccoon family (Procyonidae: Carnivora) based on nuclear and mitochondrial DNA evidence. Molecular Phylogenetics and Evolution, 43, 1171–77.
Fyler, C. A., Reeder, T. W., Berta, A., Antonelis, G., Aguilar, A. and Androukaki, E. (2005). Historical biogeography and phylogeny of monachine seals (Pinnipedia: Phocidae) based on mitochondrial and nuclear DNA data. Journal of Biogeography, 32, 1267–79.
Garland, T. and Ives, A. R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist, 155, 346–64.
Garland, T., Midford, P. E. and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. American Zoologist, 39, 374–88.
Gatesy, J. and Baker, R. H. (2005). Hidden likelihood support in genomic data: can forty-five wrongs make a right?Systematic Biology, 54, 483–92.
Gatesy, J. and O'Leary, M. A. (2001). Deciphering whale origins with molecules and fossils. Trends in Ecology & Evolution, 16, 562–70.
Gatesy, J., Amato, G., Norell, M., DeSalle, R. and Hayashi, C. (2003). Combined support for wholesale taxic atavism in gavialine crocodylians. Systematic Biology, 52, 403–22.
Gaubert, P. and Begg, C. M. (2007). Re-assessed molecular phylogeny and evolutionary scenario within genets (Carnivora, Viverridae, Genettinae). Molecular Phylogenetics and Evolution, 44, 920–27.
Gaubert, P. and Cordeiro-Estrela, P. (2006). Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: implications for faunal exchanges between Asia and Africa. Molecular Phylogenetics and Evolution, 41, 266–78.
Gaubert, P. and Veron, G. (2003). Exhaustive sample set among Viverridae reveals the sister-group of felids: the linsangs as a case of extreme morphological convergence within Feliformia. Proceedings of the Royal Society London B Biological Sciences, 270, 2523–30.
Gingerich, P. D. (1977). Correlation of tooth size and body size in living hominoid primates, with a note on relative brain size in Aegyptopithecus and Proconsul. American Journal of Physical Anthropology, 47, 395–98.
Gingerich, P. D. (1990). Prediction of body mass in mammalian species from long bone lengths and diameters. Contributions from the Museum of Paleontology, The University of Michigan, 28, 79–92.
Gingerich, P. D., Smith, H. B. and Rosenberg, K. (1982). Allometric scaling in the dentition of Primates and prediction of body weight from tooth size in fossils. American Journal of Physical Anthropology, 58, 81–100.
Giribet, G., Edgecombe, G. D. and Wheeler, W. C. (2001). Arthropod phylogeny based on eight molecular loci and morphology. Nature, 413, 157–61.
Gittleman, J. L. (1986a). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67, 23–36.
Gittleman, J. L. (1986b). Carnivore life history patterns: allometric, phylogenetic, and ecological associations. American Naturalist, 127, 744–71.
Gittleman, J. L. (1991). Carnivore olfactory bulb size: allometry, phylogeny and ecology. Journal of Zoology, 225, 253–72.
Gittleman, J. L. (1993). Carnivore life histories: a reanalysis in light of new models. Symposia of the Zoological Society of London, 65, 65–86.
Gittleman, J. L. (1994). Female brain size and parental care in carnivores. Proceedings of the National Academy of Sciences USA, 91, 5495–97.
Gittleman, J. L. and Harvey, P. H. (1982). Carnivore home-range size, metabolic needs and ecology. Behavioral Ecology and Sociobiology, 10, 57–63.
Gittleman, J. L. and Purvis, A. (1998). Body size and species-richness in carnivores and primates. Proceedings of the Royal Society of London Series B Biological Sciences, 265, 113–19.
Gittleman, J. L. and Van Valkenburgh, B. (1997). Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioral ecology. Journal of Zoology, 242, 97–117.
Grant, T., Frost, D. R., Caldwell, J. P., et al. (2006). Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1–262.
Gunnell, G. F. (1998). Creodonta. In Evolution of Tertiary Mammals of North America (Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals), ed. Janis, C. M., Scott, K. M. and Jacobs, L. L.. Cambridge: Cambridge University Press, pp. 91–109.
Harvey, P. H., Pagel, M. D. and Rees, J. A. (1991). Mammalian metabolism and life histories. American Naturalist, 137, 556–66.
Heinrich, R. E. and Houde, P. (2006). Postcranial anatomy of Viverravus (Mammalia, Carnivora) and implications for substrate use in basal Carnivora. Journal of Vertebrate Paleontology, 26, 422–35.
Heinrich, R. E. and Rose, K. D. (1995). Partial skeleton from the primitive carnivoran Miacis petilus from the early Eocene of Wyoming. Journal of Mammalogy, 76, 148–62.
Heinrich, R. E. and Rose, K. D. (1997). Postcranial morphology and locomotor behaviour of two early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology, 40, 279–305.
Higdon, J. W., Bininda-Emonds, O. R. P., Beck, R. M. D. and Ferguson, S. H. (2007). Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset. BMC (BioMed Central) Evolutionary Biology, 7, 216 (doi:10.1186/1471–2148–7–216, 19 pages).
Hunt, R. M.. (1977). Basicranial anatomy of Cynelos Jourdan (Mammalia: Carnivora), an Aquitanian amphicyonid from the Allier Basin, France. Journal of Paleontology, 51, 826–43.
Hunt, R. M.. (1987). Evolution of the aeluroid Carnivora: significance of auditory structure in the nimravid cat Dinictis. American Museum Novitates, 2886, 1–74.
Hunt, R. M.. (1996). Amphicyonidae. In The Terrestrial Eocene–Oligocene Transition in North America, ed. Prothero, D. and Emry, R. J.. Cambridge: Cambridge University Press, pp. 476–85.
Iwaniuk, A. N., Pellis, S. M. and Whishaw, I. Q. (1999). Brain size is not correlated with forelimb dexterity in fissiped carnivores (Carnivora): a comparative test of the principle of proper mass. Brain Behavior and Evolution, 54, 167–80.
Jenkins, F. A. and Camazine, S. M. (1977). Hip structure and locomotion in ambulatory and cursorial carnivores. Journal of Zoology, 181, 351–70.
Jenner, R. A. (2004). Accepting partnership by submission? Morphological phylogenetics in a molecular millennium. Systematic Biology, 52, 333–42.
Jerison, H. (1961). Quantitative analysis of evolution of the brain in mammals. Science, 133, 1012–14.
Jerison, H. (1970). Brain evolution: new light on old principles. Science, 170, 1224–25.
Jerison, H. (1973). Evolution of the Brain and Intelligence. New York, NY: Academic Press, 482 pp.
Jerison, H. (1991). Brain Size and the Evolution of Mind. New York, NY: American Museum of Natural History, 99 pp.
Johnson, W. E., Eizirik, E., Pecon-Slattery, J., et al. (2006). The Late Miocene radiation of modern Felidae: a genetic assessment. Science, 311, 73–77.
Jungers, W. L. (1990). Problems and methods in reconstructing body size in fossil Primates. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 103–18.
Kjer, K. M. and Honeycutt, R. L. (2007). Site specific rates of mitochondrial genomes and the phylogeny of eutheria. BMC Evolutionary Biology, 7, 8 (doi:10.1186/1471–2148–7–8).
Koepfli, K.-P., Jenks, S. M., Eizirik, E., Zahirpour, T., Van Valkenburgh, B. and Wayne, R. K. (2006). Molecular systematics of the Hyaenidae: relationships of a relictual lineage resolved by a molecular supermatrix. Molecular Phylogenetics and Evolution, 38, 603–20.
Koepfli, K.-P., Gompper, M. E., Eizirik, E., et al. (2007). Phylogeny of the Procyonidae (Mammalia: Carnivora): molecules, morphology and the Great American Interchange. Molecular Phylogenetics and Evolution, 43, 1076–95.
Legendre, S. (1986). Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, 16, 191–212.
Legendre, S. and Roth, C. (1988). Correlation of carnassial tooth size and body weight in Recent carnivores (Mammalia). Historical Biology, 1, 85–98.
Lento, G. M., Hickson, R. E., Chambers, G. K. and Penny, D. (1995). Use of spectral analysis to test hypotheses on the origin of pinnipeds. Molecular Biology and Evolution, 12, 28–52.
Loreille, O., Orlando, L., Patou-Mathis, M., Philippe, M., Taberlet, P. and Hänni, C. (2001). Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Current Biology, 11, 200–03.
Maddison, W. P. (1991). Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology, 40, 304–14.
Maddison, W. P. and Maddison, D. R. (2007). Mesquite: a modular system for evolutionary analysis. Version 2.01.
Magallon, S. (2007). From fossils to molecules: phylogeny and the core eudicot floral groundplan in Hamamelidoideae (Hamamelidaceae, Saxifragales). Systematic Botany, 32, 317–47.
Manos, P. S., Soltis, P. S., Soltis, D. E., et al. (2007). Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Systematic Biology, 56, 412–30.
Marino, L. (1998). A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behavior and Evolution, 51, 230–38.
Marino, L., McShea, D. W. and Uhen, M. D. (2004). Origin and evolution of large brains in toothed whales. Anatomical Record Part A – Discoveries in Molecular Cellular and Evolutionary Biology, 281A, 1247–55.
Marmi, J., López-Giráldez, J. F. and Domingo-Roura, X. (2004). Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zoologica Scripta, 33(6), 481–99.
Martin, R. D. (1981). Relative brain size and basal metabolic-rate in terrestrial vertebrates. Nature, 293, 57–60.
Martin, R. D. (1984). Body size, brain size and feeding strategies. In Food Acquisition and Processing in Primates, ed. Chivers, D. J., Wood, B. A. and Bilsborough, A.. New York, NY: Plenum Press, pp. 73–103.
Martin, R. D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction. London: Chapman and Hall, 828 pp.
Martin, R. D. (1996). Scaling of the mammalian brain: the maternal energy hypothesis. News in Physiological Sciences, 11, 149–56.
Martin, R. D., Genoud, M. and Hemelrijk, C. K. (2005). Problems of allometric scaling analysis: examples from mammalian reproductive biology. Journal of Experimental Biology, 208, 1731–47.
Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, middle Eocene. Memoirs of the American Museum of Natural History, 9, 289–567.
McNab, B. K. (1988). Complications inherent in scaling the basal rate of metabolism in mammals. Quarterly Review of Biology, 63, 25–54.
McShea, D. W. (1994). Mechanisms of large-scale evolutionary trends. Evolution, 48, 1747–63.
Meiri, S., Dayan, T. and Simberloff, D. (2004a). Body size of insular carnivores: little support for the island rule. American Naturalist, 163, 469–79.
Meiri, S., Dayan, T. and Simberloff, D. (2004b). Carnivores, biases and Bergmann's rule. Biological Journal of the Linnean Society, 81, 579–88.
Mivart, S. G. J. (1885). On the anatomy, classification and distribution of the Arctoidea. Proceedings of the Zoological Society of London, 23, 340–404.
Morlo, M., Peigné, S. and Nagel, D. (2004). A new species of Prosansanosmilus: implications for the systematic relationships of the family Barbourofelidae new rank (Carnivora, Mammalia). Zoological Journal of the Linnean Society, 140, 43–61.
Muñoz-Garcia, A. and Williams, J. B. (2005). Basal metabolic rate in carnivores is associated with diet after controlling for phylogeny. Physiological and Biochemical Zoology, 78, 1039–56.
Munthe, K. (1998). Canidae. In Evolution of Tertiary Mammals of North America (Vol. 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals), ed. Janis, C. M., Scott, K. M. and Jacobs, L. L.. New York, NY: Cambridge University Press, pp. 124–43.
Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A. and O'Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.
Murphy, W. J., Pringle, T. H., Crider, T. A., Springer, M. S. and Miller, W. (2007). Using genomic data to unravel the root of the placental mammal phylogeny. Genome Research, 17, 413–21.
Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P. and Nieves-Aldrey, J. L. (2004). Bayesian phylogenetic analysis of combined data. Systematic Biology, 53, 47–67.
O'Leary, M. A. (1999). Parsimony analysis of total evidence from extinct and extant taxa and the cetacean–artiodactyl question (Mammalia, Ungulata). Cladistics, 15, 315–30.
O'Leary, M. A. (2001). The phylogenetic position of cetaceans: further combined data analyses, comparisons with the stratigraphic record and a discussion of character optimization. American Zoologist, 41, 487–506.
Oakley, T. H. and Cunningham, C. W. (2000). Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution, 54, 397–405.
Pagel, M. D. and Harvey, P. H. (1988a). The taxon-level problem in the evolution of mammalian brain size: facts and artifacts. American Naturalist, 132, 344–59.
Pagel, M. D. and Harvey, P. H. (1988b). How mammals produce large-brained offspring. Evolution, 42, 948–57.
Pagel, M. D. and Harvey, P. H. (1989). Taxonomic differences in the scaling of brain on body-weight among mammals. Science, 244, 1589–93.
Polly, P. D. (1996). The skeleton of Gazinocyon vulpeculus Gen. et Comb. Nov. and the cladistic relationships of Hyaenodontidae (Eutheria, Mammalia). Journal of Vertebrate Paleontology, 16, 303–19.
Polly, P. D. (2001). Paleontology and the comparative method: ancestral node reconstructions versus observed node values. American Naturalist, 157, 596–609.
Polly, P. D., Wesley-Hunt, G. D., Heinrich, R. E., Davis, G. and Houde, P. (2006). Earliest known carnivoran auditory bulla and support for a recent origin of crown-group Carnivora (Eutheria, Mammalia). Palaeontology 49, 1019–27.
Radinsky, L. B. (1973). Aegyptopithecus endocasts: oldest records of a pongid brain. American Journal of Physical Anthropology, 39, 239–47.
Radinsky, L. B. (1977a). Brains of early carnivores. Paleobiology, 3, 333–49.
Radinsky, L. B. (1977b). Early primate brains: facts and fiction. Journal of Human Evolution, 6, 79–86.
Radinsky, L. B. (1978). Evolution of brain size in carnivores and ungulates. American Naturalist, 112, 815–31.
Rothwell, G. W. and Nixon, K. C. (2006). How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes?International Journal of Plant Sciences, 167, 737–49.
Ruff, C. (1990). Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid Primates. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 119–50.
Sanders, K. L., Malhotra, A. and Thorpe, R. S. (2006). Combining molecular, morphological and ecological data to infer species boundaries in a cryptic tropical pitviper. Biological Journal of the Linnean Society, 87, 343–64.
Sato, J. J., Hosoda, T., Wolsan, M. and Suzuki, H. (2004). Molecular phylogeny of arctoids (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zoological Science, 21, 111–18.
Sato, J. J., Wolsan, M., Suzuki, H., et al. (2006). Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of Pinnipedia: single origin with affinity to Musteloidea. Zoological Science, 23, 125–46.
Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size so Important?Cambridge: Cambridge University Press, 239 pp.
Scotland, R. W., Olmstead, R. G. and Bennett, J. R. (2003). Phylogeny reconstruction: the role of morphology. Systematic Biology, 52, 539–48.
Sears, K. E., Finarelli, J. A., Flynn, J. J. and Wyss, A. R. (2008). Estimating body mass in New World ‘monkeys’ (Platyrrhini, Primates) from craniodental measurements, with a consideration of the Miocene platyrrhine, Chilecebus carrascoensis. American Museum Novitates, 3617, 1–29.
Simons, E. L. (1993). New endocasts of Aegyptopithecus: oldest well-preserved record of the brain in Anthropoidea. American Journal of Science, 293–A, 383–90.
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.
Smith, F. A., Lyons, S. K., Ernest, S. K. M., et al. (2003). Body mass of late Quaternary mammals. Ecology, 84, 3403.
Spaulding, M. (2007). The impact of postcranial characters on reconstructing the phylogeny of Carnivoramorpha. Journal of Vertebrate Paleontology, 27(3 suppl.), 151A.
Spaulding, M. and Flynn, J. J. (2009). Anatomy of the postcranial skeleton of ‘Miacis’ uintensis (Mammalia: Carnivoramorpha). Journal of Vertebrate Paleontology, 29(4), 1212–23.
Spaulding, M., Flynn, J. J. and Stucky, R. (in press). A new basal carnivoramorphan (Mammalia) from the ‘Bridger B’ (Bridger Formation, Bridgerian NALMA, Middle Eocene) of Wyoming. Palaeontology.
Stanley, S. M. (1973). An explanation for Cope's rule. Evolution, 27, 1–26.
Swofford, D. L. and Maddison, W. P. (1987). Reconstructing ancestral character states under Wagner parsimony. Mathematical Biosciences, 87, 199–229.
Tedford, R. H., Taylor, B. E. and Wang, X. M. (1995). Phylogeny of the Caninae (Carnivora: Canidae): the living taxa. American Museum Novitates, 3146, 1–37.
Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In Carnivore Behavior, Ecology, and Evolution, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 410–36.
Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology, ed. Damuth, J. and MacFadden, B. J.. New York, NY: Cambridge University Press, pp. 181–206.
Van Valkenburgh, B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia, Carnivora) – evolutionary interactions among sympatric predators. Paleobiology, 17, 340–62.
Van Valkenburgh, B., Sacco, T. and Wang, X. M. (2003). Pack hunting in Miocene borophagine dogs: evidence from craniodental morphology and body size. Bulletin of the American Museum of Natural History, 279, 147–62.
Van Valkenburgh, B., Wang, X. M. and Damuth, J. (2004). Cope's Rule, hypercarnivory, and extinction in North American canids. Science, 306, 101–04.
Veron, G. (1995). La position systématique de Cryptoprocta ferox (Carnivora). Analyse cladistique des caractères morphologiques de carnivores Aeluroidea actuels et fossiles. Mammalia, 59, 551–82.
Veron, G., Colyn, M., Dunham, A. E., Taylor, P. and Gaubert, P. (2004). Molecular systematics and origin of sociality in mongooses (Herpestidae, Carnivora). Molecular Phylogenetics and Evolution, 30, 582–98.
Viranta, S. (1996). European Miocene Amphicyonidae – taxonomy, systematics and ecology. Acta Zoologica Fennica, 204, 1–61.
Vrana, P. B., Milinkovitch, M. C., Powell, J. R. and Wheeler, W. C. (1994). Higher level relationships of the arctoid Carnivora based on sequence data and total evidence. Molecular Phylogenetics and Evolution, 3, 47–58.
Wang, X. M. (1994). Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 221, 1–207.
Wang, X. M. and Tedford, R. H. (1994). Basicranial anatomy and phylogeny of primitive canids and closely related miacids (Carnivora: Mammalia). American Museum Novitates, 3092, 1–34.
Wang, X. M., Tedford, R. H. and Taylor, B. E. (1999). Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History, 243, 1–391.
Wayne, R. K., Geffen, E., Girman, D. J., Koepfli, K.-P., Lau, L. M. and Marshall, C. R. (1997). Molecular systematics of the Canidae. Systematic Biology, 46, 622–53.
Webster, A. J. and Purvis, A. (2002). Ancestral states and evolutionary rates of continuous characters. In Morphology, Shape and Phylogeny, ed. McLeod, N. and Forey, P. L.. New York, NY: Taylor and Francis, pp. 247–68.
Webster, A. J., Gittleman, J. L. and Purvis, A. (2004). The life history legacy of evolutionary body size change in carnivores. Journal of Evolutionary Biology, 17, 396–407.
Wesley-Hunt, G. D. and Flynn, J. J. (2005). Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of ‘Miacoidea’ relative to crown-clade Carnivora. Journal of Systematic Palaeontology, 3, 1–28.
Wesley-Hunt, G. D. and Werdelin, L. (2005). Basicranial morphology and phylogenetic position of the upper Eocene carnivoramorphan Quercygale. Acta Palaeontologica Polonica, 50, 837–46.
Wheeler, W. C. and Hayashi, C. Y. (1998). The phylogeny of the extant chelicerate orders. Cladistics, 14, 173–92.
Wolsan, M. (1993). Phylogeny and classification of early European Mustelida (Mammalia: Carnivora). Acta Theriologica, 38, 345–84.
Wynen, L. P., Goldsworthy, S. D., Insley, S. J., et al. (2001). Phylogenetic relationships within the eared seals (Otariidae: Carnivora): implications for the historical biogeography of the family. Molecular Phylogenetics and Evolution, 21(2), 270–84.
Wyss, A. R. (1987). The walrus auditory region and the monophyly of pinnipeds. American Museum Novitates, 2871, 1–31.
Wyss, A. R. and Flynn, J. J. (1993). A phylogenetic analysis and definition of the Carnivora. In Mammal Phylogeny: Placentals, ed. Szalay, F., Novacek, M., and McKenna, M.. New York, NY: Springer-Verlag, pp. 32–52.
Yoder, A. D. and Flynn, J. J. (2003). Origin of Malagasy Carnivora. In The Natural History of Madagascar, ed. Goodman, S. M. and Benstead, J.. Chicago, IL: University of Chicago Press, pp. 1253–56.
Yoder, A. D., Burns, M. M., Zehr, S., et al. (2003). Single origin of Malagasy Carnivora from an African ancestor. Nature, 421, 734–37.
Yonezawa, T., Nikaido, M., Kohno, N., Fukumoto, Y., Okada, N. and Hasegawa, M. (2007). Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene, 396, 1–12.
Yu, L. and Zhang, Y. P. (2006). Phylogeny of the caniform carnivora: evidence from multiple genes. Genetica, 127, 65–79.
Yu, L., Li, Q., Ryder, O. A. and Zhang, Y. (2004a). Phylogenetic relationships within mammalian Order Carnivora indicated by sequences of two nuclear DNA genes. Molecular Phylogenetics and Evolution, 33, 694–705.
Yu, L., Li, Q., Ryder, O. A. and Zhang, Y. (2004b). Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 32, 480–94.