Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T10:26:20.004Z Has data issue: false hasContentIssue false

39 - Neural Substrates of Youth and Adult Antisocial Behavior

from Part V - Looking Toward the Future

Published online by Cambridge University Press:  30 July 2018

Alexander T. Vazsonyi
Affiliation:
University of Kentucky
Daniel J. Flannery
Affiliation:
Case Western Reserve University, Ohio
Matt DeLisi
Affiliation:
Iowa State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharoni, E., Vincent, G. M., Harenski, C. L., Calhoun, V. D., Sinnott-Armstrong, W., Gazzaniga, M. S., & Kiehl, K. A. Neuroprediction of future rearrest. Proceedings of the National Academy of Sciences, 110, 62236228.Google Scholar
Barkataki, I., Kumari, V., Das, M., Taylor, P., & Sharma, T. (2006). Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behavioural Brain Research, 169, 239247.Google Scholar
Baskin-Sommers, A., Curtin, J., & Newman, J. (2011). Specifying the attentional selection that moderates the fearlessness of psychopathic offenders. Psychological Science, 2, 226234.CrossRefGoogle Scholar
Baxter, M. G., & Murray, E. A. (2002). The amygdala and reward. Nature Reviews Neuroscience, 3, 563573.Google Scholar
Berridge, K. C. & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26, 507513.Google Scholar
Birbaumer, N., Veit, R., Lotze, M., Erb, M., Hermann, C., Grodd, W., & Flor, H. (2005). Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Archives of General Psychiatry, 62, 799805.CrossRefGoogle ScholarPubMed
Bjork, J. M., Chen, G., & Hommer, D. W. (2012). Psychopathic tendencies and mesolimbic recruitment by cues for instrumental and passively obtained rewards. Biological Psychology, 89, 408415.CrossRefGoogle ScholarPubMed
Blair, K. S., Newman, C., Mitchell, D. G., Richell, R. A., Leonard, A., Morton, J., & Blair, R. J. R. (2006). Differentiating among prefrontal substrates in psychopathy: neuropsychological test findings. Neuropsychology, 20, 153165.Google Scholar
Blair, R. (2007). Dysfunctions of medial and lateral orbitofrontal cortex in psychopathy. Annals of the New York Academy of Sciences, 1121, 461479.CrossRefGoogle ScholarPubMed
Blair, R. J. R. (2001). Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. Journal of Neurology, Neurosurgery & Psychiatry, 71, 727731.Google Scholar
Blair, R. J. R. (2013). The neurobiology of psychopathic traits in youths. Nature Reviews Neuroscience, 14, 786799.Google Scholar
Blair, R. J. R., Leibenluft, E., & Pine, D. S. (2014). Conduct Disorder and Callous–Unemotional Traits in Youth. New England Journal of Medicine, 371, 22072216.CrossRefGoogle ScholarPubMed
Bogdan, R., Hyde, L., & Hariri, A. (2012). A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Molecular Psychiatry, 18, 288299.CrossRefGoogle ScholarPubMed
Boulos, P. K., Dalwani, M. S., Tanabe, J., Mikulich-Gilbertson, S. K., Banich, M. T., Crowley, T. J., & Sakai, J. T. (2016). Brain Cortical Thickness Differences in Adolescent Females with Substance Use Disorders. PLoS ONE, 11, e0152983.CrossRefGoogle ScholarPubMed
Broulidakis, M. J., Fairchild, G., Sully, K., Blumensath, T., Darekar, A., & Sonuga-Barke, E. J. (2016). Reduced Default Mode Connectivity in Adolescents With Conduct Disorder. Journal of the American Academy of Child & Adolescent Psychiatry. doi: 10.1016/j.jaac.2016.1005.1021.CrossRefGoogle ScholarPubMed
Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience & Biobehavioral Reviews, 33, 279296.Google Scholar
Buckholtz, J. W., Treadway, M. T., Cowan, R. L., Woodward, N. D., Benning, S. D., Li, R., Ansari, M. S., Baldwin, R. M., Schwartzman, A. N., Shelby, E. S., & Smith, C. E. (2010). Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nature Neuroscience, 13, 419421.Google Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The Brain’s default network. Annals of the New York Academy of Sciences, 1124, 138.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222.Google Scholar
Byrd, A. L., Loeber, R., & Pardini, D. A. (2014). Antisocial behavior, psychopathic features and abnormalities in reward and punishment processing in youth. Clinical Child and Family Psychology Review, 17, 125156.CrossRefGoogle ScholarPubMed
Byrd, A. L., & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 75, 917.Google Scholar
Carré, J. M., Hyde, , Neumann, L. W., Viding, C. S., , E., & Hariri, A. R. (2013). The neural signatures of distinct psychopathic traits. Social Neuroscience, 8, 122135.CrossRefGoogle ScholarPubMed
Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62, 168178.Google Scholar
Cohn, M. D., Veltman, D. J., Pape, L. E., van Lith, K., Vermeiren, R. R., van den Brink, W., Doreleijers, T. A., & Popma, A. (2015). Incentive processing in persistent disruptive behavior and psychopathic traits: a functional magnetic resonance imaging study in adolescents. Biological Psychiatry, 78, 615624.Google Scholar
Contreras-Rodríguez, O., Pujol, J., Batalla, I., Harrison, B. J., Bosque, J., Ibern-Regàs, I., Hernández-Ribas, R., Soriano-Mas, C., Deus, J., López-Solà, M., & Pifarré, J. (2014). Disrupted neural processing of emotional faces in psychopathy. Social Cognitive and Affective Neuroscience, 9, 505512.Google Scholar
Cornet, L. J., Kogel, C. H., Nijman, H. L., Raine, A., & Laan, P. H. (2015). Neurobiological changes after intervention in individuals with anti-social behaviour: A literature review. Criminal Behaviour and Mental Health, 25, 1027.Google Scholar
Crowley, T. J., Dalwani, M. S., Mikulich-Gilbertson, S. K., Du, Y. P., Lejuez, C. W., Raymond, K. M., & Banich, M. T. (2010). Risky decisions and their consequences: neural processing by boys with antisocial substance disorder. PLoS ONE, 5, e12835.Google Scholar
Dadds, M. R., Allen, J. L., Oliver, B. R., Faulkner, N., Legge, K., Moul, C., Woolgar, M., & Scott, S. (2012). Love, eye contact and the developmental origins of empathy v. psychopathy. The British Journal of Psychiatry, 200, 191196.Google Scholar
Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science, 264, 11021105.Google Scholar
Decety, J., Chen, C., Harenski, C., & Kiehl, K. A. (2013). An fMRI study of affective perspective taking in individuals with psychopathy: imagining another in pain does not evoke empathy. Frontiers in Human Neuroscience, 7, 112.Google Scholar
Decety, J., Michalska, K. J., Akitsuki, Y., & Lahey, B. B. (2009). Atypical empathic responses in adolescents with aggressive conduct disorder: a functional MRI investigation. Biological Psychology, 80, 203211.Google Scholar
Decety, J., Skelly, L., Yoder, K. J., & Kiehl, K. A. (2014). Neural processing of dynamic emotional facial expressions in psychopaths. Social Neuroscience, 9, 3649.Google Scholar
Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118, 279306.Google Scholar
Finger, E. C., Marsh, A. A., Blair, K. S., Reid, M. E., Sims, C., Ng, P., Pine, D. S., & Blair, R. J. R. (2011). Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. American Journal of Psychiatry, 168, 152162.Google Scholar
Frick, P. J., Ray, J. V., Thornton, L. C., & Kahn, R. E. (2014). Can callous-unemotional traits enhance the understanding, diagnosis, and treatment of serious conduct problems in children and adolescents? A comprehensive review. Psychological Bulletin, 140, 140.Google Scholar
Fuster, J. (2001). The prefrontal cortex – an update: time is of the essence. Neuron, 30, 319333.CrossRefGoogle ScholarPubMed
Gatzke-Kopp, L. M., Beauchaine, T. P., Shannon, K. E., Chipman, J., Fleming, A. P., Crowell, S. E., Liang, O., Johnson, L. C., & Aylward, E. (2009). Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders. Journal of Abnormal Psychology, 118, 203213.Google Scholar
Gregory, S., Blair, R. J., Simmons, A., Kumari, V., Hodgins, S., & Blackwood, N. (2015). Punishment and psychopathy: a case-control functional MRI investigation of reinforcement learning in violent antisocial personality disordered men. The Lancet Psychiatry, 2, 153160.Google Scholar
Han, T., Alders, G. L., Greening, S. G., Neufeld, R. W. J., & Mitchell, D. G. V. (2011). Do fearful eyes activate empathy-related brain regions in individuals with callous traits? Social Cognitive and Affective Neuroscience, 7(8), 958–968.Google Scholar
Haney-Caron, E., Caprihan, A., & Stevens, M. C. (2014). DTI-measured white matter abnormalities in adolescents with Conduct Disorder. Journal of Psychiatric Research, 48, 111120.Google Scholar
Hare, R. D. & Neumann, C. S. (2008). Psychopathy as a clinical and empirical construct. Annual Review of Clinical Psychology, 4, 217246.CrossRefGoogle ScholarPubMed
Harenski, C. L., Harenski, K. A., & Kiehl, K. A. (2014). Neural processing of moral violations among incarcerated adolescents with psychopathic traits. Developmental Cognitive Neuroscience, 10, 181189.Google Scholar
Hariri, A. R., Drabant, E. M., & Weinberger, D. R. (2006). Imaging genetics: perspectives from studies of genetically driven variation in serotonin function and corticolimbic affective processing. Biological Psychiatry, 59, 888897.CrossRefGoogle ScholarPubMed
Herpertz, S. C., Huebner, T., Marx, I., Vloet, T. D., Fink, G. R., Stoecker, T., Jon Shah, N., Konrad, K., & Herpertz-Dahlmann, B. (2008). Emotional processing in male adolescents with childhood-onset conduct disorder. Journal of Child Psychology and Psychiatry, 49, 781791.Google Scholar
Hyde, L. W. (2015). Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach. Development and Psychopathology, 27, 587613.Google Scholar
Hyde, L. W., Bogdan, R., & Hariri, A. R. (2011). Understanding risk for psychopathology through imaging gene-environment interactions. Trends in Cognitive Sciences, 15, 417427.Google Scholar
Hyde, L. W., Byrd, A. L., Votruba-Drzal, E., Hariri, A. R., & Manuck, S. B. (2014). Amygdala reactivity and negative emotionality: divergent correlates of antisocial personality and psychopathy traits in a community sample. Journal of Abnormal Psychology, 123, 214224.Google Scholar
Hyde, L. W., Shaw, D. S., & Hariri, A. R. (2013). Neuroscience, developmental psychopathology and youth antisocial behavior: Review, integration, and directions for research. Developmental Review, 33, 168223.Google Scholar
Hyde, L. W., Swartz, J. R., Waller, R., & Hariri, A. R. (2015). Neurogenetics approaches to mapping pathways in developmental psychopathology. In D. Cicchetti (Ed.), Developmental Psychopathology (3rd ed., Vol. 2). Hoboken, NJ: Wiley.Google Scholar
Hyde, L. W., Shaw, D. S., Murray, L., Gard, A., Hariri, A. R., & Forbes, E. E. (2016). Dissecting the role of amygdala reactivity in antisocial behavior in a sample of young, low-income, urban men. Clinical Psychological Science, 4, 527544.Google Scholar
Jones, A. P., Laurens, K. R., Herba, C. M., Gareth, J. B., & Viding, E. (2009). Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. American Journal of Psychiatry, 166, 95102.Google Scholar
Kalnin, A. J., Edwards, C. R., Wang, Y., Kronenberger, W. G., Hummer, T. A., Mosier, K. M., Dunn, D. W., & Mathews, V. P. (2011). The interacting role of media violence exposure and aggressive–disruptive behavior in adolescent brain activation during an emotional Stroop task. Psychiatry Research: Neuroimaging, 192, 1219.CrossRefGoogle ScholarPubMed
Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Research, 142, 107128.Google Scholar
Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., & Liddle, P. F. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological Psychiatry, 50, 677684.Google Scholar
Kringelbach, M. L. (2005). The human orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691702.Google Scholar
Kumari, V., Aasen, I., Taylor, P., Das, M., Barkataki, I., Goswami, S., O'Connell, P., Howlett, M., Williams, S. C., & Sharma, T. (2006). Neural dysfunction and violence in schizophrenia: an fMRI investigation. Schizophrenia Research, 84, 144164.Google Scholar
Larson, C., Baskin-Sommers, A., Stout, D., Balderston, N., Curtin, J., Schultz, D., Kiehl, K. A., & Newman, J. P. (2013). The interplay of attention and emotion: top-down attention modulates amygdala activation in psychopathy. Cognitive, Affective, & Behavioral Neuroscience, 13, 757770.Google Scholar
Lozier, L. M., Cardinale, E. M., VanMeter, J. W., & Marsh, A. A. (2014). Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry, 71, 627636.Google Scholar
Marsh, A. A., & Blair, R. J. R. (2008). Deficits in facial affect recognition among antisocial populations: a meta-analysis. Neuroscience & Biobehavioral Reviews, 32, 454465.Google Scholar
Marsh, A. A., Finger, E. C., Fowler, K. A., Jurkowitz, I. T., Schechter, J. C., Henry, H. Y., Pine, D. S., & Blair, R. J. R. (2011). Reduced amygdala–orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Research: Neuroimaging, 194, 279286.Google Scholar
Marsh, A. A., Finger, E. C., Mitchell, D. G. V., Reid, M. E., Sims, C., Kosson, D. S., Towbin, K. E., Leibenluft, E., Pine, D. S., & Blair, R. J. R. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. American Journal of Psychiatry, 165, 712720.Google Scholar
Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81, 4179.Google Scholar
Meffert, H., Gazzola, V., den Boer, J. A., Bartels, A. A., & Keysers, C. (2013). Reduced spontaneous but relatively normal deliberate vicarious representations in psychopathy. Brain, 136, 25502562.Google Scholar
Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Sciences, 15, 483506.Google Scholar
Michalska, K. J., Zeffiro, T. A., & Decety, J. (2015). Brain response to viewing others being harmed in children with conduct disorder symptoms. Journal of Child Psychology and Psychiatry, 57, 510519.Google Scholar
Morgan, A. B. & Lilienfeld, S. O. (2000). A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clinical Psychology Review, 20, 113136.Google Scholar
Motzkin, J. C., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. Journal of Neuroscience, 31, 1734817357.Google Scholar
Moul, C., Killcross, S., & Dadds, M. R. (2012). A model of differential amygdala activation in psychopathy. Psychological Review, 119, 789806.Google Scholar
Müller, J. L., Sommer, M., Wagner, V., Lange, K., Taschler, H., Röder, C. H., Schuierer, G., Klein, H. E., & Hajak, G. (2003). Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biological Psychiatry, 54, 152162.Google Scholar
Naqvi, N. H. & Bechara, A. (2009). The hidden island of addiction: the insula. Trends in Neurosciences, 32, 5667.Google Scholar
Newman, J. P., Curtin, J. J., Bertsch, J. D., & Baskin-Sommers, A. R. (2010). Attention moderates the fearlessness of psychopathic offenders. Biological Psychiatry, 67, 6670.CrossRefGoogle ScholarPubMed
O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452454.Google Scholar
Odgers, C. L., Moffitt, T. E., Broadbent, J. M., Dickson, N., Hancox, R. J., Harrington, H., Poulton, R., Sears, M. R., Thomson, W. M., & Caspi, A. (2008). Female and male antisocial trajectories: From childhood origins to adult outcomes. Development and Psychopathology, 20, 673716.Google Scholar
Ogilvie, J., Stewart, A., Chan, R., & Shum, D. (2011). Neuropsychological measures of executive function and antisocial behavior: A meta analysis. Criminology, 49, 10631107.Google Scholar
Osumi, T., Nakao, T., Kasuya, Y., Shinoda, J., Yamada, J., & Ohira, H. (2012). Amygdala dysfunction attenuates frustration-induced aggression in psychopathic individuals in a non-criminal population. Journal of Affective Disorders, 142, 331338.Google Scholar
Pardini, D. A., Raine, A., Erickson, K., & Loeber, R. (2014). Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biological Psychiatry, 75, 7380.Google Scholar
Passamonti, L., Fairchild, G., Fornito, A., Goodyer, I. M., Nimmo-Smith, I., Hagan, C. C., & Calder, A. J. (2012). Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder. PLoS ONE [Electronic Resource], 7, e48789.Google Scholar
Passamonti, L., Fairchild, G., Goodyer, I. M., Hurford, G., Hagan, C. C., Rowe, J. B., & Calder, A. J. (2010). Neural abnormalities in early-onset and adolescence-onset conduct disorder. Archives of General Psychiatry, 67, 729738.Google Scholar
Pawliczek, C. M., Derntl, B., Kellermann, T., Gur, R. C., Schneider, F., & Habel, U. (2013). Anger under control: neural correlates of frustration as a function of trait aggression. PLoS ONE, 8, e78503.Google Scholar
Philippi, C. L., Pujara, M. S., Motzkin, J. C., Newman, J., Kiehl, K. A., & Koenigs, M. (2015). Altered resting-state functional connectivity in cortical networks in psychopathy. The Journal of Neuroscience, 35, 60686078.Google Scholar
Prehn, K., Schlagenhauf, F., Schulze, L., Berger, C., Vohs, K., Fleischer, M., Hauenstein, K., Keiper, P., Domes, G., & Herpertz, S. C. (2013). Neural correlates of risk taking in violent criminal offenders characterized by emotional hypo-and hyper-reactivity. Social Neuroscience, 8, 136147.Google Scholar
Pujara, M., Motzkin, J. C., Newman, J. P., Kiehl, K. A., & Koenigs, M. (2014). Neural correlates of reward and loss sensitivity in psychopathy. Social Cognitive and Affective Neuroscience, 9, 794801.Google Scholar
Raichle, M. E. & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. Neuroimage, 37, 10831090.Google Scholar
Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of Abnormal Child Psychology, 30, 311326.Google Scholar
Rilling, J. K., Glenn, A. L., Jairam, M. R., Pagnoni, G., Goldsmith, D. R., Elfenbein, H. A., & Lilienfeld, S. O. (2007). Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biological Psychiatry, 61, 12601271.Google Scholar
Rogers, J. C. & De Brito, S. A. (2016). Cortical and Subcortical Gray Matter Volume in Youths With Conduct Problems: A Meta-analysis. JAMA Psychiatry, 73, 6472.Google Scholar
Rubia, K., Halari, R., Smith, A., Mohammad, M., Scott, S., & Brammer, M. (2009a). Shared and disorder specific prefrontal abnormalities in boys with pure attention deficit/hyperactivity disorder compared to boys with pure CD during interference inhibition and attention allocation. Journal of Child Psychology and Psychiatry, 50, 669678.Google Scholar
Rubia, K., Smith, A. B., Halari, R., Matsukura, F., Mohammad, M., Taylor, E., & Brammer, M. J. (2009b). Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. American Journal of Psychiatry, 166, 8394.Google Scholar
Schiffer, B., Pawliczek, C., Mu, B., Forsting, M., Gizewski, E., Leygraf, N., & Hodgins, S. (2014). Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior. Psychiatry Research: Neuroimaging, 222, 4351.Google Scholar
Sebastian, C. L., McCrory, E. J., Cecil, C. A., Lockwood, P. L., De Brito, S. A., Fontaine, N. M., & Viding, E. (2012). Neural responses to affective and cognitive theory of mind in children with conduct problems and varying levels of callous-unemotional traits. Archives of General Psychiatry, 69, 814822.Google Scholar
Sharp, C., Burton, P. C., & Ha, C. (2011). “Better the devil you know”: a preliminary study of the differential modulating effects of reputation on reward processing for boys with and without externalizing behavior problems. European Child & Adolescent Psychiatry, 20, 581592.Google Scholar
Squeglia, L. M., Jacobus, J., & Tapert, S. F. (2009). The influence of substance use on adolescent brain development. Clinical EEG and Neuroscience, 40, 3138.Google Scholar
Sroufe, L. A. & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.Google Scholar
Sterzer, P., Stadler, C., Krebs, A., Kleinschmidt, A., & Poustka, F. (2005). Abnormal neural responses to emotional visual stimuli in adolescents with conduct disorder. Biological Psychiatry, 57, 715.Google Scholar
Sundram, F., Deeley, Q., Sarkar, S., Daly, E., Latham, R., Craig, M., Raczek, M., Fahy, T., Picchioni, M., Barker, G. J., & Murphy, D. G. (2012). White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder. Cortex, 48, 216229.Google Scholar
Veit, R., Flor, H., Erb, M., Hermann, C., Lotze, M., Grodd, W., & Birbaumer, N. (2002). Brain circuits involved in emotional learning in antisocial behavior and social phobia in humans. Neuroscience Letters, 328, 233236.CrossRefGoogle ScholarPubMed
Viding, E., Sebastian, C. L., Dadds, M. R., Lockwood, P. L., Cecil, C. A., De Brito, S. A., & McCrory, E. J. (2012). Amygdala response to preattentive masked fear in children with conduct problems: the role of callous-unemotional traits. American Journal of Psychiatry, 160, 11091116.Google Scholar
Waller, R., Corral-Frías, N. S., Vannucci, B., Bogdan, R., Knodt, A. R., Hariri, A. R., & Hyde, L. W. (2016). An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men. Social Cognitive and Affective Neuroscience, 11, 12181226.Google Scholar
Waller, R., Dotterer, H. L., & Hyde, L. W. (2015). An imaging gene by environment interaction (IG×E) approach to understanding youth antisocial behavior. Emerging Trends in the Social and Behavioral Sciences: John Wiley & Sons, Inc.Google Scholar
Waller, R., Dotterer, H. L., Murray, L., Maxwell, A. M., & Hyde, L. W. (2017). White-matter tract abnormalities and antisocial behavior: A systematic review of diffusion tensor imaging studies across development. Neuroimage: Clinical, 14, 201–215.CrossRefGoogle Scholar
White, S. F., Marsh, A. A., Fowler, K. A., Schechter, J. C., Adalio, C., Pope, K., Pine, D. S., & Blair, R. J. R. (2012). Reduced amygdala response in youths with disruptive behavior disorders and psychopathic traits: decreased emotional response versus increased top-down attention to nonemotional features. American Journal of Psychiatry, 169, 750758.Google Scholar
White, S. F., Pope, K., Sinclair, S., Fowler, K. A., Brislin, S. J., Williams, W. C., Pine, D. S., & Blair, R. J. R. (2013). Disrupted expected value and prediction error signaling in youths with disruptive behavior disorders during a passive avoidance task. American Journal of Psychiatry, 170, 315323.Google Scholar
Yang, Y. & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Research: Neuroimaging, 174, 8188.Google Scholar
Yoder, K., Harenski, C., Kiehl, K., & Decety, J. (2015). Neural networks underlying implicit and explicit moral evaluations in psychopathy. Translational Psychiatry, 5, e625.Google Scholar
Yoder, K. J., Lahey, B. B., & Decety, J. (2016). Callous traits in children with and without conduct problems predict reduced connectivity when viewing harm to others. Scientific Reports, 6, 20216.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×