Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T20:05:33.889Z Has data issue: false hasContentIssue false

14 - Episodic Memory and Cognitive Control: Contributions to Creative Idea Production

from Part IV - Memory and Language

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917.CrossRefGoogle ScholarPubMed
Addis, D. R., Pan, L., Musicaro, R., & Schacter, D. L. (2016). Divergent thinking and constructing episodic simulations. Memory, 24, 8997.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, USA, 1316, 2952.CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41, 473487.CrossRefGoogle ScholarPubMed
Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia, 45, 28832901.CrossRefGoogle ScholarPubMed
Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience & Biobehavioral Reviews, 51, 108117.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Science, 20, 8795.CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309.CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2013). Metaphorically speaking: Cognitive abilities and the production of figurative language. Memory & Cognition, 41, 255267.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6, 22959.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014a). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133.CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014b). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 7383.CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273.CrossRefGoogle Scholar
Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450457.CrossRefGoogle ScholarPubMed
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6.CrossRefGoogle ScholarPubMed
Bowden, E. M., & Jung-Beeman, M. (1998). Getting the right idea: Semantic activation in the right hemisphere may help solve insight problems. Psychological Science, 9, 435440.CrossRefGoogle Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. NeuroImage, 49, 865874.CrossRefGoogle Scholar
De Brigard, F., Addis, D. R., Ford, J. H., Schacter, D. L., & Giovanello, K. S. (2013). Remembering what could have happened: Neural correlates of episodic counterfactual thinking. Neuropsychologia, 51, 24012414.CrossRefGoogle ScholarPubMed
DeYoung, C. G., Flanders, J. L., & Peterson, J. B. (2008). Cognitive abilities involved in insight problem solving: An individual differences model. Creativity Research Journal, 20, 278290.CrossRefGoogle Scholar
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia disrupts creative thinking. Hippocampus, 23, 11431149.CrossRefGoogle ScholarPubMed
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794.CrossRefGoogle ScholarPubMed
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., … Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734748.CrossRefGoogle ScholarPubMed
Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.Google Scholar
Fisher, R. P., & Geiselman, R. E. (1992). Memory-enhancing techniques for investigative interviewing: The cognitive interview. Springfield, IL: Charles C. Thomas Books.Google Scholar
Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, , , M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 2532.CrossRefGoogle Scholar
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625.CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contributions to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefGoogle ScholarPubMed
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923934.CrossRefGoogle ScholarPubMed
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw Hill.Google Scholar
Jing, H.G., Madore, K.P., & Schacter, D.L. (2016). Worrying about the future: An episodic specificity induction impacts problem solving, reappraisal, and well-being. Journal of Experimental Psychology: General, 145, 402418.CrossRefGoogle ScholarPubMed
Jung, R. E., Flores, R. A., & Hunter, D. (2016). A new measure of imagination ability: Anatomical brain imaging correlates. Frontiers in Psychology, 7, 496.CrossRefGoogle ScholarPubMed
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 330, 103389.Google Scholar
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W.(2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189.CrossRefGoogle ScholarPubMed
Kleibeuker, S. W., Koolschijn, P. C., Jolles, D. D., De Dreu, C. K., & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7, 103389.CrossRefGoogle ScholarPubMed
Klein, S. (2013). Making the case that episodic recollection is attributable to operations occurring at retrieval rather than to content stored in a dedicated subsystem of long-term memory. Frontiers in Behavioral Neuroscience, 7, 3.CrossRefGoogle Scholar
Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30, 16781690.CrossRefGoogle ScholarPubMed
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320.CrossRefGoogle Scholar
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: Toward a multidimensional model of the creative process. Human Brain Mapping, 36, 35513372.CrossRefGoogle Scholar
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory: Effects of an episodic specificity induction on divergent thinking. Psychological Science, 26, 14611468.CrossRefGoogle ScholarPubMed
Madore, K. P., Gaesser, B., & Schacter, D. L. (2014). Constructive episodic simulation: Dissociable effects of a specificity induction on remembering, imagining, and describing in young and older adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 609622.Google ScholarPubMed
Madore, K. P., Jing, H. G., & Schacter, D. L. (2016). Divergent creative thinking in young and older adults: Extending the effects of an episodic specificity induction. Memory & Cognition.CrossRefGoogle Scholar
Madore, K. P., & Schacter, D. L. (2014). An episodic specificity induction enhances means-end problem solving in young and older adults. Psychology and Aging, 29, 913924.CrossRefGoogle ScholarPubMed
Madore, K. P., & Schacter, D. L. (2016). Remembering the past and imagining the future: Selective effects of an episodic specificity induction on detail generation. The Quarterly Journal of Experimental Psychology, 69, 285298.CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2015). Generating original ideas: The neural underpinning of originality. NeuroImage, 116, 232239.CrossRefGoogle ScholarPubMed
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 110.CrossRefGoogle Scholar
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Pinho, A., de Manzano, Ö., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34, 61566163.CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, , Fransson, M., , P., & de Manzano, Ö. (2016). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26, 30523063.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447.CrossRefGoogle ScholarPubMed
Schacter, D. L., & Addis, D. R. (2007). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. Philosophical Transaction of the Royal Society of London B, 362, 773786.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657661.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694.CrossRefGoogle ScholarPubMed
Schacter, D. L., Benoit, R. G., De Brigard, F., & Szpunar, K. K. (2015). Episodic future thinking and episodic counterfactual thinking: Intersections between memory and decisions. Neurobiology of Learning and Memory, 17, 114121.Google Scholar
Schacter, D. L., & Madore, K. P. (2016). Remembering the past and imagining the future: Identifying and enhancing the contribution of episodic memory. Memory Studies, 9, 245255.CrossRefGoogle ScholarPubMed
Sheldon, S., McAndrews, M. P., & Moscovitch, M. (2011). Episodic memory processes mediated by the medial temporal lobes contribute to open-ended problem solving. Neuropsychologia, 49, 24392447.CrossRefGoogle ScholarPubMed
Silvia, P. J., & Beaty, R. E. (2012). Making creative metaphors: The importance of fluid intelligence for creative thought. Intelligence, 40, 343351.CrossRefGoogle Scholar
Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41, 328340.CrossRefGoogle Scholar
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317.CrossRefGoogle ScholarPubMed
Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25, 7486.CrossRefGoogle ScholarPubMed
Szpunar, K. K. (2010). Episodic future thought: An emerging concept. Perspectives on Psychological Science, 5, 142162.CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: Inferring “how” from “where”. Neuropsychologia, 41, 280292.CrossRefGoogle Scholar
Torrance, E. P. (1974). The Torrance tests of creative thinking norms – technical manual research edition – figural tests, forms A and B. Princeton, NJ: Personnel Press.Google Scholar
Troyer, A. K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11, 138.CrossRefGoogle ScholarPubMed
Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 125.CrossRefGoogle Scholar
Unsworth, N., Spillers, G. J., & Brewer, G. A. (2010). Variation in verbal fluency: A latent variable analysis of clustering, switching, and overall performance. The Quarterly Journal of Experimental Psychology, 64, 447466.CrossRefGoogle ScholarPubMed
Vartanian, O., Bouak, F., Caldwell, J. L., Cheung, B., Cupchik, G., Jobidon, M. E., … Silvia, P. J. (2013). The effects of a single night of sleep deprivation on fluency and prefrontal cortex function during divergent thinking. Frontiers in Human Neuroscience, 8, 214214.Google Scholar
Vartanian, O., Martindale, C., & Kwiatkowski, J. (2003). Creativity and inductive reasoning: The relationship between divergent thinking and performance on Wason’s 2–4–6 task. The Quarterly Journal of Experimental Psychology: Section A, 56, 641655.CrossRefGoogle Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 33283342.CrossRefGoogle ScholarPubMed
Warren, D. E., Kurczek, J., & Duff, M. C. (2016). What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage. Hippocampus, 26, 835840.CrossRefGoogle ScholarPubMed
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., … Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×